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Universal Parametric Correlations of Conductance Peaks in Quantum Dots
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We compute the parametric correlation function of the conductance peaks in chaotic and weakly
disordered quantum dots in the Coulomb blockade regime and demonstrate its universality upon an
appropriate scaling of the parameter. For a symmetric dot we show that this correlation function
is affected by breaking time-reversal symmetry but is independent of the details of the channels in
the external leads. We derive a new scaling which depends on the eigenfunctions alone and can be
extracted directly from the conductance peak heights. Our results are in excellent agreement with model
simulations of a disordered quantum dot.

PACS numbers: 73.20.Dx, 05.40.+j, 05.45.+b, 72.20.My

Quantum dots [1,2] are semiconductor heterostructureshort-distance behavior (14). We also derive an alterna-
that confine about 100 electrons by an electrostatic poteriive parameter scaling which is extracted directly from the
tial to isolated islands with a typical size of less than ameasured conductance peaks according to Eq. (15). Its
micron. The dots can be weakly coupled via tunnel barri-universal ratio to the usual level velocity scaling (4) [9] is
ers to external leads in order to study their transport propgiven by Egs. (11) and (12) for the orthogonal and unitary
erties. For sufficiently low temperatures the conductanceases, respectively.
of the dot exhibits equally spaced peaks with increasing We focus on the temperature reginle< kT < A,
gate voltage, where each successive peak correspondstypical of experiments [1,2], wherd is the mean res-

a tunneling of a single electron into the dot. This oc-onance spacing. In this regime only one quasibound
curs when the increase in the Fermi energy in the leadstate (usually the ground state) of the electron gas in the
matches the energy required to charge the dot by one adeot contributes to each conductance peak [10,11], whose
ditional electron. The suppression of tunneling betweemwidth is ~kT. The peak amplitude that corresponds to a
the peaks by Coulomb repulsion is known as Coulombevel A is given by [11]

blockade. A striking feature of these resonances is the 2w i

: - : G\= — 5 - rre 1)
irregular dependence of their amplitudes on controllable h 2kT T + T}

parameters, such as the shape of the dot or an external1 1(r) . .
magnetic field. These fluctuations have recently been adVnere I'y ~ is the total decay width from levek into
counted for by a statistical theory [3] based on the asthe left (right) lead. EaCh Iead an support ?everal open
sumption that the Hamiltonian of the dot can be describeghannels so that"y” = 3. T\, where I'ty is the

by random-matrix theory (RMT) due to irregularities in partial decay width into channel A suitable formalism

the confining potential which give rise to a chaotic clas-that relates the level width to the dot’s eigenfunction i |s the
sical dynamics. RMT description is suitable also for dotsR-matrix theory [12], according to which., =| y.a | 2

with weak impurity disorder since the same conductancévhere

distribution is obtained when the dot is modeled by a ran- _ (52 1/2 *

dom potential [4]. Yer = (AkePe/m) ] dS ®: W, )

Recent experiments have been probing the conductané® the partial width amplitudek,. is the channel momen-
of quantum dots as an external parameter is varied. In thigim, andP,. is a penetration factor to tunnel through the
paper we study the correlation between conductance pediarrier. Here¥, is the dot eigenfunctiond. is the trans-
amplitudes which belong to different values of the paramverse wave function in the lead corresponding to an open
eter. Very little is known about this parametric correla-channelc, and the integral extends over the cross section
tor in the regime of isolated resonances, in contrast wittof the lead at its end attached to the dot.
the overlapping resonance regime characteristic of open The connection with RMT [3] is made by assum-
dots where correlations versus energy and magnetic fielhg that the statistical properties of the dot's Hamilton-
were investigated both theoretically (for a large numbeidan are well described by & X N random matrixH
of channels) [5,6] and experimentally [7]. By casting thetaken from the appropriate Gaussian ensemble (GE). The
peak correlator in the framework of the Gaussian randomdot’s eigenfunctior¥, is related to theith eigenvector
matrix process (GP) [8], we demonstrate its universalityof H, ,,, via the expansionV,(7) = ZM L Paup u(F),
upon an appropriate scaling of the parameter and computeherep ,(7) are a set of solutions of Schrédinger’s equa-
its universal form. Our main results for the conductancdion at energyE, inside the dot. Omitting the sub-
correlator are the approximate expression (7) and its exascript A, the partial width amplitude (2) can be written
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as a scalar producg. = >, q’>;"#¢# = (¢. | ), where correlator, we obtain in the limit of large’ [14]
bep = (BPkcPc/m)'/? [dS dcp;;. The correlations be- T E
tween they, define the channel correlation mat#ix, and cglx = x') = (), (6)

are given by thel scalar products of the channel vectorghere ', is the partial width of an arbitrary normalized
Meo =y ye = 5(¢c | ¢e). The channels can have channel. Remarkably, the peak correlator for a symmetric
any degree of correlation among them and different decayot is not only universal but is also independent of the
widths into them, hencé. are in general not orthogonal details of the channels in the external leads, including
and have different norms. _ their number, the rate of tunneling into each, and the
In order to discuss the correlation between conducgorrelations among them. We computed this function for
tances at different shapes or external fields we use thgoth the orthogonal and unitary cases from simulations
framework of the GP, which generalizes Dyson’s GE togf the simple GP defined by [15H(x) = H, cost +
describe statistical propertieg of systems that depend og, siny whereH, , are independent GOE (GUE) matrices.
a parameter [8,13]. A GP is a set of randdmX N The results are presented in Fig. 1. We found thais
matricesH (x) whose elements are distributed at each fitted very well by a Lorentzian in the orthogonal case
according to the appropriate GE with a prescribed corre¢g = 1) and by a squared Lorentzian in the unitary case

lation among elements at different valuesrof (B = 2):

—_— B

H)s(x) =0, cox — x') = [ ! 3 :| , (7)

(12 8) 1+ ()’2 - )?’)z/aﬁ
- !
HyoOHp () = 55 (0 = X)8iopwrs B) wherea; = 048 = 0.04 and a, = 0.64 + 0.04 with a
x> per degree of freedom e£102.

Whereg&i’:;,), = 6 uboy T 01,0, for the Gaussian or-
thogonal process (GOP) a [3,73, = 26,,04, for the Orthogonal Unitary
Gaussian unitary process (GUP). Assuming that the lead- : .
ing order off is f = 1 — k(x — x’), we have shown [8] 10 T8, B;' T T
thatk = B2 ~(9E,/dx)2/A2, which suggests scaling % Qeg_ﬂh,n 31 & g 3[R, ]
by the rms of the level velocity as originally discussed LR S I S SN SO
n Bl YA S N

x =% = [(0E:/ax?/8?]Px = VDx. (@)

<T(X)T(0)>

After the scaling (4)f =~ 1 — B7-(x — x')*>/N becomes
independent of the nonuniversal quantity The para-
metric correlator for any observable, being determined by
N(1 — f), is then a universal function af — x’ [8]. This
applies not only to spectral correlators [9] but also to those
involving the eigenfunctions. In particular, the conduc-
tance peak correlator

~

N — 2 N e = G) — G
colx — x) = G)G(H) , G(x)—m

. . (5) FIG. 1 Universal form of the width correlator (6) as a function
becomes universal upon the scaling (4) for all dotssf the scaled parameter (4). Top: GP calculations (diamonds)
characterized by the same channel correlation mafrix  and their best fit to (7) (dashed). For comparison we also plot

The case of a left-right symmetric dot is particularly the GUP result on the left and GOP result on the right (dotted).

simple sinceT! = I =T and the conductance peak Insets: The universal rati® /D computed with a finiteAx
. Be TN using simulations of the GP (diamonds with statistical errors)
correlator reduces to the width correlaofx)l’(x’). We  and the Anderson model (squares and circles). The dashed

note that the correlation matri#. is Hermitian and line in the left inset is the theoretical prediction (12). Bottom:
positive definite, and hence can be transformed intd\nderson model simulations. Left: Leads biX 1 (plusses)
a diagonal form which defines a set of orthonormal@nd4 X 4 (squares) points with a varying step potential. Right:

i 2 i ; i A magnetic flux of1<1>0 is applied forl X 1 leads with an
eigenchannel vectoré... Expressing the width in terms additional varying rz}wagnetic field (crosses) a#dx 4 leads

Qf the Qartialz widths O_f the normalized eigenchannelswnh a varying step potential (circles). Insets: Typical width
I'e = Ko l)l°, and using the property that the cross-fiuctuations for a single eigenfunction before the statistical
channel correlator is smaller Qy N than the autochannel averaging for the GP (solid) and Anderson model (dashed).
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We tested the GP prediction by studying the peak corsion of f preceding (4):
relator in a disordered dot modeled by a two-dimensional | T/ —
Anderson Hamiltonian. We used2d X 27 lattice with K= —| =rA | / lyal?, 9
a cylindrical geometry and introduced a parametric de- BZN | 3x

pendence by adding a step potential of strenglong  \yhere the constant = @2/ BN)S 2 (Ex — E,) 2 =

the symmetry axis. The left and right leads are reprem/ﬁwz) [2de[l = Ya(e)]/ € andMYz(e) is thMe tWo-
sented by arraya’") of m; X m, lattice points with total point cluster function EQL,JatiOH (9) suggests a new
widths given byl = 3> . v7 | W(r;)?. In Fig. 1 scalina- '

we show the peak correlator farx 1 and4 X 4 leads, g 12
corresponding to leads with a single channel and with =~ _, T = <L| Iy |2 / |w|2> v = VRx
many correlated channels, respectively. We topk= 1 Bl ox ’
but verified that different choices do not change the re- . . . _ _
sults, which are in excellent agreement with the Gopyg;;ﬁotgisggkggn;eisgl ]SSACEO?%Z_N;_C,M%?;ZZ
-é"ng factor in (10) can be interpreted as the rms of the

2e_igenfunction rotation rate in analogy with the energy

energies in the Anderson model, using a single eigenfun o : .

tion without any statistical averaging. As expected, thi ;vel veIofmtythln g]g;%a“tn.g 1‘(4)t ;FhethqugnLtg/_al;o;/e

guantity exhibits irregular oscillations with a period com- lverges Tor the utis Tinite 1or the ASLA= = / !
hence the scaling (10) is well defined only in the unitary

parable to the decorrelation distance alang . ) .
In order to break time-reversal symmetry, we appliedcase' In this case .(GUP) _the ratio b(_etween_the rotation
te and level velocity scaling factors is a universal con-

a constant magnetic field along the symmetry axis, tune . : ; .
such that the cylinder encloses a flux bf4 flux unit. stant, otét_alne(d)from comparing (9) with the expression for
preceding (4

The parametric dependence was introduced either by 4
step potential as before or by closing the cylinder into a R/D = 7*/3 (GUP). (11)
torus and applying a varying magnetic field perpendicular . : .
; The divergence of the scaling factor in (10) for the
to the constant one. The peak correlators in both cases a ; Lo 2 . ) .
also plotted in Fig. 1, and agree very well with the GUPi{?e(t?qZ %%mg%ggdm% Itis stllllposzlbtl)eAto u;‘z thlsTshgallng
prediction. o YA/ 0x IS replaced byaya/ax. OIS
Although in principle all parametric correlators becomeregularlzatlon translates into a small-spacing cuboifi Z

universal upon the scaling (4), in practice this is notsUCh thaEy — E,|/A < & are excluded from the sum,

always experimentally feasible. The energy levels probefiesumng n a logarithmic divergence Iog&._ For a

in a quantum dot are usually not the excited states fo mall but f|n_|teAx we can then deduce t_he ratio between
a fixed number of electrons, but the ground states fo he two scaling factors for the GOP [14]:

different numbers of electrons. Since the spacing between
the conductance peaks is dominated by the charging
energye?/C which is much larger than the mean spacing

.A' the scalln_g factor in (4) IS difficult to measure. It demonstrate in the inset of Fig. 1 and as is also confirmed
is therefore important to derive a scaling that can bqn simulations of the Anderson model

;ehxt{acted dlrectlydfr(;_m the cindycltance pealé helgh_t;. FO" \we now come back to the conductance peak correlator
that purpose we defing, (x) = (¢ | #:1(x)) and consider (6) and extract its short-distance behavior. We consider
its derivative the quantity(AT))?> = [T\(x/) — T'y(x)]* and calculate

its average in first-order perturbation theory by expanding
8) yr(x’) in ¢, (x). Averaging first over (x’) we obtain

R/D = — %2 log(Ax) + const (GOP). (12)

Relation (12) is a universal function oAx, as we

H /
Wy Ly Wl HO
0ox x—x x! — x LEA E, — EM 2612 —
(AT)> = ~-(1 = /%) 3 [Ex = E,J7TLL. (13)
given by first-order perturbation theory and where un- nEA
primed quantities are evaluatedxat The rms ofdy,/dx  where the remaining average is ovéfx). Using the GE
is then calculated in two steps. Firs’;, we perform.the aVielation m — [BN/2(N — 1)](1~_§ _ 1"_)\2) and the
erage oveH (x') at fixedH (x), employing the conditional scaling (10) we find
probability distribution [8] for WhiChHM,\(x’)Hf,\(x’) = R
duva’(l — f?)/B (assumingu, v # A). Next, we aver- cglx —x)y=1- bBBIE - X% (14)
age overH(x), taking advantage of the factorization of
P[H(x)] into a product of the eigenvalue and eigenfunc-wherebg = B andR/D is given by (11) for the GUP and
tion probability distributions. We obtain the following by (12) for the GOP. When compared with the leading-
expression for the nonuniversal quantityin the expan- order behavior of the squared Lorentzian (7) for the
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ric dot correlator. The latter is experimentally measurable
in an asymmetric dot whose leads are made very asym-
metric, since the conductance peak is then approximately
proportional to the dominating width. For symmetric leads
with many equivalent channels the peak correlator also ap-
proaches the width correlator [14].

In conclusion, we computed the universal conductance
peak correlator and obtained a good approximation (7) of
its functional form. We derived the rotation rate scaling
which is useful when the level velocity scaling factor is

not measurable and which can be directly calculated from
the conductance peaks data using (15).

FIG. 2. Universal form of the peak correlation in asymmetric ~ This work was supported in part by the Department of
dots with symmetric single-channel leads for both orthogonaEnergy Grant No. DE-FG02-91ER40608. We acknowl-
and unitary symmetries. The GP predictions (dashed) argdge C. M. Marcus and A. D. Stone for useful discussions.
compared with Anderson model simulations (plusses and Nte added—Since the submission of this Letter, our
crosses as in Fig. 1). Shown by dotted lines is the width . . .

correlator which also describes the conductance correlator fdPrediction (7) has been confirmed experimentally for bro-
highly asymmetric leads. ken time-reversal symmetry [16]. We also remark that the
width correlator (6) and (7) is identical to the correlator of
wave-function intensity at a fixed spatial point which can
be measured in microwave cavity experiments [17] as a

GUP case we find, = +/3/7 =~ 0.55. The discrepancy function of shape
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