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Energetic and Thermodynamic Aspects of Hysteresis
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A thermodynamic description of hysteresis phenomena is proposed, where the system evolution is
described as a sequence of Barkhausen jumps, and the Preisach model is used to characterize the jump
sequence. Expressions for Gibbs energy, entropy, and entropy production are derived. The equilibrium
states of the minimum Gibbs energy are defined and the equations for the thermal relaxation of a generic
initial state are derived.
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Nonequilibrium thermodynamics has been applied w
success to a number of situations, such as chemical r
tions or transport phenomena, where suitable relations
between irreversible flows and thermodynamic forces
be assumed [1,2]. It is not so for hysteresis pheno
ena, where irreversibility arises from the nonlinear a
branching character of the system constitutive laws [3
Thermodynamic approaches to hysteresis have been
tempted by several authors [5], but no conclusive res
have been reached yet. The main difficulty is that a h
teretic transformation, no matter how slow is the variati
of the external driving force, is characterized by a c
tain proportion between the energy reversibly stored
released by the system and the energy irreversibly d
pated as heat because of hysteresis losses, and we ha
general principles helping us to separate these two en
contributions.

On general grounds, hysteresis is the consequenc
the existence of many metastable free energy mini
These metastable states are the result of the coup
of characteristic structural features (such as magn
domain walls in ferromagnets, dislocations in m
chanical systems, Abrikosov vortices in type-II superco
ductors, etc.) among themselves or with environmen
disorder. The central feature is, in this respect, t
of the Barkhausen jump (BJ). This term, common
used for magnetic systems, indicates an event wh
the system, locally brought to instability by the drivin
force, suddenly moves to a new metastable configurat
Two energy terms will be involved in the jump, on
representing the difference in free energy between
old and the new metastable configuration, and the o
one measuring the amount of energy dissipated as
during the jump. Our comprehension of the hystere
behavior of the system is thus intimately related to o
knowledge of the BJ statistics. The mathematical t
best suited to this physical picture is the Preisach mo
(PM) of hysteresis [3]. In PM, the macroscopic hystere
properties of a given system are expressed as sums
a suitable distribution of elementary switching units.
this Letter, these switching units are used to descr
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the BJ behavior, and the hysteretic state of the system
defined in terms of a certain linebshcd, describing the
distribution of the switching units over their11 and 21
states.

When attempting a thermodynamic description, it mu
be realized that a hysteretic system is governed
intrinsically out-of-equilibrium, history-dependent cons
tutive laws, so that the local equilibrium hypothesis
irreversible thermodynamics has to be abandoned. In
place, we will introduce the PMbshcd line as an additional
set of internal thermodynamic variables, and we will a
sume that the usual thermodynamic functions still ex
for the hysteretic system, once expressed as functio
of the extended set includingbshcd. In this respect, the
present treatment has some analogy with the formalism
rational thermodynamics (see Ref. [2], p. 25). We exp
this approach to be useful as a phenomenological desc
tion of several hysteresis effects observed in nature.
main limitation resides in the limits of PM itself as a too
for the description of hysteresis. So far, PM has be
successfully applied to ferromagnets [6], superconduc
[7], consolidated materials [8], and, at the same time
number of generalizations of the original PM have be
proposed for the treatment of more general and refin
input-output relationships [3], dynamic effects [9], an
vectorial hysteresis [10]. In [11], it is proven that a sy
tem can be described by PM if and only if it obeys tw
general properties, known as “wiping out” (or “return
point memory” [4]) and “congruency” property [11]. Th
wiping out property is of quite general character and
obeyed by a broad variety of systems. Conversely,
congruency property imposes more stringent restrictio
that, though with some remarkable exceptions such
superconductors [7], are often only approximately sa
fied. To overcome, at least partially, such a limitation,
this Letter we introduce an extension of the original P
where the congruency property takes a much weaker fo
expressed by the existence of a field,HLS, dependent on
the state of the system, such that congruency is requ
only with respect to the internal fieldH ­ Ha 1 HLS,
whereHa is the externally applied field.
© 1996 The American Physical Society 1739
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In PM, a given system is described by a collection
elementary nonsymmetric square loops with up and do
switching fieldsa and b, a $ b. Under the action of
the field H (e.g., magnetic field in ferromagnets, load i
mechanical systems, etc.), a given elementary loop w
be in the11 state wheneverH . a and in the21 state
wheneverH , b. When b , H , a, the loop state
will depend on the pastH history. The outputX (magnetic
moment, mechanical elongation, etc.) is expressed as
integral over the elementary loop collection

X ­ Xs

Z Z
R1

da db psa, bd

2 Xs

Z Z
R2

da db psa, bd , (1)

where Xs is some characteristic saturation value for th
output andR1, R2 are the regions associated with ele
mentary loops in the11 and 21 states. The boundary
betweenR1 andR2 is in general a staircase line made u
of alternating horizontal and vertical segments [3]. Th
Preisach distributionpsa, bd gives the statistical weight
of the various elementary contributions. We assume t
psa, bd is positive, normalized to unity, and characterize
by the symmetrypsa, bd ­ ps2b, 2ad, which ensures
that bothhHstd, Xstdj and h2Hstd, 2Xstdj are admissible
input-output histories for the system. Moreover, w
assume that bothpsa, bd and Xs are independent ofH,
although they may depend on temperature.

There is no conceptual difficulty in reinterpreting th
Preisach distribution as a BJ distribution. To this en
it is convenient to introduce the new field coordinate
hc ­ sa 2 bdy2 and hu ­ sa 1 bdy2. By taking
into account the symmetrypsa, bd ­ ps2b, 2ad, i.e.,
pshc, hud ­ pshc, 2hud, we can rewrite Eq. (1) in the
form

X ­ Xs

Z `

0
dhc

Z bshcd

0
dhu pshc, hud , (2)

wherepshc, hud has been suitably renormalized to includ
all unimportant numerical factors.bshcd represents the
mentioned staircase boundary between theR1 and R2

regions, with slopejdbydhcj # 1 and bs0d ­ H. The
way a given field historyhHstdj determines thebshcd line
is summarized by the following simple rule (see Fig. 1
Consider the evolution in time of the two lineshu ­
Hstd 6 hc; whenever the constraintH 2 hc # bshcd #

H 1 hc is violated for somehc, modify bshcd by a
proper amountdbshcd, so that finallybshcd ­ H 2 hc

[if dbshcd . 0] or bshcd ­ H 1 hc [if dbshcd , 0].
In the absence of hysteresis, the thermodynamic st

of the system, supposed to be closed and homogene
would be fully described by the set of variablesfH, T ; Xg.
Yet, this set becomes incomplete when the equation
state is hysteretic, and it must be supplemented with
suitable set of internal variables. This set is represen
by the boundary linebshcd introduced in Eq. (2). Our
aim is to express the system’s thermodynamic functions
1740
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FIG. 1. Preisach representation in theshc, hud plane, showing
the region of integration (point filled) for Eq. (2) and line
controlling bshcd behavior according toH 2 hc # bshcd #
H 1 hc.

functionals of the extended setfbs?d, T ; Xg, with bs0d ­
H. The entropy balance equation isdS ­ dSe 1 dSi,
wheredS is the variation of the system entropy,dSe is
the entropy flow into the system, anddSi $ 0 is the in-
ternal entropy production. Analogously, the energy ba
ance readsdU ­ dW 1 TdSe ­ dW 1 TdS 2 TdSi,
wheredU is the variation of the system’s internal energ
and dW is the external work performed on the syste
dW ­ HadX, whereHa is the applied field. In terms of
the Helmoltz free energyF ­ U 2 TS, we havedF ­
dW 2 SdT 2 TdSi ­ HadX 2 SdT 2 TdSi. Let us
evaluate dW ­ HadX from Eq. (2), for an infinitesi-
mal variation dbshcd at constant temperature. By tak
ing into account that changes ofbshcd can occur only
in correspondence ofHa ­ bshcd 1 hc fdbshcd . 0g or
Ha ­ bshcd 2 hc fdbshcd , 0g, we obtain

dW ­ Xs

Z `

0
dhc bshcdpfhc, bshcdgdbshcd

1 Xs

Z `

0
dhc hcpfhc, bshcdg jdbshcdj . (3)

Given the positiveness ofpshc, hud, the last term is always
positive. In addition, its integral over a cyclic field
variation is precisely equal to the area of the hystere
loop. It thus represents the entropy production

TdSi ­ Xs

Z `

0
dhc hcpfhc, bshcdg jdbshcdj . (4)

This conclusion is in agreement with the results obtain
in [12]. The first term, on the other hand, can be e
pressed as the variation of the functional

F ­ Xs

Z `

0
dhc

Z bshcd

0
dhu hupshc, hud 1 FLS . (5)

We conclude that Eq. (5) represents the system f
energy. These results make clear the physical reason
the introduction of the fieldshc andhu. In fact, Eqs. (4)
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and (5) show that the variations in dissipated and sto
energy brought about by a BJ associated withshc, hud
arefTDSigBJ ­ hcjDXBJj andfDFgBJ ­ huDXBJ, where
DXBJ ­ Xspshc, hudDhcDhu is theX variation caused by
the jump.

The presence of the termFLS in Eq. (5) is worthy of
some attention. Considering the way it was introduc
FLS should be a function of temperature only, but w
are naturally led to extend this result. In fact,FLS de-
scribes the large-scale free energy behavior of the sys
obtained after smoothing out the fluctuating landscape
sponsible for hysteresis. There is no reason why
large-scale behavior should not exhibit some residual n
hysteretic dependence onX, FLSsX, Td. The need for
such an extension could have been already foreseen w
we tacitly assumed, in the derivation of Eq. (3), that t
applied fieldHa and the Preisach fieldH controlling the
BJ evolution were coincident. This is not necessar
the case. The presence ofFLS gives in fact an additiona
contribution to the free energy variationdF, equal to
2HLSdX, with HLSsX, Td ­ 2f≠FLSy≠XgT . The effec-
tive field acting in the Preisach plane isH ­ Ha 1 HLS

and, in the derivation of Eq. (3), the decompositionHa ­
bshcd 6 hc must be modified intoH ; Ha 1 HLS ­
bshcd 6 hc.

Let us now discuss the properties of the equilibriu
states under constant temperature and applied field, c
sponding to minimum Gibbs energyG ­ F 2 HaX. By
applying standard variational methods to Eqs. (5) and
we find that G is at an extremum whenbshcd ­ H ;
Ha 1 HLS [13]. In analogy with the terminology use
in magnetism, we will call this solution the anhystere
state. WhenHLS ø 0, the anhysteretic state can be a
proximately attained by applying an oscillating field
amplitude slowly decreasing from infinity to zero, supe
imposed to the constant fieldHa. The fact that field histo-
ries of this sort should produce low energy states is of
assumed and exploited in the literature, although not
ways with a clear physical justification.

So far, no considerations have been made on the ro
temperature. Some conclusion on this point can be dr
if we reconsider the description of hysteresis as due
the coupling of certain structural features (domain wa
dislocations, and vortices) with quenched-in disorder.
expect that temperature will affect the parameters cont
ling the structure-disorder coupling much more than
statistical distribution of the quenched-in disorder itse
In terms of the PM description, this means that a te
perature variation should mainly produce an over
rescaling of the Preisach distribution, without affecti
too much its functional dependence onhc andhu. In other
words, there will exist two characteristic fieldsHcsT d
andHusT d such that any dependence on the PM fieldshc

and hu will be expressible in terms of the combination
hcyHc and huyHu only. Let us consider the dimension
less quantities pshc, hud dhc dhu ! p̂sxc, xud dxc dxu,
d

,
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bshcdyHu ! b̂sxcd, where xc ­ hcyHc, xu ­ huyHu.
The dimensionless Preisach densityp̂sxc, xud is inde-
pendent of temperature and characterizes the syste
internal structure. The dimensionless boundaryb̂sxcd
is also temperature independent, and describes, toge
with the temperatureT, the state of the system. In
particular, any transformation under fixed̂bsxcd is a
transformation with zero entropy production. By e
pressingX andF in terms ofp̂sxc, xud and b̂sxcd, and by
considering a nondissipative infinitesimal transformati
wheredSi ­ 0, i.e.,db̂sxcd ­ 0, we obtain the following
expression for the system entropy [14]:

S ­ HX
d lnsXsd

dT

2 sF 2 FLSd
d lnsXsHud

dT
2

∑
≠FLS

≠T

∏
X

. (6)

The state described bybshcd is in general a metastabl
state, with the natural tendency to evolve towards
anhysteretic state of minimum Gibbs energy. A BJ driv
by the applied fieldHa is characterized byfDGgBJ 1

fTDSigBJ ­ 0. During thermal relaxation,Ha is not
sufficient to induce directly the jump and the missin
energy must be supplied by the thermal bath. Let us te
DE ­ fDGgBJ 1 fTDSigBJ . 0 this energy barrier. The
BJ will cause a localized change ofbshcd around some
hc value, and a corresponding output variationDXBJ.
By taking into account that fTDSigBJ ­ hcjDXBJj

and fDFgBJ ­ huDXBJ, we obtain DE ; DE1 ­
fbshcd 1 hc 2 Hg jDXBJj if DXBJ . 0, DE ; DE2 ­
f2bshcd 1 hc 1 Hg jDXBJj if DXBJ , 0. The rela-
tive probability with which the two types of event
will occur is controlled by the Boltzmann facto
exps2DEykBT d. The averagebshcd variation per unit
time will thus be proportional tojDbshcdj fexps2DE1y
kBTd 2 exps2DEykBT dg, where jDbshcdj is defined by
the relation jDXBJj ­ Xspfhc, bshcdg jDbshcdj2. This
leads to the relaxation equation

≠bshc, td
≠t

­ 22
Hn

tn

sinh

∑
bshc, td 2 H

Hn

∏
exp

µ
2

hc

Hn

∂
,

(7)

whereHn ­ kBTyjDXBJj, tn ­ t0HnhXspfhc, bshc, tdgy
jDXBJjj1y2, and 1yt0 is some attempt frequency assoc
ated with the jump. The structure of Eq. (7) is rath
complex, because the unknownbshc, td is present intn ,
Hn , andH ; Ha 1 HLS. These dependences should
analyzed case by case. Yet, the basic properties of
equation are illustrated well by the simple case wheretn

and Hn are approximated by constants, and the time
pendence ofH is known. Let us consider in particula
the case whereH is decreased from1` down to some
value H0, which is then kept constant in time. In thi
case,bshc, t ­ 0d ­ H0 1 hc. Let us look for a solution
of Eq. (7) of the formbshc, td ­ H0 1 hc 2 Dbshc, td.
1741
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At sufficiently high hc, the hyperbolic sine function can
be approximated by an exponential and

Db ø Hn ln

µ
1 1

t
tn

∂
. (8)

This solution is valid down tohc , hp
c ­ Hn lns1 1

tytnd. For hc , hp
c, Db ø hc andbshc, td ø H0. In the

initial relaxation stages, whenDb is small and Eq. (8)
applies almost everywhere, the output variationDX can
be expressed as

DX ø 2

∑
dX
dH

∏
H0

Hn ln

µ
1 1

t
tn

∂
, (9)

where dXydH represents the system response un
appreciable field ratesdHydt , Hnytn . Deviations from
this logarithmic behavior will take place in general a
Db increases. A more detailed analysis will be giv
elsewhere [14].

One can envisage a number of applications of
present approach. An example is the prediction of
heat flowTdSe out of a ferromagnetic specimen, whil
it is driven along the hysteresis loop. This is not ju
the heat associated with hysteresis losses. Accu
experiments, reported in several textbooks [15], g
evidence of a much richer structure, for which on
qualitative interpretations have been proposed. Th
experimental data can be interpreted by expressingTdSe

asTdSe ­ TdS 2 TdSi, and by making use of Eqs. (6
and (4). Another case is the description of vort
pinning and hysteresis in hard type-II superconducto
Critical state models, of which the Bean model is t
leading example [16], have been widely employed for t
purpose. Remarkably, critical state models are particu
cases of the Preisach model [7]. This is the start
point for a reinterpretation of critical state models
light of the present approach. Equation (5) can
used to describe the vortex-vortex interaction ene
and Eq. (4) to estimate the energy dissipation tak
place when a vortex line penetrates into the system
triggers a burst of internal vortex rearrangements. Fina
Eqs. (7)–(9) provide a natural description of flux cre
phenomena. Details of these applications will be given
a forthcoming more expanded work [14].
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