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Constraint Satisfaction in Local and Gradient Susceptibility Approximations:
Application to a van der Waals Density Functional
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We show how charge conservation and reciprocity can be built into local density or gradient
approximations for density-density response functions (susceptibilities). We apply these ideas to derive
from first principles a variant of the Rapcewicz-Ashcroft formula for the van der Waals interaction. We
also discuss how improved formulas may be obtained.

PACS numbers: 31.15.Ew, 34.20.—b, 71.45.Gm

Overall, electron density functional theory (DFT) hascircumstances it is well known that second-order per-
been gratifyingly successful in approximating the energiesurbation theory in the Coulomb interaction between the
of inhomogeneous interacting electronic systems [1,2]two systems yields a good approximation to the van der
Part of this success is due to the satisfaction of th&Vaals or dispersion interaction. Zaremba and Kohn [9]
exchange-correlation (xc) hole normalization condition,reexpressed this second-order energy, without further
often achieved with considerable effort [3]. The usual lo-approximation, in the form
cal density approximation (LDA) [4] and its various gra- 5 5
dient extensions [2] do not, however, give an adequate g — _ R [drl dr, dr’ dr, —< ¢
description of dispersion or van der Waals (vdW) forces 27 Y e =l e — 1l
[5]. The approach to be introduced here both simplifies
the problem of achieving hole normalization, and facili-
tates the derivation of van der Waals functionals.

The difficulty of describing vdW forces in the LDA or )
gradient approaches is not surprising since these forcdgere xi(r.r’, ») and y»(r,r', w) are the exact density-
depend on correlations between distant density fluctusdensity response functions (in the Kubo sense) of each
tions, which may be different from those in the uniform or Separate system in the absence of the othgi. is
near-uniform electron gas upon which the above approxidefined by the linear density response; (r) exp(ur) of
mations are based. Rather general methods have beHlf €lectrons in system 1 to an externally applied electron
proposed [6,7] for treating these long-ranged correlationfotential energy perturbatiafV ' (r) explut),
by explicit solution of nonlocal screening equations, while
still making the local density approximation for a suit- Sni(r) = f/\/l(r,r’, in)dV(r') dr’, 2)
able intermediate quantity. These methods are expected
to work well for a wide variety of situations including and similarly for y,. It is important to note thaty;
both overlapping and nonoverlapping electron distribuincludes the electron-electron interaction amongst the
tions. Such approaches will usually require substantiaélectrons of system 1 to all orders, and similarly for.
computation, however. [Note also that, unlike Ref. [9], we have referred the space

We therefore first consider a less ambitious problemarguments ofy; and y; in (1) to a common origin.]
the efficient calculation of the vdW interaction between To simplify (1), we will approximatey; and y, via
a pair of nonoverlapping neutral systems, using as inpu form of local density approximation. That is, we will
only the ground-state electron densitiesr) and n>(r)  appeal to a simple model of the density-density response
of the two systems. Rapcewicz and Ashcroft [8] have alof a homogeneous electron gas, and modify it suitably to
ready given an expression for this limit of the vdW inter- approximate the response of the inhomogeneous gas in
action, using arguments based on Feynman diagrams ae@dch system. The simplest such homogeneous response
three-point functions, plus a conjecture about an approprimodel is a nondispersive form of hydrodynamics in which
ate average density computed between two distant pointse eliminate the fluid velocitw between the linearized
We will here derive a similar but not identical expres- continuity equation, Newton’s second law (with no pres-
sion from a straightforward local density approximationsure term), and Poisson’s equation. In Fourier repre-
for a suitable quantity. The result will depend crucially sentation, this gives a density perturbatién(q, w) =
on satisfaction of some constraints, and the methods useg(g, w)5V*'(g, w) where §Ve*! is the bare external po-
to achieve this should be useful elsewhere. tential energy and

Consider a pair of nonoverlapping many-electron
systems so that electrons in system 1 can be considered
distinguishable from those in system 2. Under these
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whereny is the unperturbed electron number density andhe form

wp(n) = 4mne?/m. Equation (3) corresponds to a real- (. r,iu) =V, - VaF(r,r', iu) 7)
space response which is local in the sense of a delta- T T
function second derivative: where F is symmetric inr and r’ and vanishes at in-

finity, will guarantee both charge conservation and reci-
V23 —1). (4) procity even whereF includes density gradient terms.
m[w%(no) — w?] As a first step in implementing these ideas for a general
inhomogeneous system, we seek the simplest local den-

How should we make the corresponding local approxi-Sity approximation fory consistent with the lowest-order
mation for an inhomogeneous system, in which théhomogeneous result (4). The form (7) essentially man-
uniform unperturbed density, is replaced by a given dates the following choice, if" is to be a scalar:
inhomogeneous ground state electronic density? For 1 53 ,
the present application it will be necessary to take intOXf(‘)‘?;’{“(r,r’, w) =V, V. [_ w} (8)
account the following two exact constraints. m w? — wp[n(r)]

(A) Charge conservation: Because a time-dependent |n (8), the large square bracket#s and it is essential,
potential perturbation can move electronic charge aroungbr charge conservation, thatr) does not occur outside

no

Xioem (r.x', @) =

but not create or destroy it, we must have the differentiations. While the density arguments in (8)
appear at first sight to be reciprocity violating because

f x(r,r', iu) dr = 0 for eachr’ andu. (5)  they involve onlyr and notr’, they occur right against a

delta function and so do not in fact violate reciprocity.

Indeedn(r) in (8) could be replaced by, e.da(r) +

(B) Reciprocity: n(r’)]/2 or [n(r)n(r’)]'/? with no effect on the formula
(8), when it is integrated with a further function as in (1)
x (e, x' iu) = x(r',r, —iu) for realu. (6) and integrations by parts are performed. The symmetric

form of the derivatives in (8) is, however, crucial as

Equation (6) is readily proved from the general Kubowe shall see: while the operato®? and —V, - V.
form for the imaginary-frequency response in terms ofare equivalent in the uniform case, this is not so for
the interacting many-body eigenstates. Because of (6)he inhomogeneous case in which only the latter form
Eq. (5) also holds with the argumentandr’ reversed in  guarantees reciprocity.
the susceptibility. Representing, - V, by >,(3/dr,)a/dr, and apply-

One simple way to ensure (5) is to expregsas a ing (8) in (1) to approximatey; in terms ofn;(r;) [and
spatial gradient of a function which vanishes at infinity,also y, in terms ofn,(r,)], we obtain the approximate
thus ensuring thaty integrates to zero. Furthermor?, vdW energy

92 o2 92 o2
fdrl dr| dr, dr}, < > — < ; ; >
driadrap \|r2 — 11|/ 9ri,drg \Iry — 1y

% j:[ ni(r)83(r; — ry) }[ ny(ry)83(ry — 1)) }du.

—u? — w%[nl(rl)] —u? — w%[nz(l‘z)]

E® — _

27 m?

Here we have already integrated by parts on each space variable, and have used the Einstein summation convention in
the o and 8 summations. Performing the second derivatives explicitly on the Coulomb potentials and then using the
delta functions to remove two integrations, we have

4 372 — 8, 2412 row
g — _ e . ]drl dl‘zZ{ Maarizg B’"IZ} ] [ ni(ry) }[ na(r) }du
27m b 0

—u? - w,za[nl(rl)] —u? — wl%[n2(r2)]

T2
fie! fdr dr 6 (ry)na(ra) /2 3h fdr dr ! Y12 C)]
—_r° = e n .m0 - @i®
27 m? L rty R o) + wr)wi ) 3272 H riy (@1 + @)
wherew; = wp, = [4me2n;(r))/m]"”? and similarly for | Equation (9) is our main result. It is basically similar

w,. It is interesting that the integrand in (9) is propor-to the Rapcewicz-Ashcroft formula [8] except that one
tional to theharmonic meanw;w,/(w; + w,), of the of the three factors of the geometric meéa, w,)'/?
two local plasma frequencies. appearing on the denominator in [8] has been replaced by
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an arithmetic mean in (9). This may make the resuliinteracting local conductivity approximation
less sensitive to a low-density cutoff than the formula of w8 — 1)
Ref. [8]. A cutoff (e.g., that from [8]) will certainly still T, r, @) = 8,,n(r) 5 .
be appropriate, however, because the uniform-gas-based w? — wp[n(r)]
ansatz (8) for the response is a serious overestimate inIn general, any approximation for the conductivity
the outer tails of the electronic density. The essentiatjuantity o (r,r’, ) of a finite inhomogeneous system,
point, though, is that a formula of this type has hereprovided thato is symmetric and vanishes fast enough
been derived by a simple local density ansatz which at infinity, will yield, via (11), a charge-conserving
embodies suitable constraints. The satisfaction of chargeeciprocity-respecting susceptibility. It is therefore not
conservation was essential because, without it, (1) wouldecessary to consider charge conservation explicitly when
represent the second-order Coulomb interaction betweemne begins from the current response. [A possible excep-
nonzero charges, and this would not give the corrgft  tion is the case of infinite systems in the linait— 0, in
dipole-dipole interaction. The reciprocity constraint is justwhich case (11) may require an additional term whenever
as vital in the present case: if, in approximatjpg (8) had  the system has a nonzero Drude weight [10].]
been replaced by an expression of the fovi¥F(r;,r}) In the present context, one may hope to obtain a
instead ofV, - V| F(r;,r}), then two integrations by parts generalization of the vdW formula (9) by considering
with respect tor; in (1) would have yielded a factor the next order in gradients (i.e., inclusion of a pressure
of V3(jr; — ra| ™Y resulting in a delta function which or dispersion term) in a hydrodynamic theory of the
can never be satisfied because the two systems do netirrent-current response, followed by the use of (1) and
overlap. Thus the reciprocity-violatifg? F(r,r’) formof ~ (11). This approach has some elements in common
susceptibility would give a zero vdW interaction. with the hydrodynamic approach to vdW interactions
The form (7) can be put in a more general contextpursued extensively by Mahanty and Paranjape [11,12].
A nonlocal conductivity quantityy (related to the fully Care will be required here, however, because it was
interacting Kubo current-current response function byrecently shown [13] that the usual pressure term is not
o = xy/iw) can be defined by the linear responseadequate for the long-wavelength dynamic response of
of the current densityj to an external electric field inhomogeneous systems when the electron density is
Eex (r) exp—iw?): allowed to fall off smoothly at the edges. Furthermore,
once gradient terms are considered, one should also
: / _ — / ext (v gy include a nonzero exchange-correlation kerfigl along
Julr.r @) f g"“”(”’“’)E” (r)dr. (10) with the bare Coulomb potential in the self-consistent
dynamic potential.

o is not identical to the usual conductivity tensor, Finally it is interesting to enquire how the present
whose d?f'”'t'gt” IS similar to (1692 b/“t involves the total ¢onstraint considerations might apply to the derivation of
Hartree fieldE' (r') in place ofE*!(r’). vdW energy functionals in circumstances more general

To relate y to o we note thaty is appropriate only than the perturbative nonoverlapping case implied by
when the external field comes from a scalar potentlatl)_ The exchange-correlation party, = na(r, ') —

so thatES™(r') = =V, 8V(r)/(—e), where SV™' =, 1), (+/) of the pair distributionn, can be written in
—e®™" is the electron potential energy corresponding toarms of operator fluctuations as
the external potentiab***. Then, using the continuity
equation—iw(—e)én + V,j, = 0, we obtain the elec- naxe = (8a(r)8ar)) — 83(r — r)n(r), (12)
tron density perturbation a¥(r) exp(—iwt) with o

and has the normalization property

-1\ @
on(r) = — Fr , e
iwe) dry noxe(r,r’) dr n(r’). (13)
1 o
X f Ty, o) <; 37 5Ve’“(r’)> dr’, Upon dividingna,. by n(r’) to form the xc hole density

nxc, We can express (13) as the familiar condition (see [1])
where the Einstein summation convention was used. Fdhat the xc hole contains —1 electron. Using (12) we can
a finite system we apply integration by parts (Green’salso express the same fact as

theorem) and,assuming that the conductivity vanishes

whenr’ goes to infinitywe obtain the density in the form ]<5ﬁ(r)5ﬁ(r’)> dr = 0 for all r'. (14)

of Eqg. (2) with a susceptibility given by . . .
Using the zero-temperature fluctuation-dissipation the-

02 orem we can express the density fluctuation in terms of a

I — (; 2\—1 — !
x(r.r,w) = (iwe’) or,or) Tur(r,r @), (1) yensity-density response at imaginary frequency:

In particular, the above conserving local approximation R R _h [ .
for x [Eq. (8)] is obtained from (11) by making the (87(r)5n (") = _;]0 x(e.x'o = iu)du, (15)
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where y is the density-density response function (sussusceptibility y(A = 0,n, ¢, iu) is used in place of the
ceptibility) defined in (2). Substituting into the adiabatic interacting uniform-gas susceptibility. This is followed
connection formula [1] we obtain an expression for the xdoy solution of a real-space screening equation [14],

energy of an inhomogeneous system, using x°(r, ', iu) as input, to obtain the RPA interacting
susceptibilityy (A, r,r’, iu) of the inhomogeneous system.
e — 1 ld/\ d ar' e? It can be shown that thig satisfies charge conservation.
Y fo f r/ ST Furthermore, for the simplest (but reciprocity-violating)
o case n(r,r’) = n(r) this interacting y has poles at,
X {—ﬁwlf xA,r,r',iu) du e.g., the long-wavelength 2D plasmon mode of a slab
0

of jellium of finite thickness [15] and at the long-
wavelength surface plasmon on a jellium half space.
When substituted into (16) thjg amounts to a realization,
at the RPA level, of the vdW scheme proposed in Ref. [6]:
where y (A, r,r’, ) is the interacting susceptibility de- once more it automatically obeys xc hole normalization.
fined as in (2) but with a reduced Coulomb interaction In summary, we have derived a simple density func-
Ae?/r between electrons. Comparing (15), (5), and (14Yional (9) for the van der Waals or dispersion inter-
we find that in the context of Eq. (18he charge con- action between nonoverlapping electronic systems: it is
servation condition (5) fory implies xc hole normaliza- similar but not identical to one proposed by Rapcewicz
tion. Use of the bare susceptibility(A = 0,r,r’,ix) in  and Ashcroft [8] on rather different grounds. We achieved
(16) vyields the exact exchange energy. Subtraction dthis starting from a formula (1) which is exact to second
this exchange energy expression from the above xc erorder in the intersystem Coulomb interaction. Our method
ergy, substitution of the double-gradient form (7) intowas to make a local density approximation for a suscep-
(16), and integration by parts with use%f|r — r/|"! = tibility. This approximation [Eq. (8)] was constructed for
—4783(r — r') results in automatic attainment of charge conservation (xc hole nor-
malization) and reciprocity, constraints which were vital

e 1! YR in obtaining our result. We have also suggested how this
E°=- 3]0 d’\f drdme(hm ") approach may be extended.
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