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We study resonant tunneling through a quantum dot with one degenerate level in the presen
strong Coulomb repulsion and a bosonic environment. Using a real-time diagrammatic formula
we calculate the spectral density and the nonlinear current. The former shows a multiplet of Ko
peaks split by the transport voltage and boson frequencies. This leads to zero-bias anomalies
differential conductance, which shows a local maximum or minimum depending on the level posi
We compare with recent experiments.
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Electron transport through discrete energy levels
quantum dots has been studied in perturbation theory [
and beyond [3–5]. Resonant tunneling and nonequ
rium Kondo effects may play a role, as recently obser
by Ralph and Buhrman [6]. Inelastic interactions in qua
tum dots with few levels have been studied only recen
e.g., the nondegenerate case [7,8] or Coulomb block
effects in the presence of time-dependent fields [2
Bosonic fields in the nonequilibrium Anderson mod
yield in the perturbative regime [9] resonant side pe
in the Coulomb oscillations.

The purpose of the present Letter is to investig
transport phenomena through ultrasmall quantum dot
low temperatures in the presence of external quant
mechanical fields. Without bosonic modes this mo
has been studied extensively in recent years [3–
motivated by experiments showing clearly the coexiste
of Coulomb blockade phenomena and tunneling thro
zero-dimensional states [10]. For the nonperturba
treatment of the tunneling we generalize a real-tim
nonequilibrium many-body approach developed rece
[11,12] to a quantum dot with one level and sp
degeneracyM. For M $ 2 and low lying dot levele
we obtain the usual Kondo peaks at the Fermi levelsma

of the reservoirs (with indexa) [4]. The emission of
bosons causes additional Kondo singularities, for a o
mode field atma 1 nvB sn ­ 61, 62, . . .d.

Furthermore, we analyze the effect of a bias voltage
the singularities in the spectral density and the differen
conductance. For a low lying dot levele we obtain the
well-known zero-biasmaximum[4–6], whereas for a leve
close to the chemical potentials of the reservoirs we fin
zero-biasminimum. The coupling to bosons gives rise
satellite anomalies. For a certain range of gate volta
M ­ 2, and in the absence of bosons, the tempera
and bias voltage dependence of the conductance coin
remarkably (up to an overall factor) with the zero-b
minima observed recently in point contacts [13] and w
results derived in different models (Refs. [14–16]).

We consider a dot containing one energy level
position e0 with degeneracyM and Coulomb repulsion
0031-9007y96y76(10)y1715(4)$10.00
in
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U0. It is coupled to bosonic modesvq and electron-
boson coupling gq, HD ­ e0N̂ 1 U0

P
s,s0 nsns0 1P

q vqdy
q dq 1 N̂

P
q gqsdq 1 dy

q d. The particle number
on the dot with spins is ns ­ cy

scs, andN̂ ­
P

s ns .
The dot is coupled via tunnel barriers, described
HT ­

P
ksasTa

k a
y
ksacs 1 H.c.d, to reservoirs of

noninteracting electrons, HR ­
P

ksa ekaa
y
ksaaksa .

Thus the model Hamiltonian isH ­ H0 1 HT , where
H0 ­ HR 1 HD describes the decoupled system.

The bosonic modes can represent interaction w
phonons [7] or fluctuations of the electrodynamic env
ronment [8] very similar to the Caldeira-Leggett mod
[17]. For our theory no assumption is needed for the s
cific kind of the modesvq and the couplingsgq. In this
way we are able to present a general result for the curr
which shows the influence of inelastic interactions for
arbitrary environment.

A unitary transformation [18] with V ­
exps2iN̂wd and w ­ i

P
qsgqyvqd sdy

q 2 dqd yields
H ­ VHV 21 ­ H0 1 HT , where H0 ­ HR 1 HD ,
HD ­ eN̂ 1 U

P
s,s0 nsns0 1

P
q vqdy

q dq and HT ­P
ksasTa

k a
y
ksacseiw 1 H.c.d. The electron-boson

interaction renormalizes the level position an
the Coulomb repulsion, e ­ e0 2

P
q g2

qyvq and
U ­ U0 2 2

P
q g2

qyvq, and the tunneling term acquire
phase factorse6iw .

For strong Coulomb repulsionU we restrict ourselves
to states withN ­ 0, 1. In perturbation theory the rate
for tunneling in and out of the dot to reservoira are

g6
a sEd ­

Z
dE0g6

a sE0dP6sE 2 E0d , (1)

whereg6
a sEd ­ 1ys2pdGasEdf6

a sEd is the classical rate
without bosons,GasEd ­ 2p

P
k jTa

k j2dsE 2 ekad, and
f1

a sEd is the Fermi distribution of reservoira with chem-
ical potentialma , while f2

a sEd ­ 1 2 f1
a sEd. Finally,

P6sEd ­ 1ys2pd
R

dteiEtkeiws0de2iws6tdl0 describes the
probability that an electron absorbssP1d or emits sP2d
the boson energyE. The classical rates combined wit
© 1996 The American Physical Society 1715
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a master equation are sufficient in the perturbative reg
G ­

P
a Ga ø T [9].

Here we consider temperatures and frequencies of
order or smaller thanG. This requires a nonperturba
tive treatment of the tunneling, where quantum fluct
tions yield finite lifetime broadening and renormalizati
effects of the dot level. As an illustration we first assu
that the broadening is given by the sum of the class
transition rates, Eq. (1). Using the Kramers-Kronig tra
formation we deduce the renormalization and obtain
the self-energy

ssEd ­
Z

dE0 Mg1sE0d 1 g2sE0d
E 2 E0 1 i01

, (2)

where g6 ­
P

a g6
a . The aim of the present Letter

to test and extend this simple physical picture within
systematic and conserving theory for all Green’s functi
and the current. To achieve this we use a real-t
technique developed in [11,12] which provides a natu
generalization of the classical and co-tunneling theory
the physics of resonant tunneling.

The nonequilibrium time evolution of the dot is d
scribed by its reduced density matrix, which we obtain
an expansion inHT . The reservoirs and boson bath are
sumed to remain in thermal equilibrium and are traced
by using Wick’s theorem. Matrix elements of the reduc
density operator are visualized in Fig. 1. The forward a
the backward propagator (Keldysh contour) are coupled
“tunneling lines” associated with the junctions to the res
voirs a. Each tunneling line with energyE represents the
rate g1

a sEd if the line is directed backward with respe
to the closed time path andg2

a sEd otherwise. The Fermi
Dirac statistics produce a factor21 if two tunneling lines
cross each other. The tunneling lines are associated
changes of the state of the dot, as indicated on the clo
time path. The coupling to the bosons is introduced
connecting all vertices in all possible ways by boson lin
with energyE. The rules for these contributions are t
same as for the reservoir lines except that we have to
placeg6

a by P6. Finally, we associate with each tunnelin
vertex at timet a factor expsiDE td, whereDE is the dif-
ference of outgoing and incoming energies. If the ver
lies on the backward propagator it acquires a factor21.
Analogous graphical rules hold for the Green’s functio
of the dot, except that they contain external vertices.

In leading order, we include only boson lines betwe
vertices which are already connected by tunneling lin

FIG. 1. A diagram showing sequential tunneling in the l
and right junctions, a term preserving the norm, a co-tunne
process, and resonant tunneling.
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which amounts to a dressing of the tunneling linesg !
g. This approximation, while neglecting many diagram
describes well the spectral density of the dot at resona
points. The reason is that position and value of the pea
of the spectral density are determined by a self-ene
s [see Eq. (2)], which is calculated here in lowest ord
perturbation theory inG including the bosons. Higher
orders are small for high tunnel barriers.

Similar to the case of metallic islands [11,12] we pro
ceed in a conserving approximation, taking into accou
nondiagonal matrix elements of the total density matrix
to the difference of one electron-hole pair excitation in th
reservoirs. The analytic resummation of the correspon
ing diagrams yields for the transitions betweenN ­ 0
and1 the ratesS6 ­ l

R
dE g6sEdjRsEdj2, wherel21 ­R

dEjRsEdj2. The resolventRsEd ­ fE 2 e 2 ssEdg21

accounts for broadening and energy renormalization c
tained in the self-energyssEd, Eq. (2). In the classical
limit G ø T the ratesS6 reduce to the classical ratesg6.

Summing equivalent diagrams for the real-time Green
functions of the dot, we obtain the spectral densityr ;
sG, 2 G.dys2pid,

rsEd ­
Z

dE0
X

r­6

gr sE0dP2rsE0 2 EdjRsE0dj2 , (3)

and the currentIa flowing into reservoira

Ia ­ e2pM
X
a0

Z
dE0

X
r­6

rg2r
a sE0dgr

a0sE0d

3 jRsE0dj2. (4)

For the special case of two reservoirsa ­ LyR
and constant level broadening G ­ GL ­ GR

the current I ­ IL ­ 2IR can be written as
I ­ eMGy2

R
dErsEd f f1

R sEd 2 f1
L sEdg. Our results

satisfy all sum rules together with current conservatio
and one can prove particle-hole symmetry in the ca
M ­ 1.

The difference to other approaches in the caseM ­ 1
[7,8] is clearly displayed by the effect of the self-energ
ssEd which determines via the resolventRsEd the
position of the maxima of the spectral density (3). I
previous works, ssEd has been approximated by
constant. We find that the energy dependence ofssEd
cannot be neglected if the temperatureT and the typical
frequency vB of the bosons are smaller thanG. To
show this analytically we consider from now on a on
mode environment (Einstein model) with boson frequen
vq ­ vB. Experimentally, this can be realized by optica
phonons [7] or by fluctuations of an externalLC circuit
with frequencyvB ­ sLCd21y2 [8]. The results for a
general environment can be anticipated approximat
from the one-mode case by a superposition. Defini
g ­

P
q g2

qyv
2
B we obtainP6sEd ­

P
n pndsE 6 nvBd,

where pn ­ e2gf112N0svBdgenvBy2TBInf2gN0svBdevBy2TB g
is the probability for the emission ofn bosons with
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frequency vB. Here, N0svBd is the Bose function
and In the modified Bessel function. The tem
perature of the boson bathTB may differ in real
experiments from the electron temperatureT . Us-
ing (1) and (2) we obtain RessEd ­

P
n,asMpn 2

p2nd sGy2pd hlnsECy2pT d 2 ReCf1y2 1 isE 1 nvB 2

mady2pT gj. Here C denotes the digamma function
and we have chosen in the energy integrals a Lorent
cutoff at EC . The real part ofs depends logarithmically
on energy, temperature, voltage, and frequency. Th
logarithmic terms are typical for the occurrence of Kon
peaks and do not cancel forM $ 2 or pn fi p2n. Hence
we anticipate logarithmic singularities not only for th
degenerate case but also for a single dot level with
spin since the probabilities for absorption and emission
bosons are different. This is an important difference fro
the case of classical time-dependent fields [5] where b
probabilities are equal. At low temperatures we obt
logarithmic peaks inssEd at E ­ ma 1 nvB (n fi 0 for
M ­ 1). They lead to the maxima of the resolventRsEd
at E ­ nvB (n . 0 for M ­ 1, n $ 0 for M . 1) for
e , 0 and atE ­ nvB sn , 0d for e . 0. The spectral
density (3) shows resonances at the same points but,
to the additionalP6 functions in the numerator, they ar
shifted by multiples ofvB. This boson-assisted tunnelin
is completely independent of the influence of the bos
on the self-energyssEd.

Figure 2 shows the spectral density at different volta
for a low lying levele , 0. For M ­ 2, without applied
bias we obtain the usual Kondo peak near the Fe
level (which we choose as zero energy). The emiss
of bosons leads to additional resonances at multiples
vB. For M ­ 1 ande , 0 (e . 0), resonances occur a
negative (positive) energies. In these cases, the eff

FIG. 2. The spectral density forM ­ 2, T ­ TB ­ 0.01G,
e ­ 24G, g ­ 0.2, vB ­ 0.5G, andEC ­ 100G at different
voltages. Inset: spectral density forM ­ 1, T ­ 0.0001G,
TB ­ G, e ­ 22G, V ­ 0, g ­ 0.5, vB ­ 0.5G, andEC ­
100G.
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are less pronounced and are only visible for very lo
temperatures. At finite bias voltages all peaks split a
decrease in magnitude.

The resonances in the spectral density have pronoun
effects on the nonlinear differential conductance as
function of the bias voltageV , as shown in Fig. 3 for
the casee , 0. We recover the zero-bias maximum [4
6] since the splitting of the Kondo peak leads to
overall decrease of the spectral density in the energy ra
jEj , eV (see inset of Fig. 3). The emission of boso
produces a set of symmetric satellite maxima. They c
be traced back to the fact that pairs of Kondo pea
can merge if the bias voltage is a multiple of the bos
frequency (see Fig. 2). This gives rise to pronounc
Kondo peaks atE ­ 6eVy2 and thus to an increase o
the spectral density with bias voltage near these points

The differential conductance fore $ 0 is shown in
Fig. 4 with and without bosons. A striking result is th
the whole structure is inverted compared to the casee ,

0, and we find a zero-bias anomaly although the Kon
peak at zero energy is absent. The bosons yield sate
steps atjeV j ­ mvB. The contributions of sequentia
and co-tunneling lead, compared to resonant tunnel
only to a weak bias voltage dependence of the differen
conductance. This shows clearly that the influence
the logarithmic terms inssEd are still important. They
lead to an overall increase of the spectral density n
zero energy with bias voltage (see left inset of Fig.
The reason is that the logarithmic peaks in RessEd
decrease with increasing bias voltage and approach
value of E 2 e if e is large enough. Thus the value o
E 2 e 2 RessEd decreases, which in turn increases t
resolventRsEd and the spectral densityrsEd.

Zero-bias minima are known from Kondo scatterin
from magnetic impurities [19]. They have been observ
in recent experiments [13] and have been interpre

FIG. 3. The differential conductance vs bias voltage forT ­
TB ­ 0.01G, e ­ 24G, vB ­ 0.5G, and EC ­ 100G. Inset:
spectral density for various voltages andg ­ 0.
1717
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FIG. 4. The differential conductance vs bias voltage forT ­
TB ­ 0.05G, e ­ 0, vB ­ G, and EC ­ 100G. Left inset:
spectral density for various voltages andg ­ 0. Right inset:
The temperature dependence of the linear conductance (
line) coincides with experimental data from [13] (triangles).

as two-channel Kondo scattering from atomic tunnel
systems [14,15] or by tunneling into a disordered me
[16]. Here we have shown that zero-bias minima c
also arise due to resonant tunneling via local impurit
if the level position is high enough such that we are
the mixed valence regime. We have also compared
temperature dependence of the linear conductance
right inset of Fig. 4) as well as the scaling behavior
the nonlinear conductance with experiments [13] and fi
a remarkable coincidence. In order to explain the sig
strength, however, one would need a large number
quantum dots in the sample of [13], for which there see
to be no experimental indication.

Finally, we have investigated the differential condu
tance at fixed bias voltage as a function of the posit
of the dot level, which experimentally can be varied
a gate voltage coupled capacitively to the dot. We
tain a (classical) pair of peaks atjej ­ eVy2 together
with satellites (due to emission and absorption of boso
and peaks forjej . eVy2 (only due to absorption). The
imaginary part ofssEd gives rise to a (nonclassical) asym
metry of the peak heights. The peak ate ­ eVy2 is
higher than the one ate ­ 2eVy2 since jImssEdj ­
pjMg1sEd 1 g2sEdj is smaller for higher energies (ex
cept forM ­ 1 when particle-hole symmetry holds). Th
significant effect is due to the broadening of the spec
density by quantum fluctuations.

In conclusion, we have studied low-temperature tra
port in the nonequilibrium Anderson model with boson
interactions. The latter yield new Kondo resonances
the spectral density which can be probed by the m
1718
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surement of the nonlinear differential conductance. Qu
tum fluctuations due to resonant tunneling yield zero-b
anomalies,which can be changed from maxima to minim
by varying the gate voltage. We discussed similarities to
recent experiments.
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