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The metal-insulator transition is investigated by means of the transfer-matrix method to describe the
critical behavior close to the lower critical dimension 2. We study se\gfiagctal systemsvith fractal
dimensions between 2 and 3. Together with 3D and 4D results, these data give a coherent description of
the dimensionality dependence of the critical disorder and the critical exponent in termsspiettteal
dimension of the samples. We also show that the upper critical dimension is probably infinite, certainly
larger than 4.

PACS numbers: 71.30.+h, 71.23.An, 71.55.Jv

The question of localization of electronic states inand for the critical exponent
disordered systems has been a central topic of research
since the original formulation of the problem by Anderson v=a/e+05, (2)
[1]. The extensive amount of work was reviewed recentlyand a fit yields the constant = 0.8.
[2]. We limit our discussion here to the widely used Qur investigation also shows that tispectral dimen-
Anderson model in the case without magnetic field. Fokjon 4, rather than thdractal dimensiond; is charac-
one-dimensional (1D) systems it was rigorously showneristic for the behavior of the MIT.d; describes how
[3] that infinitesimally small disorder is sufficient for the mass of a system (i.e., the number of sites in our
localizing the electronic states irrespective of their energymodel) scales with the system size. Thus it does not de-
In higher dimensions no rigorous treatment is available spend on the coordination number or the connectivity of
far. Butthere is now general agreement that all electroni¢ne underlying (fractal) lattice, which are significant for
states are localized in 2D [2]. Numerical simulationsthe localization of the electronic states. In contrast, the
in 3D demonstrated the existence of a metal-insulatofelation to nearest neighbors is taken into account/fjy
transition (MIT) separating extended and localized stateg/hich controls not only the spectrum of low-energy vi-
in the energy-disorder diagram [4]. The results agre@yrations (hence the name spectral dimension) but also the
with the scaling hypothesis of localization [5] and with jong-time behavior of a random walker [8] and thus the
conclusions from the nonlineas model in terms of (diffusion on the lattice. This led to the suggestion that
the & expansion ford = 2 + & dimensions [6]. These 4, plays the decisive role for localization in the Ander-
analytical investigations suggest that= 2 is the lower son model [9,10]. By studying systems with the same
critical dimension of the model, so that the states in a 20, put differentd, as well as different systems with the
system are marginally localized for small disorder. samed, we confirm the relevance of, for the MIT, i.e.,

Naturally, the extensive numerical simulations werethate = d, — 2 should be used in Egs. (1) and (2). The
performed on square and simple cubic lattices in 2D andignificance ofd, also explains why an analysis [11] of
3D, respectively. However, not only was the validity of strongly anisotropic 3D systems could not describe the
the e expansion itself questioned [6,7], but it was also atransition between 3D and 2D behavior: In those systems
problem that the expansion parameteis not small any one has alwayd, = 3.
more for 3D systems which are paradigmatic for the MIT. with respect to larger dimensions an interesting prob-
This prompted us to look for appropriate systems with |em concerns the upper critical dimensiah of the
between 0 and 1, i.e., systems with a fractal dimensiomodel, for which the model can be described by mean
between 2 and 3. It is the purpose of the present Lettefield theory. No such theory is known, but several specu-
to present results for five such systems. They allow 3ations suggested, = 4, 6, 8, or infinity [12]. For the
reasonable extrapolation fer— 0 ord — 2: We obtain  gethe |attice a critical exponenty = 1 \was obtained.

L. . 2
for the critical disorder Therefore, one expects = % in mean field theory. Our

subsequent investigation, which includes the mentioned
W.(e) = eW.(e = 1) = 16.5¢ (1) fractal systems and 3D and 4D lattices, demonstrates that
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in 4D v > v, which meansi, > 4. The extrapolation dj = df' =1In3/In2 + 1 = 2.585. We also use three
(2) even suggests that > vy for any dimension, i.e4,  statistical bifractals (lll, IV, V) for which the fractal part
is probably infinite. is derived from then model of dielectric breakdown [14].
Our investigation is based on the Anderson modeFor » = 1 this is equivalent to diffusion limited aggre-
commonly used in the study of localization. In site gation and scale invariance is fulfilled only in a statistical

representation the Hamiltonian sense. The advantage is th&tcan be varied by adjust-
N omm ing ». Thus we constructed bifractals wid}'' = 2.8,
H = legil + X 1Hv{jl (3) 4l =26 (see Fig. 1), and) = 2.4.
i=1 ij : ;

For a Euclidean systerd; equals the Euclidean di-
comprises the random site energies chosen from a mension. For bifractalg, is obtained as the sum of the
box distribution of widthW and the transfer energies dimensions of the constituentsd! = 2In3/In5 + 1 =
V between nearest neighbors. We &et= 1 to fix the  2.365 follows from an exact determination of the den-
energy scale. sity of states of low-frequency vibrations of the fractal

The transfer matrix method allows us to determinelattice [10]. For the other bifractals such a derivation is
the localization length\,, of electronic states in quasi- not possible. Therefore, we simulated a random walker
1D systems with cross sectigd“ ! and length > M  on the fractals and determined the scaling with time
recursively from the Lyapunov exponents of the produciof the mean-square displacemént). On fractal lattices
of transfer matrixes describing the evolution of electronicthe diffusion may be anomalous, i.€r(r)) « ¢ with
states according to the Hamiltonian (3) along the quasia < 1, while for Euclidean systems we have normal dif-
1D system [2,4]. The hypothesis that these raw data fofusion (¢ = 1). The exponent relatesd, and ds by
different W fall onto a common scaling curvé, i.e., [15] d; = ady, i.e.,d; < d; for the fractal lattices with
Au/M = f(A-/M) has to be corroborated by a finite-size anomalous diffusion. Our simulations yieldetl,= 2.33,
scaling procedure. AW, the resulting scaling parameter 2.41, 2.54, 2.32, and 2.22 for.l.,V. Thus all have
A-(W) diverges with the critical exponemt dy > 2 so that a MIT is expected. The numeriegl is

This approach was used extensively for square and simn reasonable agreement with the exact value. Within the
ple cubic systems [2,4]. Here we apply it to lattices withnumerical accuracy! = d!V. On the other handi; dis-

d; between 2 and 3. A MIT at finite disorder is ex- tinguishes | and Il for whichi} = d}'.

pected only in a system in which the relevant dimension The particular geometry of the bifractals allows us to
exceeds 2, i.ed; > 2. But most fractal systems fulfill apply the transfer matrix method in a straightforward
[13] dy < 2, even ifd; > 2. Therefore, we investigate way, i.e., we determine the localization lengtjy for the
so-called bifractals [13] combining a fractal and a Eu-quasi-1D systems with cross sectiof?’ ~! and length
clidean structure. Figure 1 shows the construction of suclh > M. Typical results are presented in Fig. 2. Because
bifractals as regular stacks of identical fractals. Bifrac-of the generation scheme of the Sierpinski gasket only
tals | and II, which are derived from the Sierpinski gas-a few cross sections with 9, 27, 81, and 243 sites can
ket, are exact bifractals since their generation scheme ise used. The smallest system with three sites is too
completely predetermined and scale invariance is exactlgmall; larger systems need too much computer power.
obeyed. For a bifractal; is given by the sum of the di- For the statistical bifractals we use odd values AMéf
mensions of the fractal and the Euclidean part yieldingoetween 5 and 17 (25, 35); the cross sections then contain

FIG. 1. Bifractals I, Il, IV. Each site is indicated by a small cube. Cubes which have (partly) a common side represent nearest
neighbor sites in the Anderson Hamiltonian (3). Thus in Il every site has a neighbor above itself, while in | only every other site
has a neighbor above itself. The average number of nearest neighbors is 4 in | and 5 in Il.
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4D result [18]. The data obey Eqg. (1), which was already
guessed from an investigation of a 4D system only [19].
We emphasize that Eq. (1) implies the absence of a MIT
ford = 2, because and thusW, vanish [20]. This agrees
with the scaling hypothesis [5]. We note that the data
points W.(dy) scatter much more in the plot that.(d,),
again confirming the relevance df rather thard;.

The phase transition between metallic and insulating
behavior is characterized by the divergentg(W) o

e |[W — W.|7%. The critical exponent can be obtained

from fitting this formula to the data in the inset of Fig. 3,
but these data are rather inaccurate clos&tp because

o4 58 8, % 62 o4 the finite-size scaling procedure cannot be so precise near

W.. Therefore, we determine directly from the raw data

[21]. The results in Fig. 4 show a sharp increasedfor-

2, for 4D we findv = 1. Thus all data fulfill the lower

bound [22] v > 2/d. The nonlinearc model yields

v = 1/e to first order in thes expansion [6] in reasonable

between 17 and 148 (13 and 161, 10 and 125) siteggreement with our numerical data updo= 0.5. It is

for bifractal Ill (IV, V). These raw data are sufficient obvious from Fig. 4 thatv will reach the Bethe lattice

to perform the finite-size scaling ofy, /M = f(A/M)  limit vz = % only for very larged. Thus we can exclude

successfully. Scaling curves for I, I, and IV are shownthe possibility that the upper critical dimension equals 4.

in Fig. 3. The upper branches correspond to the metalliEigure 4 rather suggests that it is infinite. This prompted

side, the lower branches to the insulating side of the MITus to combinery and the dependence enfrom the

It is important to note that | and IV with the sardeyield  expansion into Eq. (2). It enables a good fit to the data

the same scaling curve in contrast to Il with larggt  (see Fig. 4). We note that the agreement with the data can

This corroborates the significance &f rather thand;. be improved only insignificantly, if we fit = a/e + B.

The values of the scaling parameter, comprised of A statistical analysis [23] of the local Green’s function
the inset of Fig. 3, are characteristic for a second ordegives additional support for our numerical result (2).
phase transition. We note that these data can be identified In conclusion, we exploited the idea to use bifractal
with the inverse of the dc conductivity on the metallic sidesystems for the analysis of the MIT in the Anderson
(small W) and with the localization length of the infinite model of localization so that dimensions between 2 and
system on the insulating side (lar@é) [2,4]. The critical 3 become accessible to the numerical analysis, taking the
disorderW, at which A., diverges can be inferred from spectral dimension as the relevant dimension. Because of
Fig. 3aswell asits inset. The results [16] are presented itheir particular geometry, bifractals are ideally suited for
the inset of Fig. 4, together with the 3D value [17] and ourthis purpose. Applying the transfer matrix method with

FIG. 2. Raw data for the localization lengt, of bifractal |
at energyE = 0 for different values of the disorde¥/. The
symbols distinguisi¥ = 4 (), 8 (A), 16 (X), and 32(O).
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FIG. 3. Scaling curvegX) for bifractal I, obtained from the
data in Fig. 2 by determining the scaling paramete(W) by
mean least squares fitting [4]. Data for 63 valuesiobetween
3 and 10 (usually in steps of 0.2, but aroud= 6 in steps of
0.02) are included. Data for (O) and IV ((J) are also shown.
Inset: Scaling parameter..(W).

FIG. 4. Critical exponentr from the present investigation
(O), the fit of Eq. (2) by nonlinear regression (full line),
the & expansion in the nonlineas- model to first order [6]
(broken line), and the lower bound [22] (dotted line). Inset:
Dependence of the critical disord&f. atE = 0 ond, (O) and

dy (O). The full line represents Eq. (1).
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subsequent finite size scaling to five different bifractals

we have been able to derive the dimensionality depen-
dence of the critical disorder and the critical exponent. A

good agreement of the fit of Eqg. (2) with the numerical
results shows that the lower critical dimension is 2 an
the upper critical dimension is probably infinite. In order
to get a more comprehensive understanding of the dime
sionality dependence of the MIT, it would be interesting
to perform various other investigations of the MIT in the

Anderson model of localization also on such bifractals as
used in the present study. This concerns, for example, the

level spacing statistics [24], i.e., the distribution of the

energy levels of the Anderson Hamiltonian as well as

the multifractal analysis [25] of the spatial distribution of

the probability density of the wave functions. Respective

calculations are in progress.
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