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Linear ac Response of Thin Superconductors during Flux Creep
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The linear magnetic susceptibility(w) of superconducting strips and disks in a transverse magnetic
field is calculated in the flux-creep regime. It is shown thdw) = y' — ixy” for o > 1/t is
universal,independent of temperature, dc field, and material parameters, depending only on the sample
shape, ac frequency /27, and time: elapsed after creep has started. Qualitativglyw) can be
obtained from they(w) of metallic conductors by replacing the Ohmic relaxation time rby At
wt > 1, which may apply down to rather low frequencies, the dissipative flux-creep state exhibits a
nearly Meissner-like response wiji = —1 + 0.40/wr and y” = 0.25In(29w1)/wt for disks.

PACS numbers: 74.60.Ge, 74.25.Ha

The theory of the ac susceptibiligfw) of type-Il super-  tering this theory areB = uoH for H > H, =~ dj /=
conductors, and especially of high-materials exhibiting and a sufficiently nonlinear dependence 61 j) =
significant flux creep, is still incomplete. To obtain larger E. exd —U(j)/T] on the current density in the ther-
signals, y(w) is usually measured on thin specimens inmally activated flux-creep state for which the differential
a transverse ac magnetic fieR,, whereas the common resistivity p(E) = 9dE(j)/d] is given by
analysis of such data often assumes long specimens in lon- p(E) =~ E/j,. )
gitudinal field. Only recently theories became available ) ) .
for the Bean critical state of thin circular disks [1] and HE"® Jp(T.H) = dj/dInt is the observed flux-creep
strips [2,3], and of rectangular disks [4] in a transversd @€  For E(j) = Ecexd—U()j)/T] one has j, =
field. These theories were confirmed also by magneto-
optic observations [5]. Besides thienlinearquasistatic
response, théinear response of thin conductors with ar-
bitrary linear complex and frequency dependent resistivity
caused, e.g., by thermally activated flux-line motion, was 5
calculated in longitudinal [6—8] and transverse [4,8—-12] . 4
geometries. Thus the nonlinear quasistatic response far ©
below the irreversibility line (see Ref. [13] for a compara-
tive review) and the linear response above the irreversibil-
ity line in principle are known for the relevant geometries.
However, one still lacks theoretical understanding of ac Piatainiiinininivintattintoteleliniininirinnininis ininii Y
experiments performed in the flux-creep regime below the 2 L
irreversibility line, where the dynamic response changes K
with time and can be both linear and nonlinear. 5

A universality of flux creep well above the magnetic 5
field of full flux penetration,H,, was recently demon- o | T ;
strated for longitudinal [14] and transverse [15] geome- -1 [ .- d Ny
tries. Namely, if the applied dc magnetic figtf), is held - .
constant at times > 0, then, after some transient time de- 4 P
pending on the previous ramp rai®,/dt, flux creep in- v
duces an electric field / ’

Eo(n,t) = af(n)/t, 1) 0 n 1

wheref(n) is a universal function, and the prefactor=  FIG. 1. The universal profiles of the electric field during flux
adpoj,/2m depends on the specimen. For strips ofcreep in strips (s, e;) and disks (4, e4) versusy = x/a =

width 2a and disks of radiug and of thicknessl/ < q in  7/4- f(n) (7) is the usual creep profile, to which a complex
ac perturbatiore(n, wt) (17) is superimposed. The upper plot

a tra_msverse field, the profilgs(n) f?lndfd(.n) are plotted shows the real and imaginary partsof= ¢’ + ie” for a disk
in Fig. 1 versus the reduced spatial varialgle= x/a or  atwr = 7 andwt = 10. In the limit wt — o, e(n, w1) (18)
n = r/a, respectively. The two constitutive laws en- becomes real (lower plot).
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T/(aU/aj)l;,, whereU(j) is an activation energy ang (w2 (721 = 2sie 5
is the critical current density measured at= E. such Qo(n.u) ={—| & o (1 — kZsir¢)l/2 d¢ (6)

that U(j.) = 0. In particular, forU(j) = UyIn(j./j), . . . .
N ok it for strips and disks, respectively, Wit = dnu/(n +
one hask(j) = Ec(j/jo)" with n = Up/T > 1 and u)? [8,10]. For zero ramp rat®, = 0, the steady-state

Jjp = je/n [16-18]. The current density(n,r) and . L i
magnetic momend# (¢) are then obtained by inserting the creep solution of (4) is given by Eq. (1) with [15]

universalEq(n, 1) (1) into the specifi&( j) law. !

In this Letter we calculate the linear response of thin fln) = _j; Qo u)du. 7
superconductor strips and disks in the flux-creep regime ) ,
to a small transverse ac magnetic field, by combining thé\PPlying a small ac fields,(s) on top of the constant dc
flux-creep theory [15] with the dynamic linear responseMagnetic field, one obtains an equation for the induced
theory of thin Ohmic conductors [10]. The problem is electric fieldE, (s, ) by replacingE in (4) by Ey + E.
that in the flux-creep state the background electric fieldVe thus get the integral equation (), 1),

and thus the differential resistivity(E) decay with time  E((n,t) = — h(t)n

asl/t, so not only the calculation but also the notion of the 1 .

proper linear response becomes nontrivial. Nevertheless, + f O(n,u)[tEi(u,t) + Ei(u,t)]du (8)
0

this calculation can be performed exactly even for the .
common transverse geometry with strong demagnetizatiowith Q(n, u) = Qo(n, u)/f(u) andh(t) = yaB,(1). The
effects, where it amounts to the solution of a nonlineaisolution of Eq. (8) can be written in the form
andnonlocaldiffusion equation. A striking feature of this

case is that the obtained linear ac susceptibility) is Ei(n) = g(n)ch(t)gon(n), 9)
independent of any material parameiéthe nonlinearity n

of E(j) is sufficiently strong, thatis, = dInj/dInt < 1.  whereg,(n) are the orthogonal normalized eigenfunctions
This condition always holds well below the irreversibility which describe dissipative flux-creep modes, (7, 1) «
field. A similar universal ac response was predicted forg,(n):~*. The ¢,(n) and A, are determined by the

longitudinal geometry [19]. following eigenvalue problem,
The expression foy (w) that we derive for the nonlin- 1
ear flux-creep state is similar to thg(w) of linear con- o.(n) = —A,Zf O(n,u)e,(u)du, (10)
ductors of the same geometry [10], 1 0
4 d2A, f du = 8. 11
X(w) _ _* Z (3) o @n(”)@m(”) u mn ( )

B4 1+ A/(iwr)

However, unlike the well-defined Ohmic relaxation time Ziiﬁcgligr’nue)l :\/the(rué (Z )) _ ?((Lgifz)fé?)s{[ﬁéz)af C;(;)yz'
T ac-iMO/sz.m. (.3)’ which in general may be complex [ f(u)/u]'? fo’r disks, f () is given by (7), and,,, is the

if the linear resistivityp = p..(w) is complex, the flux- Kronecker svmbol ’ ’ mn

creep “time constant” itself erends o_nia p(E). Using We have iolved Eq. (10) numerically on a grid of up
Egs. (1) and (2) for a qualitative estimate f one can to 300 none uidistant. ointg; as described in [8,10]
show that in superconductors should be just replaced The first eige?]values ang 3’A — 1 1.9029. 2 6(’573.
by the time: elapsed after the creep has started. | oo 5 = S < ’
both theories the constants, and d, are eigenvalues r]3£3.58?j'. tOOOSdgl’ :};80126’ ]%'488>5>’ ?Osﬁlze ?'656.1)efm the
and oscillator strengths of eigenvalue problems Whiclf' fip (disk), andA,, ~ 0.6n for n ; Irst eigen-

: - : ion i = 12 for strips and ¢;(u) =
differ by their integral kernels, ang@ = 1 for strips and unction Is qol(bf) [s(w) . P 1) =
5 — 32);377_2 _ 1.(?8 for disks. For’z)r _ wthe srzjm 3) [ufs(u)]"/? for disks. The eigenfunctions,(u) exhibit

yields the ideal diamagnetic responge= — 1. logarithmically diverging slopes at = 0 andu = 1 and

4 . . very narrow oscillations near = 0.
We start our calculation from the basic integral equation The equation fok, () can be obtained by multiplying

which describes a nonlinear nonlocal diffusioniify, ¢) . . ,
for perpendicular geometry [8,10,15], (El%)(gg db{ﬂ”)@Tﬁgdy;gfsgratmg over with the use of

) 17 .
E(n,t) = —yB,(t)n + af ggzg Qo(n, u)du. tey + (1 + Ap)en = duh(), (12)
0 s 1
@ dy= [N 4y, (13)
H = adugj, /2w,y = 1 (y = 3) for strips (disk 0 80
erea = adpoj,/2m, y = 1 (y = 3) for strips (disks), where the first “oscillator strengths?, ared,,...,ds =

and the integral kerngd, equals

Qo(n,u)=|n‘n_u
77+u

0.4247, 0.1291, 0.0651, 0.0409, 0.0288 (0.4476, 0.1308.
(5) 0.0661, 0.0425, 0.0310) for strips (disks) aml] =
0.36/n3/% for n > 1.

)
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Substituting the solution of Eq. (12) into Eq. (9) we obtained,
obtain a general solution of the linear response problem,

nAn n !
Ein.0) = g X S [t an . g

d’A,

4
Xw)=—4 Z 1+ A, Jiwr’ (1)

where B8 = 1 (strips), Bs = 32/(37w?) = 1.08 (disks),
Here we assume tha(r) was switched on at = 1y, later ~@nd the A, and d, are determined by Egs. (10) and
than the transient time for flux creep [14,15]. (13). Evaluatlr}g (21) numerically, we find to a very good
Now we consider the important particular case of adccuracy [relative errox0.001 (0.02) for wz = 30 (10)]
periodic ac signaB(r) = By expliwt) in more detail. For In(giwt)
wt > 1 an asymptotic solution of Eq. (12) is it

with p = 0.2804 (0.2524) andg = 19.85 (28.74) for
strips (disks). The real and imaginary partsyot= y' —

xX(@)=—-1+p (22)

cn(t) = iwyad,Bye'!

1 A
X - . + ... i
|:An el A+ w0 } (15) ix" (22) take the forms
_ _ _ x'(w) = -1+ pr/2wt, (23)
Substituting Eq. (15) into Eq. (9) we obtain "
_ x"(w) = pln(gwt)/wt . (24)
aByexpliwt) L .
Ei(n,t) = fe(n,wt), (16)  This linear ac susceptibility depends only on the creep
time r and sample shape, but it is independent of any
d, N, 0,(7m) material parameter and @ and B. Such a universality

e(n, wt) = 7’5’(77); 1+ A, (0D (17)  was also noted for longitudinal geometry [19]. Therefore,

(18)

(19)

Here only the first term in the square brackets in Eq. (15
y d a. (15) x(w)= -1+ (1 —i)consfvwrt,
For wt — o the functione(n, @1) in (17) equals specimen cross section. The lingdw) (21)—(25) should
For comparison we note that the ac susceptibility of

(7). This means that the electric field (16) for — o is

2/m? = 02026 (p =3/7% =0.3040), ¢ = 162 (¢ =
which is just the current that ideally screens the applie@eneral formula (3) for the Ohmig(w) applies for all
time-decaying currenj, =~ j. obtained by inverting the Makes sense only bz > 1, since at least a few ac cycles
Ei(n) is rounded and finite at the edges, and gains a disskomes independent of timedf = w(t) ~ {1/t is chosen.
ac componentj; = E1(8E/3])_1 = Eljp/EO perturbs a(Q |nl‘)/(:)l‘ = Q/t For a disk this giVES the constant-
1
Note that inj; and M, (17) the factorsl /¢ from Ey (1)
althoughkEy, E;, andj, decrease with.

in longitudinal geometry aw¢ > 1 in general
was retained since the remaining terms give contributions (25)
of higher order inl /ot < 1. where the constant depends only on the shape of the
, N/ not be confused with the nonlinear hysteretic ac response
e(n,») = (y'/m)f(m)n/(1 — n) caused at low dc fields, e.g., by surface barriers [20].
o ;L . .
with y' =1 (y' = 2/m) for strips (disks) andf () from 5 i e onductors (3) is given by the same expressions
caused by the additional current density (21)~(24) but withw? replaced bywr > 1 and p =
. N = i E/Es = 2v'B 1 — p2)i/2 11.3) for strips (disks) [10]. These constants are of the
jilm.1) = J,Er/Eo v B0/ ) same order as for the above nonlinear conductor. The
ac field from the interior of the strip or disk [8]. The ac @; its x"(w) has a maximum ab7 = 1.108 (1.169) for
screening current (19) is superimposed to the backgrourie strip (disk). In contrast, oyf(w) for the creep regime
relationE( jo) = Eo(n,1). should be completed during the creep time
As seen from Fig. 1, at finitess < o the perturbation ~ Notice that the creep susceptibility (21) to (24) be-
pative part since(n, 1) (17) becomes complex, similar This corresponds to a constant frequeyn a logarith-
to the j(r, w) profiles of the Ohmic disk in Ref. [8]. The Mic time scale sinceB, (1) = B, cog( In?) yields w =
the magnetic momeny = %i [jxrd®r =My +
M, (t), yielding for a diskM = md [ r%j(r)dr and
M\(t) = wda®j ] ———dy.
1(1) = mda’ j, o " B 4T
andE; (16) cancel. The amplitudes ¢f and ofM(¢) =
M, (w) expliwt) remain thus nearlgonstaniduring creep,
From (1), (16), and (20) the ac susceptibilipfw) =
ulw) — 1= —M(w)/Mi(w =) for w:>1 is

amplitude response
M\ (t) = 32/37%no)Bra’ xy' codQInr — 0)  (26)

with the phase shift = arctar{y”/x’) > 0. We have
checked these predictions by direct computation of per-
turbed flux creep. The numerical method is described in
Refs. [8,15]. We use a power lai( j) = E.|j/j.|" sgny
[16—-18], which meang, = j./n < j.. These computa-
tions confirm our analytical results fd,, E1, jo, j1, Mo,
andM; as functions ofp andz; see Figs. 1 and 2.
Remarkably, while the linear responsés and j;
strictly speaking are valid only for small ac amplitudes
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R L L LI time ¢, and thus isndependenof any material parameter.
Bgo=Bocos(mxint) These results are born out by direct computations of flux

- = _ n=100 1 creep in the presence of a small ac field that allow one

L N - i to also probe the onset of nonlinear ac response. This

nonlinear response will be dealt with elsewhere [21].
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