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We have evaluated numerically the zeros of the partition function of theq-state Potts model on the
square lattice with reduced interactionsK. On the basis of our numerical results, we conjecture th
both for finite planar self-dual lattices and for lattices with free or periodic boundary conditions in
thermodynamic limit, the zeros in the Resxd . 0 region of the complexx  seK 2 1dyp

q plane are
located on the unit circlejxj  1.

PACS numbers: 05.50.+q, 75.10.–b
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In 1952 Yang and Lee [1] introduced the conce
of considering the zeros of the grand partition functi
of statistical mechanical systems, a consideration t
has since opened new avenues to the study of ph
transitions. While Yang and Lee considered the zeros
the complex fugacity plane, or equivalently the compl
magnetic field plane in the case of spin systems, Fisher
in 1964 called attention to the relevance of the zeros of
canonical partition function in the complex temperatu
plane. Using the square lattice Ising model as an exam
he showed that the partition function zeros are distribu
on circles in the thermodynamic limit, and that th
logarithmic singularity of the two-dimensional mode
arises as a consequence of the zero distribution. S
the consideration of zeros in the temperature plane
conceptually simpler, there have been numerous studie
the temperature zeros of spin systems. For example,
Ising partition function zeros have further been conside
for the triangular [3], kagomé [4], and the simple cub
[5] lattices. Similarly, partition function zeros have bee
examined numerically for the square lattice Potts mo
[6,7], the three-state triangular Potts model [8,9], and
Zn models [10,11]. Specifically, the distribution of zero
of the three-state Potts model appears to follow a sim
geometric locus in the ferromagnetic region [6,12], a
the loci for the four-state Potts model appear to inclu
a unit circle [7]. The partition function zeros have als
been analyzed for lattices ofm 3 ` strips using a transfer
matrix formalism [13]. However, except in the case of t
triangular Potts model with pure three-spin interactio
[9], there appears to have been no definite statemen
the zero distributions, which is supported by numerical
exact results.

In this paper we follow up on the consideration of th
partition function zeros of theq-state Potts model on the
square lattice [6,7,12,13], and make a conjecture on th
distribution. We first determine numerically the zeros
the complex temperature plane for small lattices unde
special self-dual boundary condition. On the basis of o
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numerical results, we conjecture that, forfinite planar self-
dual lattices as well as for lattices with free or period
boundary conditions in the thermodynamic limit, the zer
in the ferromagnetic regime are located on a unit circ
Unlike the Yang-Lee zeros of the Ising model for whic
the zeros are on a unit circle but with a density distributio
which crosses the positive real axis only for temperatu
T # Tc, where Tc is the critical temperature, the zero
distribution of the Potts partition function crosses th
positive real axis for allq . 1. In fact, it is the density
distribution near the positive real axis that determines t
critical behavior of spin systems [2].

Consider theq-state Potts model on a lattice, o
graph,G, of linear dimensionL and havingN vertices
and E edges. Let the nearest-neighbor interaction
JdKrssi , sjd, where si , sj  1, ..., q denote the spin
states at verticesi andj connected by an edge andq is an
integer. The partition function can be written as [14]

Z ; ZGsq, Kd 
X

G0#G

seK 2 1dbsG0dqnsG0d, (1)

whereK  JykT , the summation is taken over all sub
graphsG0 # G, and bsG0d and nsG0d are, respectively,
the numbers of edges and clusters, including isolated v
tices, ofG0.

Introducing the variable

x  seK 2 1dy
p

q , (2)

we rewrite (1) as a polynomial inx,

Z ; PGsq, xd 
EX

b0

cbsqdxb , (3)

where

cbsqd  qby2
X0

G0#G

qnsG0d, (4)

and the prime denotes that the summation is taken o
all G0 # G for fixed bsG0d  b. Then, for planarG, the
polynomialPG possesses the duality relation [15]

PGsq, xd  qN212Ey2xEPDsq, x21d , (5)
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FIG. 1. An L 3 L self-dual lattice in solid lines and solid
circles withL  3. The dual lattice is denoted by dotted line
and open circles.

whereD is the graph dual toG. In the case of the square
lattice for whichD is identical toG in the thermodynamic
limit regardless of boundary conditions, (5) implies tha
the system is critical at

xc  1 . (6)

To take full advantage of the duality relation (5), w
consider a planar self-dual square latticeG, which is an
L 3 L square lattice withN  L2 1 1, E  2L2, and
the special boundary condition shown in Fig. 1. Whil
this lattice is planar and self-dual for any finiteL, there is
no difference between this lattice and square lattices w
other boundary conditions in the thermodynamic limit.

We have used a fast algorithm proposed recently
two of us [16] to generate the partition functionPGsq, xd
for L  2, 3, 4, 5, 6, and 7 [17]. The planar self-dua
property (5) now implies the reciprocal relation

cbsqd  cE2bsqd , (7)

and, as a result, the roots occur in pairs ofxi and x21
i .

We then computed the zeros ofPGsq, xd in the complex
x plane and tracked their movement asq increases from
1. At q  1, all roots are found to be located atx  21.
As q increases, some roots begin to spread into an arc

FIG. 2. The distribution of zeros ofPGsq, xd for the L 3 L
self-dual square lattice of Fig. 1 in the complexx plane for (a)
L  2, (b) L  3, and (c)L  4.
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for
the unit circle

jxj  1 , (8)

with the arc centered aboutx  21. As q continues
to increase, more and more roots appear on a larger
and all zeros on the circle move on the circle towa
the positive real axis, while others wander within th
Resxd , 0 half plane. Whenq reaches a certain critica
value qcsLd which depends onL, all zeros are located
at the unit circlejxj  1. This implies that all roots
of the Potts partition function are located on the u
circle in the limit of infinite q and any finiteL. We
have established this latter result rigorously [18]. Typic
results forL  2, 3, 4 are shown in Fig. 3 (results forL 

FIG. 3. The distribution of zeros ofPGsq, xd for the L 3 L
square lattice with periodic boundary conditions for (a)L  3,
and (b)L  4.
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5, 6, 7 are similar and not shown because they invol
many more data points). For all practical purposes a
within numerical errors, many roots are located precis
on the circle. We also find that, in all cases, zeros wh
are located off the unit circle are always confined in t
Resxd , 0 half plane for integralq.

It is significant that zeros do reside on the circ
(8), as this isnot a consequence of the duality relatio
(5). As a comparison, we have computed the partiti
function zeros forL 3 L lattices with periodic boundary
conditions which are nonplanar. The results, shown
Fig. 4 for L  3, 4, indicate that none of the zeros ar
on the unit circle, even though zeros do approach
circle asL and q increase. However, the distribution o
zeros should be independent of the boundary condition
the thermodynamic limit. In addition, we have compute
the zeros of the Potts partition function for square lattic
under two other types of boundary conditions which a
also planar and self-dual, and extended computations
different horizontal and vertical linear dimensions. In a
cases we have arrived at the same conclusion: The P
partition function zeros in the Resxd . 0 half plane all
reside on the unit circlejxj  1. These findings now lead
us to make the following conjecture.

Conjecture:For finite planar self-dual lattices and fo
square lattice with free or periodic boundary conditions
the thermodynamic limit, the Potts partition function zer
in the Resxd . 0 half plane are located on the unit circl
jxj  1.

It is a curious fact that the self-dual feature of
planar lattice somehow forces many roots to locate
the circle, even for small lattices. Furthermore, o
conjecture is consistent with a similar conjecture on t
zero distribution of the Potts model with pure three-s
interactions [9], which also possesses a duality relat
similar to (5). The key appears to lie in the validity of th
duality relation (5).

For q  2, it is known [2] that, in the thermodynamic
limit, zeros also lie on the circle

jx 1
p

2j  1 . (9)

Maillard and Rammal [6] have suggested on the basis
an inversion relation consideration that, forq , 4, the
circle É

x 1
2

p
q

É


s
4
q

2 1 (10)

can be a good candidate as the generalization of
However, (10) does not appear to be in agreement w
our numerical data. It should also be pointed out that o
conjecture is consistent with prior numerical studies [6
as well as results of certain algebraic approximations
m 3 ` strips [13].
171
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The reduced per-site free energy of the Potts mode
now given by the expression

f  N21
X

i

lns1 2 xyxid 1 const, (11)

where the summation is taken over all rootsxi of the
polynomial (3). Fisher [2] has pointed out that the critica
behavior near the critical pointxc is determined solely
by the root distribution in the regime near the positiv
real axis. Thus, forx nearxc  1, we collect those zeros
along an arc of the unit circle intersecting the positive re
axis or, equivalently, the zerosxi  eiui , ui small. Let
the zeros be distributed with a densityNgsud. We can
rewrite, in the thermodynamic limit, the singular part o
(11) as

fsing 
1

2p

Z D

2D
gsud lnst 1 iud du , (12)

where t  xc 2 x and D is a small number. Note that
we havegsud  gs2ud sincecbsqd is real. Fisher [2] has
shown that the densitygsud  ajuj near u  0, where
a is a constant, yields the logarithmic singularity of th
Ising model. Along the same line, the smallu density
distribution [2,19]

gsud 

Ω
ajuj12asqd, q # 4 ,
esqd, q . 4 ,

(13)

leads to the specific singularityjtj2asqd for q # 4 and a
jump discontinuity of amountesqd in U for q . 4. These
are the known critical behaviors of the Potts model.
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