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Universal Parametric Correlations of Conductance Peaks in Quantum Dots
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We compute the parametric correlation function of the conductance peaks in chaotic and wea
disordered quantum dots in the Coulomb blockade regime and demonstrate its universality upon
appropriate scaling of the parameter. For a symmetric dot we show that this correlation funct
is affected by breaking time-reversal symmetry but is independent of the details of the channels
the external leads. We derive a new scaling which depends on the eigenfunctions alone and ca
extracted directly from the conductance peak heights. Our results are in excellent agreement with m
simulations of a disordered quantum dot.

PACS numbers: 73.20.Dx, 05.40.+j, 05.45.+b, 72.20.My
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Quantum dots [1,2] are semiconductor heterostructu
that confine about 100 electrons by an electrostatic po
tial to isolated islands with a typical size of less than
micron. The dots can be weakly coupled via tunnel ba
ers to external leads in order to study their transport pr
erties. For sufficiently low temperatures the conductan
of the dot exhibits equally spaced peaks with increas
gate voltage, where each successive peak correspon
a tunneling of a single electron into the dot. This o
curs when the increase in the Fermi energy in the le
matches the energy required to charge the dot by one
ditional electron. The suppression of tunneling betwe
the peaks by Coulomb repulsion is known as Coulom
blockade. A striking feature of these resonances is
irregular dependence of their amplitudes on controlla
parameters, such as the shape of the dot or an exte
magnetic field. These fluctuations have recently been
counted for by a statistical theory [3] based on the
sumption that the Hamiltonian of the dot can be describ
by random-matrix theory (RMT) due to irregularities i
the confining potential which give rise to a chaotic cla
sical dynamics. RMT description is suitable also for do
with weak impurity disorder since the same conductan
distribution is obtained when the dot is modeled by a ra
dom potential [4].

Recent experiments have been probing the conducta
of quantum dots as an external parameter is varied. In
paper we study the correlation between conductance p
amplitudes which belong to different values of the para
eter. Very little is known about this parametric correl
tor in the regime of isolated resonances, in contrast w
the overlapping resonance regime characteristic of o
dots where correlations versus energy and magnetic fi
were investigated both theoretically (for a large numb
of channels) [5,6] and experimentally [7]. By casting th
peak correlator in the framework of the Gaussian rando
matrix process (GP) [8], we demonstrate its universa
upon an appropriate scaling of the parameter and comp
its universal form. Our main results for the conductan
correlator are the approximate expression (7) and its ex
0031-9007y96y76(10)y1711(4)$10.00
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short-distance behavior (14). We also derive an alter
tive parameter scaling which is extracted directly from t
measured conductance peaks according to Eq. (15).
universal ratio to the usual level velocity scaling (4) [9]
given by Eqs. (11) and (12) for the orthogonal and unita
cases, respectively.

We focus on the temperature regimeG ø kT , D,
typical of experiments [1,2], whereD is the mean res-
onance spacing. In this regime only one quasibou
state (usually the ground state) of the electron gas in
dot contributes to each conductance peak [10,11], wh
width is ,kT . The peak amplitude that corresponds to
level l is given by [11]

Gl 
e2

h
p

2kT
G

l
lG

r
l

G
l
l 1 G

r
l

, (1)

where G
lsrd
l is the total decay width from levell into

the left (right) lead. Each lead can support several op
channels so thatG

lsrd
l 

P
c G

lsrd
cl , where G

lsrd
cl is the

partial decay width into channelc. A suitable formalism
that relates the level width to the dot’s eigenfunction is t
R-matrix theory [12], according to whichGcl j gcl j 2

where

gcl  sh̄2kcPcymd1y2
Z

dS Fp
c Cl (2)

is the partial width amplitude,kc is the channel momen-
tum, andPc is a penetration factor to tunnel through th
barrier. HereCl is the dot eigenfunction,Fc is the trans-
verse wave function in the lead corresponding to an op
channelc, and the integral extends over the cross sect
of the lead at its end attached to the dot.

The connection with RMT [3] is made by assum
ing that the statistical properties of the dot’s Hamilto
ian are well described by aN 3 N random matrixH
taken from the appropriate Gaussian ensemble (GE).
dot’s eigenfunctionCl is related to thelth eigenvector
of H, clm, via the expansionCls$rd 

PN
m1 clmrms$rd,

whererms $rd are a set of solutions of Schrödinger’s equ
tion at energyEl inside the dot. Omitting the sub
script l, the partial width amplitude (2) can be writte
© 1996 The American Physical Society 1711
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al
as a scalar productgc 
P

m fp
cmcm ; kfc j cl, where

fcm ; sh̄2kcPcymd1y2
R

dS Fcrp
m. The correlations be

tween thegc define the channel correlation matrixM, and
are given by the scalar products of the channel vec
Mcc0 ; gp

c gc0 
1
N kfc j fc0l. The channels can hav

any degree of correlation among them and different de
widths into them, hencefc are in general not orthogona
and have different norms.

In order to discuss the correlation between cond
tances at different shapes or external fields we use
framework of the GP, which generalizes Dyson’s GE
describe statistical properties of systems that depend
a parameter [8,13]. A GP is a set of randomN 3 N
matricesHsxd whose elements are distributed at eachx
according to the appropriate GE with a prescribed co
lation among elements at different values ofx:

Hlssxd  0 ,

HlssxdHmnsx0d 
a2

2b
fsx 2 x0dgsbd

ls,mn , (3)

whereg
sb1d
ls,mn  dlmdsn 1 dlndsm for the Gaussian or

thogonal process (GOP) andg
sb2d
ls,mn  2dlndsm for the

Gaussian unitary process (GUP). Assuming that the le
ing order off is f ø 1 2 ksx 2 x0d2, we have shown [8]
that k  b

p2

4
1
N s≠Ely≠xd2yD2, which suggests scalingx

by the rms of the level velocity as originally discuss
in [9]:

x ! x 
h
s≠Ely≠xd2yD2

i
1y2x ;

p
Dx . (4)

After the scaling (4)f ø 1 2 b
p2

4 sx̄ 2 x̄0d2yN becomes
independent of the nonuniversal quantityk. The para-
metric correlator for any observable, being determined
Ns1 2 fd, is then a universal function ofx̄ 2 x̄0 [8]. This
applies not only to spectral correlators [9] but also to th
involving the eigenfunctions. In particular, the condu
tance peak correlator

cGsx 2 x0d ; G̃sxdG̃sx0d , G̃sxd 
Gsxd 2 G

sG2 2 G2d1y2

(5)
becomes universal upon the scaling (4) for all d
characterized by the same channel correlation matrixM.

The case of a left-right symmetric dot is particula
simple sinceGl  Gr ; G and the conductance pea
correlator reduces to the width correlatorG̃sxdG̃sx0d. We
note that the correlation matrixMcc0 is Hermitian and
positive definite, and hence can be transformed
a diagonal form which defines a set of orthonorm
eigenchannel vectorŝfc. Expressing the width in term
of the partial widths of the normalized eigenchann
Ĝc  jkf̂cjclj2, and using the property that the cros
channel correlator is smaller by1yN than the autochanne
1712
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correlator, we obtain in the limit of largeN [14]

cGsx 2 x0d  ˜̂
G1sxd ˜̂

G1sx0d , (6)

where Ĝ1 is the partial width of an arbitrary normalized
channel. Remarkably, the peak correlator for a symme
dot is not only universal but is also independent of t
details of the channels in the external leads, includi
their number, the rate of tunneling into each, and t
correlations among them. We computed this function
both the orthogonal and unitary cases from simulatio
of the simple GP defined by [15]Hsxd  H1 cosx 1

H2 sinx whereH1,2 are independent GOE (GUE) matrice
The results are presented in Fig. 1. We found thatcG is
fitted very well by a Lorentzian in the orthogonal cas
(b  1) and by a squared Lorentzian in the unitary ca
(b  2):

cGsx 2 x0d 

∑
1

1 1 sx̂ 2 x̂0d2ya
2
b

∏b

, (7)

where a1  0.48 6 0.04 and a2  0.64 6 0.04 with a
x2 per degree of freedom ofø1022.

FIG. 1 Universal form of the width correlator (6) as a functio
of the scaled parameter (4). Top: GP calculations (diamon
and their best fit to (7) (dashed). For comparison we also p
the GUP result on the left and GOP result on the right (dotte
Insets: The universal ratioRyD computed with a finiteDx
using simulations of the GP (diamonds with statistical erro
and the Anderson model (squares and circles). The das
line in the left inset is the theoretical prediction (12). Bottom
Anderson model simulations. Left: Leads of1 3 1 (plusses)
and4 3 4 (squares) points with a varying step potential. Righ
A magnetic flux of 1

4 F0 is applied for 1 3 1 leads with an
additional varying magnetic field (crosses) and4 3 4 leads
with a varying step potential (circles). Insets: Typical wid
fluctuations for a single eigenfunction before the statistic
averaging for the GP (solid) and Anderson model (dashed).
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We tested the GP prediction by studying the peak c
relator in a disordered dot modeled by a two-dimensio
Anderson Hamiltonian. We used a27 3 27 lattice with
a cylindrical geometry and introduced a parametric
pendence by adding a step potential of strengthx along
the symmetry axis. The left and right leads are rep
sented by arraysAlsrd of m1 3 m2 lattice points with total
widths given byGlsrd 

P
ri[Alsrd y

2
i j Csridj2. In Fig. 1

we show the peak correlator for1 3 1 and 4 3 4 leads,
corresponding to leads with a single channel and w
many correlated channels, respectively. We tookyi  1
but verified that different choices do not change the
sults, which are in excellent agreement with the GO
prediction. In the inset we showGsxdyG for a typical
member of the GOP and for one realization of the s
energies in the Anderson model, using a single eigenfu
tion without any statistical averaging. As expected, t
quantity exhibits irregular oscillations with a period com
parable to the decorrelation distance alongx.

In order to break time-reversal symmetry, we appli
a constant magnetic field along the symmetry axis, tu
such that the cylinder encloses a flux of1y4 flux unit.
The parametric dependence was introduced either b
step potential as before or by closing the cylinder into
torus and applying a varying magnetic field perpendicu
to the constant one. The peak correlators in both case
also plotted in Fig. 1, and agree very well with the GU
prediction.

Although in principle all parametric correlators becom
universal upon the scaling (4), in practice this is n
always experimentally feasible. The energy levels pro
in a quantum dot are usually not the excited states
a fixed number of electrons, but the ground states
different numbers of electrons. Since the spacing betw
the conductance peaks is dominated by the charg
energye2yC which is much larger than the mean spaci
D, the scaling factor in (4) is difficult to measure.
is therefore important to derive a scaling that can
extracted directly from the conductance peak heights.
that purpose we defineglsxd ; kf̂ j clsxdl and consider
its derivative

≠gl

≠x
 lim

x0!x

1
x0 2 x

X
mfil

kcm j Hsx0d j cll
El 2 Em

gm , (8)

given by first-order perturbation theory and where u
primed quantities are evaluated atx. The rms of≠gly≠x
is then calculated in two steps. First, we perform the
erage overHsx0d at fixedHsxd, employing the conditiona

probability distribution [8] for whichHmlsx0dHp
nlsx0d 

dmna2s1 2 f2dyb (assumingm, n fi l). Next, we aver-
age overHsxd, taking advantage of the factorization o
PfHsxdg into a product of the eigenvalue and eigenfun
tion probability distributions. We obtain the followin
expression for the nonuniversal quantityk in the expan-
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k 
1

bZN

Å
≠gl

≠x

Å2 ¡
jglj2 , (9)

where the constantZ ; sa2ybNd
P

mfilsEl 2 Emd22 
s4ybp2d

R`

0 def1 2 Y2sedgye2, and Y2sed is the two-
point cluster function. Equation (9) suggests a n
scaling:

x ! xr 

µ
1
b

Å
≠gl

≠x

Å2 ¡
jglj2

∂1y2

x ;
p

R x ,

With this scaling,f ø 1 2 sxr 2 x0
rd2yZN , and all cor-

relators become universal functions ofxr 2 x0
r . The scal-

ing factor in (10) can be interpreted as the rms of t
eigenfunction rotation rate in analogy with the ener
level velocity in the scaling (4). The quantityZ above
diverges for the GOP but is finite for the GUPZ  2y3,
hence the scaling (10) is well defined only in the unita
case. In this case (GUP) the ratio between the rota
rate and level velocity scaling factors is a universal co
stant, obtained from comparing (9) with the expression
k preceding (4)

RyD  p2y3 sGUPd . (11)

The divergence of the scaling factor in (10) for th
GOP notwithstanding, it is still possible to use this scali
if the derivative≠gly≠x is replaced byDglyDx. This
regularization translates into a small-spacing cutoffd in Z
such thatjEl 2 EmjyD , d are excluded from the sum
resulting in a logarithmic divergenceZ ~ logd. For a
small but finiteDx we can then deduce the ratio betwe
the two scaling factors for the GOP [14]:

RyD  2
p2

6
logsDxd 1 const sGOPd . (12)

Relation (12) is a universal function ofDx̄, as we
demonstrate in the inset of Fig. 1 and as is also confirm
in simulations of the Anderson model.

We now come back to the conductance peak correla
(6) and extract its short-distance behavior. We consi
the quantitysDGld2 ; fGlsx0d 2 Glsxdg2 and calculate
its average in first-order perturbation theory by expand
clsx0d in cmsxd. Averaging first overHsx0d we obtain

sDGld2 ø
2a2

b
s1 2 f2d

X
mfil

£
El 2 Em

§
22GlGm , (13)

where the remaining average is overHsxd. Using the GE
relation GlGm  fbNy2sN 2 1dgsG2

l 2 Gl
2d and the

scaling (10) we find

cGsx 2 x0d ø 1 2 bb

R
D

jx 2 x0j2, (14)

wherebb  b andRyD is given by (11) for the GUP and
by (12) for the GOP. When compared with the leadin
order behavior of the squared Lorentzian (7) for t
1713
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FIG. 2. Universal form of the peak correlation in asymmet
dots with symmetric single-channel leads for both orthogo
and unitary symmetries. The GP predictions (dashed)
compared with Anderson model simulations (plusses
crosses as in Fig. 1). Shown by dotted lines is the wi
correlator which also describes the conductance correlator
highly asymmetric leads.

GUP case we finda2 
p

3yp ø 0.55. The discrepancy
with the value quoted below (7) indicates that (7), wh
being a good approximation, is not exact; indeed, high
order terms in (13) introduce odd powers ofx̄ 2 x̄0. For
the GOP, the nonanalytic behavior of (14) at the orig
indicates that (7) is not exact also in that case.

Using the perturbative expression (13), it is possible
express the rotation rate scaling factor

p
R directly as the

rms of the normalized conductance peak velocity

R  rb

1

G2
l

µ
≠Gl

≠x

∂2

, (15)

where rb  1y4 and for the GOP the derivative i
discrete. One can calculateR from the conductance pea
data according to (15) and then use (11) or (12)
determineD and thus the scaled parameterx that leads
to universal correlations. A semiclassical calculation
R [14] for a ballistic electron in a magnetic field (x  B)
leads to an estimate of the correlation fieldBc  R21y2 ~

s2mEAyh̄2d1y4sF0yAd, whereA is the area of the do
andF0 is the flux unit.

Finally, we computed the peak correlator for an asy
metric dot using (1), this time withGl fi Gr . The left and
right leads each have their own channel correlation ma
with no correlation between them for a sufficiently lar
separation. Figure 2 displays the GP universal predicti
for cG for single-channel symmetric leads (Gl  Gr ), and
a comparison with Anderson model simulations. Eq
tion (7) still provides a good fit but witha1  0.37 6

0.04 and a2  0.54 6 0.04. We also find that Eq. (14
holds but withb1  7y4 and b2  3 [14]. The rotation
scaling factor is calculated from (15) where nowr1  1y7
andr2  5y24 [14]. For asymmetric single-channel lead
(Gl fi Gr ), cG is found to be intermediate between th
symmetric single-channel leads correlator and the symm
1714
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ric dot correlator. The latter is experimentally measura
in an asymmetric dot whose leads are made very as
metric, since the conductance peak is then approxima
proportional to the dominating width. For symmetric lea
with many equivalent channels the peak correlator also
proaches the width correlator [14].

In conclusion, we computed the universal conductan
peak correlator and obtained a good approximation (7
its functional form. We derived the rotation rate scalin
which is useful when the level velocity scaling factor
not measurable and which can be directly calculated fr
the conductance peaks data using (15).
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Note added.—Since the submission of this Letter, ou
prediction (7) has been confirmed experimentally for b
ken time-reversal symmetry [16]. We also remark that
width correlator (6) and (7) is identical to the correlator
wave-function intensity at a fixed spatial point which ca
be measured in microwave cavity experiments [17] a
function of shape.
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