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Zero-Bias Anomalies and Boson-Assisted Tunneling Through Quantum Dots
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We study resonant tunneling through a quantum dot with one degenerate level in the presence of
strong Coulomb repulsion and a bosonic environment. Using a real-time diagrammatic formulation
we calculate the spectral density and the nonlinear current. The former shows a multiplet of Kondo
peaks split by the transport voltage and boson frequencies. This leads to zero-bias anomalies in the
differential conductance, which shows a local maximum or minimum depending on the level position.
We compare with recent experiments.
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Electron transport through discrete energy levels inUy. It is coupled to bosonic modes, and electron-
quantum dots has been studied in perturbation theory [1,2Joson coupling g,, Hp = €N + UpY yepi Nghigr +
and beyond [3-5]. Resonant tunneling and nonequilib—zq wqd;dq + qu gq,(d, + d;‘)_ The particle number
rium Kondo effects may play a role, as recently observegn the dot with spiro is n, = chey, andN =3, n,.
by Ralph and Buhrman [6]. Inelastic interactions in quan-The dot is coupled via tunnel barriers, described by
tum dots with few levels have been studied only recentl;gHT _ ka(Tzf“aZgaca + H.c), to reservoirs of
e.g., the_ nondegenerate case [7,8] or Coulomb blocka r?oninteracting electrons, Hp = 3, a0
effects in the presence of time-dependent fields [2’5]Thus the model Hamilton’ianRiﬁ _"}’I“ f’H""“w’ﬁz‘ré

- 0 T,

Bosonic fields in the nonequilibrium Anderson model ., =~ .
yield in the perturbative regime [9] resonant side peakg0 = Hg + Hp describes the decoupled system. .
The bosonic modes can represent interaction with

in the Coulomb oscillations. é)honons [7] or fluctuations of the electrodynamic envi-

The purpose of the present Letter is to investigat -y .
transport phenomena through ultrasmall quantum dots nment [8] very similar 1o the 'Cal'delra—Leggett model
7]. For our theory no assumption is needed for the spe-

low temperatures in the presence of external quantu ffific kind of the modesw, and the couplingg,. In this

mechanical fields. Without bosonic modes this mode
way we are able to present a general result for the current

has been studied extensively in recent years [3-5], hich shows the influence of inelastic interactions for an
motivated by experiments showing clearly the coexistence |, . .
ﬁ\rbltrary environment.

of Coulomb blockade phenomena and tunneling throug A unitar transformation  [18] with V =
zero-dimensional states [10]. For the nonperturbative =~ < y . P ield
treatment of the tunneling we generalize a real-time & ZN‘p)_l and ¢ =i3,(gq/wy) (dg —dy) yields
nonequilibrium many-body approach developed recentiyZ = VHY ™" = Ho + Hy, where H(}r = Hp + Hp,
[11,12] to a quantum dot with one level and spinf’p = €N + Uoeo Nottor + Xy wqdgdy and Hy =
degeneracyM. For M =2 and low lying dot levele S ioa(Tiat wcoel® + H.C). The electron-boson
we obtain the usual Kondo peaks at the Fermi leyels interaction renormalizes the level position and
of the reservoirs (with indexx) [4]. The emission of the Coulomb repulsion, e = ¢ — 3, g7/w, and
bosons causes additional Kondo singularities, for a onet/ = Uy — 23, gfl/wq, and the tunneling term acquires
mode field atu, + nwp (n = =1,x2,..)). phase factorg=i¢.

Furthermore, we analyze the effect of a bias voltage on For strong Coulomb repulsioti we restrict ourselves
the singularities in the spectral density and the differentiato states withv = 0, 1. In perturbation theory the rates
conductance. For a low lying dot levelwe obtain the  for tunneling in and out of the dot to reserveirare
well-known zero-biasnaximun{4-6], whereas for a level
close to the chemical potentials of the reservoirs we find a + _ I=* N p* ()
zero-biasminimum The coupling to bosons gives rise to Ya (E) f dEY (EVP(E = E), (1)
satellite anomalies. For a certain range of gate voltages,

M =2, and in the absence of bosons, the temperatureherey; (E) = 1/Q2#)T',(E)f, (E) is the classical rate
and bias voltage dependence of the conductance coincidasthout bosons 'y (E) = 27 Y, [T *6(E — €1o), and
remarkably (up to an overall factor) with the zero-biasf, (E) is the Fermi distribution of reservoir with chem-
minima observed recently in point contacts [13] and withical potentialu,, while f,(E) = 1 — f}(E). Finally,
results derived in different models (Refs. [14—16]). P=(E) = 1/Q2m) [ dte’®(e'*Oe~i¢(*0y) describes the

We consider a dot containing one energy level afprobability that an electron absorip8™) or emits(P )

position €y with degeneracy and Coulomb repulsion the boson energ¥. The classical rates combined with
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a master equation are sufficient in the perturbative regimehich amounts to a dressing of the tunneling lines-
r=>,T, <19 v. This approximation, while neglecting many diagrams,
Here we consider temperatures and frequencies of theéescribes well the spectral density of the dot at resonance
order or smaller tharl”. This requires a nonperturba- points. The reason is that position and value of the peaks
tive treatment of the tunneling, where quantum fluctua-of the spectral density are determined by a self-energy
tions yield finite lifetime broadening and renormalization o [see Eq. (2)], which is calculated here in lowest order
effects of the dot level. As an illustration we first assumeperturbation theory inl’ including the bosons. Higher
that the broadening is given by the sum of the classicabrders are small for high tunnel barriers.
transition rates, Eqg. (1). Using the Kramers-Kronig trans- Similar to the case of metallic islands [11,12] we pro-
formation we deduce the renormalization and obtain foiceed in a conserving approximation, taking into account
the self-energy nondiagonal matrix elements of the total density matrix up
g Iy to the difference of one electron-hole pair excitation in the
y My ™ (E') + y " (E) : - -
o(E) = f dE — (2) reservoirs. The analytic resummation of the correspond-
E—-E+i0 ing diagrams yields for the transitions betwe&n= 0
andl therateS™ = A [dE y=(E)|R(E)|?, whereA™! =
[dE|R(E)|>. TheresolvenR(E) =[E — € — o(E)]"!

where y= =Y, y.,. The aim of the present Letter is

to test and extend this simple physical picture within a tor broadeni q lizati
systematic and conserving theory for all Green’s function&CcOUNts for broadening and energy renormalization con-
and the current. To achieve this we use a real—tim(%_a'ned in the self-energy (E), Eq. (2). In the classical
technique developed in [11,12] which provides a natura

imit I' < T the rate.* reduce to the classical ratgs .
generalization of the classical and co-tunneling theory tg Summing equivalent diagrams for the real-time Green’s
the physics of resonant tunneling.

unctions of the dot, we obtain the spectral dengity=

The nonequilibrium time evolution of the dot is de- (G= = G7)/Q@mi),
scribed by its reduced density matrix, which we obtain in )
an expansion iil;. The reservoirs and boson bath are as- P (E) = f dE' Y y"(EPT"(E' = E)IRE), (3)
sumed to remain in thermal equilibrium and are traced out T
by using Wick’s theorem. Matrix elements of the reducedyng the current, flowing into reservoira
density operator are visualized in Fig. 1. The forward and
the backward propagator (Keldysh contour) are coupled by _ / —r (Nt ()
“tunneling lines” associated with the junctions to the reser- a eZWM%: de ,Zt Yo (E)Yo(E)
voirs a. Each tunneling line with energy represents the
ratey . (E) if the line is directed backward with respect
to the closed time path ang, (E) otherwise. The Fermi-
Dirac statistics produce a factetl if two tunneling lines
cross each other. The tunneling Iir!es_are associated wi current I =1I, — —I, can be written as
qhanges of the state qf the dot, as |nd|ca_teq on the closed_ eMT /2 dep(E)[f[{(E) B fL+(E):|- our results
time path. The coupling to the bosons is introduced by __.. I | h ith .
connecting all vertices in all possible ways by boson Iinessat'Sfy all sum rules together with current conservation,
X I and one can prove particle-hole symmetry in the case
with energyE. The ruIe_s f_or these contributions are theM —
same as for the reservoir lines except that we have to re- The difference to other approaches in the cae= |

placey, by P=. Finally, we associate with each tunneling [7,8] is clearly displayed by the effect of the self-energy

vertex at timer a factor exiAE t), whereAE is the dif- +(E) which determines via the resolverR(E) the
ference of outgoing and incoming energies. If the vertex

lies on the backward propagator it acquires a factor position of the maxima of the spectral density (3). In

Analogous graphical rules hold for the Green'’s functionsg (r)i\g?alft thfeksﬁ’no(;(ltzrzath{ahse gﬁg:] agsroe);:dm;r:ﬁg-éy)/ a
of the dot, except that they contain external vertices. ‘ dy dep

cannot be neglected if the temperatdieand the typical
vertices which are already connected by tunnelin ”neg‘requency wp Of the bosons are smaller thah. - To
y y 9 Show this analytically we consider from now on a one-

mode environment (Einstein model) with boson frequency

X |R(E?. (4)

For the special case of two reservoire = L/R
&Ind constant level broadeningI’ =I'y = I'x
e

0 A 0y 0 ooy 0 w, = wp. Experimentally, this can be realized by optical
o i O, T phonons [7] or by fluctuations of an external" circuit
VORD RN\ L e S > with frequency wp = (LC)~'/2 [8]. The results for a
S A ’ ) general environment can be anticipated approximately
0 Lo o 0 y ooy 0 from the one-mode case by a superposition. Defining

= 2/ 2 inP* = +
FIG. 1. A diagram showing sequential tunneling in the left§ Z‘I g‘l/wB we obtainP™(E) = 3., pad(E + nwp),

and right junctions, a term preserving the norm, a co-tunnelingvhere p, = e~ sl1*2No@nlgnes/2Tug, 96 No(wp)e /> r]
process, and resonant tunneling. is the probability for the emission ok bosons with
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frequency wp. Here, No(wp) is the Bose function are less pronounced and are only visible for very low
and I, the modified Bessel function. The tem- temperatures. At finite bias voltages all peaks split and
perature of the boson batify may differ in real decrease in magnitude.

experiments from the electron temperatufe  Us- The resonances in the spectral density have pronounced
ing (1) and (2) we obtain Re(E) = >, ,(Mp, — effects on the nonlinear differential conductance as a
p—n) (L/27){IN(Ec/27T) — Re¥[1/2 + i(E + nwp — function of the bias voltagé/, as shown in Fig. 3 for

ne)/27wT]}. Here ¥ denotes the digamma function, the casee < 0. We recover the zero-bias maximum [4—
and we have chosen in the energy integrals a Lorentzia@] since the splitting of the Kondo peak leads to an
cutoff at Ec. The real part olr depends logarithmically overall decrease of the spectral density in the energy range
on energy, temperature, voltage, and frequency. Thed&| < eV (see inset of Fig. 3). The emission of bosons
logarithmic terms are typical for the occurrence of Kondoproduces a set of symmetric satellite maxima. They can
peaks and do not cancel fof = 2 or p, # p—,. Hence be traced back to the fact that pairs of Kondo peaks
we anticipate logarithmic singularities not only for the can merge if the bias voltage is a multiple of the boson
degenerate case but also for a single dot level withoufrequency (see Fig. 2). This gives rise to pronounced
spin since the probabilities for absorption and emission oKondo peaks aE = *¢V/2 and thus to an increase of
bosons are different. This is an important difference fronthe spectral density with bias voltage near these points.
the case of classical time-dependent fields [5] where both The differential conductance fog = 0 is shown in
probabilities are equal. At low temperatures we obtainFig. 4 with and without bosons. A striking result is that
logarithmic peaks inr(E) atE = u, + nwg (n # 0for  the whole structure is inverted compared to the case
M = 1). They lead to the maxima of the resolve®tE) 0, and we find a zero-bias anomaly although the Kondo
atE =nwg(n>0forM =1,n=0for M > 1) for peak at zero energy is absent. The bosons yield satellite
e <0and atE = nwp (n < 0) for e > 0. The spectral steps atleV| = mwp. The contributions of sequential
density (3) shows resonances at the same points but, daad co-tunneling lead, compared to resonant tunneling,
to the additionalP= functions in the numerator, they are only to a weak bias voltage dependence of the differential
shifted by multiples otwg. This boson-assisted tunneling conductance. This shows clearly that the influence of
is completely independent of the influence of the bosonghe logarithmic terms inr(E) are still important. They
on the self-energy (E). lead to an overall increase of the spectral density near
Figure 2 shows the spectral density at different voltagezero energy with bias voltage (see left inset of Fig. 4).
for alow lying levele < 0. ForM = 2, without applied The reason is that the logarithmic peaks inJRE)
bias we obtain the usual Kondo peak near the Fermilecrease with increasing bias voltage and approach the
level (which we choose as zero energy). The emissionalue of E — € if € is large enough. Thus the value of
of bosons leads to additional resonances at multiples df — € — Reo(E) decreases, which in turn increases the
wp. ForM = 1ande < 0 (e > 0), resonances occur at resolventR(E) and the spectral densigy/(E).
negative (positive) energies. In these cases, the effects Zero-bias minima are known from Kondo scattering
from magnetic impurities [19]. They have been observed
in recent experiments [13] and have been interpreted

p(E) p(E)

Gle’/h]

0.5

0.4

0.3
-2 -1 0 1 E 2
f‘ 0-2 1 1 1
-1.0 -0.5 0.0 0.5 ev 1.0

FIG. 2. The spectral density fa¥ =2, T = Tz = 0.01T, T
e = —4T', g = 0.2, wp = 0.5T", andE. = 100I" at different
voltages. Inset: spectral density faf = 1, T = 0.0001T, FIG. 3. The differential conductance vs bias voltage fo+
Tg =T,e= -2I''V =0,g = 0.5, wpg = 0.5I", andEc = Tg = 0.01T', e = —4T", wg = 0.5I", and Ec = 100I". Inset:
100T". spectral density for various voltages agd= 0.
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Gle’/h] surement of the nonlinear differential conductance. Quan-
. . . tum fluctuations due to resonant tunneling yield zero-bias

0.6 anomalieswhich can be changed from maxima to minima

05 by varying th_e gate voltageWe discussed similarities to
recent experiments.
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