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We have evaluated numerically the zeros of the partition function ofjtkte Potts model on the
square lattice with reduced interactioks On the basis of our numerical results, we conjecture that,
both for finite planar self-dual lattices and for lattices with free or periodic boundary conditions in the
thermodynamic limit, the zeros in the & > 0 region of the complex = (¢ — 1)/,/g plane are
located on the unit circléx| = 1.

PACS numbers: 05.50.+q, 75.10.-b

In 1952 Yang and Lee [1] introduced the conceptnumerical results, we conjecture that, fimite planar self-
of considering the zeros of the grand partition functiondual lattices as well as for lattices with free or periodic
of statistical mechanical systems, a consideration thahoundary conditions in the thermodynamic limit, the zeros
has since opened new avenues to the study of phase the ferromagnetic regime are located on a unit circle.
transitions. While Yang and Lee considered the zeros itJnlike the Yang-Lee zeros of the Ising model for which
the complex fugacity plane, or equivalently the complexthe zeros are on a unit circle but with a density distribution
magnetic field plane in the case of spin systems, Fisher [2¥hich crosses the positive real axis only for temperatures
in 1964 called attention to the relevance of the zeros of th& = T., where T. is the critical temperature, the zero
canonical partition function in the complex temperaturedistribution of the Potts partition function crosses the
plane. Using the square lattice Ising model as an exampl@ositive real axis for aly > 1. In fact, it is the density
he showed that the partition function zeros are distributedlistribution near the positive real axis that determines the
on circles in the thermodynamic limit, and that the critical behavior of spin systems [2].
logarithmic singularity of the two-dimensional model Consider theg-state Potts model on a lattice, or
arises as a consequence of the zero distribution. Sinaggraph, G, of linear dimensionL. and havingN vertices
the consideration of zeros in the temperature plane iand E edges. Let the nearest-neighbor interaction be
conceptually simpler, there have been numerous studies @6k.(o;, o;), where o;,0; = 1,..,q denote the spin
the temperature zeros of spin systems. For example, ttstates at verticesandj connected by an edge agds an
Ising partition function zeros have further been consideredhteger. The partition function can be written as [14]
for the triangular [3], kagomé [4], and the simple cubic _ _ K b(G') (G’
[5] lattices. Similarly, partition function zeros have been Z=Zglq.K) = G;G(e - D", (1)
examined numerically for the square lattice Potts model here K = J/kT. th n tion is tak Il sub-
[6,7], the three-state triangular Potts model [8,9], and thd/ere , /KT, the su/mma lon ',S axen over afl su
Z, models [10,11]. Specifically, the distribution of zerosgraphSG C G, andb(G') and n(G ). are, _respectlvely,
of the three-state Potts model appears to follow a simplﬂ%he numb/ers of edges and clusters, including isolated ver-
geometric locus in the ferromagnetic region [6,12], an ices, ofG : :
the loci for the four-state Potts model appear to include Introdugcing the variable

a unit circle [7]. The partition function zeros have also x=("-1/Vq. 2)
been analyzed for lattices of X < strips using a transfer e rewrite (1) as a polynomial in,

matrix formalism [13]. However, except in the case of the E

triangular Potts model with pure three-spin interactions Z = Pg(g,x) = Z cp(g)xb, 3
[9], there appears to have been no definite statement on b=0

the zero distributions, which is supported by numerical omwhere
exact results. ,
In this paper we follow up on the consideration of the col(q) = ¢ ZI q"?, (4)
partition function zeros of thg-state Potts model on the ) G'CG .
square lattice [6,7,12,13], and make a conjecture on thefnd }he prime _denotes/that the summation is taken over
distribution. We first determine numerically the zeros in@ll G’ C G for fixed 5(G') = b. Then, for planai, the
the complex temperature plane for small lattices under ROlynomial P possesses the duality relation [15]
special self-dual boundary condition. On the basis of our Ps(g,x) = ¢V "EPxEP (g, x7 Y, (5)
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FIG. 1. An L X L self-dual lattice in solid lines and solid ©q=4
circles withL = 3. The dual lattice is denoted by dotted lines *q=10
and open circles. Nl o
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whereD is the graph dual t@. In the case of the square = | (L2
lattice for whichD is identical toG in the thermodynamic E Co ;
limit regardless of boundary conditions, (5) implies that e x 5 ©
the system is critical at Co <
x e, A
x.=1. (6) Al Ko o0
To take full advantage of the duality relation (5), we
consider a planar self-dual square latt@e which is an
L X L square lattice withv. = L?> + 1,E = 2L?, and
the special boundary condition shown in Fig. 1. While L S T
this lattice is planar and self-dual for any finitg there is Re(x)
no difference between this lattice and square lattices with 2 o
other boundary conditions in the thermodynamic limit. 0q=2
We have used a fast algorithm proposed recently by 0q=4
two of us [16] to generate the partition functidty; (g, x) Xq=10
for L= 2, 3, 4,5, 6, and 7 [17]. The planar self-dual 1} U
property (5) now implies the reciprocal relation oy x g '%X
o >< x
cr(q) = ce-p(q), (7) o "x S Z% x
< ix o "
and, as a result, the roots occur in pairsxpfand x; ' g 0 PR b
We then computed the zeros Bf; (g, x) in the complex = o, B o
x plane and tracked their movement @sncreases from o x % :°° x
1. Atg = 1, all roots are found to be locatedat= —1. o ° x"“«; F
. . . o X 0
As g increases, some roots begin to spread into an arc of « %x“ng"&
FIG. 2. The distribution of zeros aPs(g,x) for the L X L
self-dual square lattice of Fig. 1 in the compleplane for (a) ol e
L=2,(b)L =3, and (c)L = 4. 2 1 Re"(x) 1 2
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the unit circle 5,6,7 are similar and not shown because they involve

| = 1 ®) many more data points). For all practical purposes and
’ within numerical errors, many roots are located precisely
with the arc centered about = —1. As ¢ continues on the circle. We also find that, in all cases, zeros which

to increase, more and more roots appear on a larger aete located off the unit circle are always confined in the
and all zeros on the circle move on the circle towardRex) < 0 half plane for integral.

the positive real axis, while others wander within the It is significant that zeros do reside on the circle
Re(x) < 0 half plane. Wheny reaches a certain critical (8), as this isnot a consequence of the duality relation
value ¢.(L) which depends orL, all zeros are located (5). As a comparison, we have computed the partition
at the unit circle|x| = 1. This implies that all roots function zeros for. X L lattices with periodic boundary
of the Potts partition function are located on the unitconditions which are nonplanar. The results, shown in
circle in the limit of infinite ¢ and any finiteL. We  Fig. 4 for L = 3,4, indicate that none of the zeros are
have established this latter result rigorously [18]. Typicalon the unit circle, even though zeros do approach the
results forL = 2, 3,4 are shown in Fig. 3 (results fdr =  circle asL and g increase. However, the distribution of
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FIG. 3. The distribution of zeros aPs(g,x) for the L X L
square lattice with periodic boundary conditions for {a} 3,

and (b)L = 4.

zeros should be independent of the boundary condition in
the thermodynamic limit. In addition, we have computed
the zeros of the Potts partition function for square lattices
under two other types of boundary conditions which are
also planar and self-dual, and extended computations to
different horizontal and vertical linear dimensions. In all
cases we have arrived at the same conclusion: The Potts
partition function zeros in the Re) > 0 half plane all
reside on the unit circleér| = 1. These findings now lead

us to make the following conjecture.

Conjecture:For finite planar self-dual lattices and for
square lattice with free or periodic boundary conditions in
the thermodynamic limit, the Potts partition function zeros
in the Réx) > 0 half plane are located on the unit circle
[x] = 1.

It is a curious fact that the self-dual feature of a
planar lattice somehow forces many roots to locate on
the circle, even for small lattices. Furthermore, our
conjecture is consistent with a similar conjecture on the
zero distribution of the Potts model with pure three-site
interactions [9], which also possesses a duality relation
similar to (5). The key appears to lie in the validity of the
duality relation (5).

For g = 2, it is known [2] that, in the thermodynamic
limit, zeros also lie on the circle

Ix + 2| =1. (9)

Maillard and Rammal [6] have suggested on the basis of
an inversion relation consideration that, fgr< 4, the
circle

L2
P
JVa

S (10)
q

can be a good candidate as the generalization of (9).
However, (10) does not appear to be in agreement with
our numerical data. It should also be pointed out that our
conjecture is consistent with prior numerical studies [6,7]
as well as results of certain algebraic approximations for
m X oo strips [13].
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