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Equilibrium Dynamics of the Dissipative Two-State System
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Wilson’s momentum shell renormalization group method is used to solve for the dynamics of the
dissipative two-state system. We utilize the mapping of the spin-boson model onto the anisotropic
Kondo model (AKM) and solve for the dynamics of the latter. We find that the AKM captures
the physics of the dissipative two-state system for dissipation stréhgthe =< 4 corresponding to
© = J = —in the AKM. The dynamics of the AKM shows a smooth crossover between two strong
coupling regimes corresponding to weak and strong dissipation in the spin-boson model.

PACS numbers: 71.27.+a, 71.10.-w, 72.15.Qm, 75.20.Hr

A problem that is of general interest in both physicsw < w., wherew, is a high energy cutoff and is a
and chemistry is that of a quantum mechanical systendimensionless parameter characterizing the strength of the
tunneling between two states and subject to a dissipativeissipation.
coupling to environmental degrees of freedom. Examples A great deal of work has been carried out over the
of this type of system abound; they include the tunnelindast 10 years in order to understand the dynamics of this
of defects in metallic glasses [1], the motion of the totalapparently simple model [4,5]. Extensive calculations
flux in a SQUID between two metastable fluxoid statesbased on the Feynman-Vernon path integral formalism
[2], and the diffusion of protons and muons in metalswithin the “noninteracting blip approximation” (NIBA)
[3]. The main theoretical interest lies in a description ofhave yielded reliable information for weak dissipation and
the dynamics of the generalized coordinate to the twoshort times [4] and have also provided some insight into
level system subject to the influence of the environmentthe expected behavior in other regimes. In addition to
Both the equilibrium and nonequilibrium dynamics aresuch direct attempts at calculating dynamics for the spin-
of interest for the different experimental realizations ofboson model, it has proved fruitful to exploit analogies
two-level systems. In the case of macroscopic quanturbetween this model and several other models, including
coherence experiments in SQUID’s, the system can bthe inverse-square Ising model [6], the anisotropic Kondo
prepared in one of the two states by applying a bias (amodel (AKM), and the Vigmann-Finkel’ sne(VF) model
external magnetic field) for times<< 0 and then allowed, [7]. In the long time approximation, it has been shown
to evolve fort > 0 in zero bias. The nonequilibrium that the partition functions, and hence the thermodynam-
correlation functions of the two-state system are then oics, of these different models can be put into correspon-
primary interest. For most microscopic systems such adence and the parameters of the models related. This
initial state preparation is not realizable and the interestorrespondence has also been carried out for the respec-
then lies in the equilibrium dynamics. In this paper wetive fermionic Hamiltonians by applying an approximate
present results of the equilibrium case with a bias. bosonization method valid for low energies < w. [8].

Specifically we consider the spin-boson Hamiltonian, In this paper we exploit such a mapping of the spin-boson

_ 1 " model onto the AKM in order to make predictions about

Hsp = — 2 hAoy + 5 €0t Z‘“a<aaaa + E) the dynamics of the former on the basis of renormalization
| group calculations on the latter. It has not been clear [4]

+ — go0, Z (aa + a:g)_ (1) to what extent the above mapping is valid on all param-

2 V2 eter regimes, in particular for weak dissipation, and this

. . . has partly motivated this work. The AKM is given b
Here o;, i = x, y, z are Pauli spin matrices, the two partly 9 y

states of the system correspond 4@ =1 and o, = 4 J1 1 _ t n

l. A is the bare tunneling matrix element ardis a H =) eciycio + X Z(Ckrck’ls +cyernST)
bias. The environment is represented by an infinite set ko Kk

of harmonic oscillators (labeled by the ir_1dex) with i Z(CkTCk/T - czlcm)SZ + guphS,, 2
massesn, and frequency spectrum, coupling linearly k!

to the coordinateQ = %qoaz of the two-level system

via a term characterized by the couplings,. The where the first term represents noninteracting conduction
environment spectral function is given in terms of theseglectrons and the second and third terms represent an
Coupllngs oscillator masses, and frequencies@y) =  exchange interaction between a localized gpin and the
DI (m o )8(w — w,). In the case of an Ohmic heat conduction electrons with strength , J;. ForJ, = Jj
bath, of interest to us here, we havéw) = 2maw, for  the model reduces to the usual Kondo model of magnetic
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impurities in metals. A local magnetic field, coupling  tion, the sequence of Hamiltonia#g, for N =0, 1,...,

only to the impurity spin in the Kondo model [the last is iteratively diagonalized within a product basis of, typi-
term in Eq. (2)] corresponds to a finite bias,in the spin-  cally, up to 1200 states for each iteration. This gives the
boson model. The correspondence betwgeand Hsg  excitations and many-body eigenstates at a corrﬁpond-

is then given bye = gugh, wAL_ =pJ,,anda = (1 + ing set of energy scaleay defined bywy = A~ =

%)2, where tag = _%JH, 5 is the phase shift for and allows a direct calculation of response functions.
scattering of electrons from a potentia|/4, andp =  Thus, for example,x(,7) is given by y(w,T) =
e m—e €n

1/2D is the condition electron density of states per spiny’(w,T) + ix"(w,T) = % Sonn MY 12 pE e o B

at the Fermi level for a flat band of widthD [4]. We  where ¢, €, are many-body excitations dfly, Zy(T)
note that whereas the spin-boson model can descritthe corresponding partition function ofHy, and
dissipation with arbitrary strength,= o« = »,the AKM M) = (m|S.|n)y the relevant many-body matrix
is capable only of describing the region= o« = 4 with  elements for the dynamic susceptibility. The quantity
a = 0 corresponding tdj] = +, & = 1 corresponding we actually calculate isS(w) = — = X“"? \which is

to the antiferromagnetic-ferromagnetic boundary of theelated to the neutron scattering cross sections. Our
AKM (Jj = 0), and I = a =4 corresponding to the results were obtained fok = 2, keeping the 320 lowest

ferromagnetic regime of the AKM. states at each iteration. In this paper we discuss only the
The relevant dynamical quantity for the two-level 7 = ( results.
system is the response functigp(w,T) = (o;;0.)), The accuracy of the numerical calculations could be

which translates into the local dynamic spin susceptested, (a), by showing that the exactly solvable Toulouse
tibility, x(w,T) = ((S;;5.)), for the Kondo model. |imit, o = 1, could be reproduced (described below)
In order to calculate this quantity, we apply Wilson's anq (D), by verifying the generalized Shiba relation for
momentum shell renormalization group method, whichne gynamic spin susceptibility of the spin-boson model
has recently been generalized to the calculation of dy[ll]. The latter relation states that, &= 0, S(w =
namical quantities for a number of models (e.g., [9]).0) — 2ay'(w = 0)2. Generalized with the factor of,
Briefly, the procedure, explained in detail in [10], con-jt is also valid for the AKM, as explicitly verified by
sists of (i) linearizing the spectrum about the Fermigyr numerical results. We chose to extract the static
energy e, — vrk, (i) introducing a logarithmic mesh gysceptibility via a Kramers-Kronig relatiory’(o =

of k points k, = A™", and (i) performing a unitary oy — [** () dw. Verified in this way, the generalized
transformation of thecy, such thatfo, = 2iCks IS Shiba relation provides a good test of the method, not
the first operator in a new basg:lm,, n=0,1.... just at low frequency, but at all energy scales and for
which tridiagonalizesH. = 3, €xuckucip in k Space, arbitrary values ofa and A. The error in y'(0) was
ie,H.— >, > . an—n/2(f’:f+1MfW + H.c), with typically 5% and contributed the main source of error,
& — (1 + A™YH/2 for n > 1. The Hamiltonian (2) approximately 10%, to the Shiba relation; representative
with the above discretized form of the kinetic en- cases are shown in Table I [12]. In all cases we found
ergy is now diagonalized by the following iterative that x”(«) ~ @ for @ — 0, showing that the spin-spin
process: (a) one defines a sequence of finite size Hamigorrelation function([o-(7), o (0)]), decays ad /s> for
toniansHy = Y, nN:—01 an—n/z(f,:rHMfw + He) + Ipng times, i.e., the tunneling is glways mcoherent at long
I _ T N S . times. In contrast, the NIBA gives an algebraic decay
> (fofaS™ + fofoS™) + 3 (forfor = fafo)S* for 'y 20-a) gepending on the coupling.

N = 0; (b) the Hamiltoniansly are rescaled bA™=>"  Tnhe case of zero dissipationg = 0, corresponds
such thaN'E]the energy spacing remains the same, i.gq Jj = in the AKM. This is exactly solvable;
Hy = A= Hy. This defines a renormalization group g(,) = ﬁ[(g(w —J,) — 8(w + J,)]is a sum of two
transformation Hy+; = AY2Hy +2, fN(fj-\r/+1;LfN,u, +  delta functions atw = +J,. In the spin-boson model
H.c) — Egn+1, With Eg y+1 chosen so that the ground the response is also a sum of two delta functions at
state energy offy- is zero. Using this recurrence rela- » = =A.We can thus identify the cutof®. appearing

TABLE I. The Shiba relations(0) = 2a x/(0)?, for the dynamic spin susceptibility; is defined in [13].

n

@ A=1J, Ji @ 2a[x'(0)P [, % error
0.01 0.001 16.078 0.0108 6.536 X 10° 6.450 X 10° 1.3%
0.1 0.01 4.698 0.1068 2.181 X 10° 2.420 X 10° 10.9%
0.2 0.1 3.008 0.2111 7.095 X 107 7.638 X 10! 7.4%
0.4 0.001 1.659 0.4144 1.372 X 10" 1.291 X 10' 6.4%
0.5 0.025 1.262 0.5139 3.748 X 10° 3.965 X 10° 5.5%
0.8 0.1 0.4262 0.8071 8.568 x 108 7.919 X 108 8.2%
0.9 0.1 0.2057 0.9037 2.262 X 10'3 2.437 X 1013 7.7%
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in % = pJ, as the bandwidthw. = 2D. In this case not simply to renormalize the tunneling frequency, since
coherent oscillations with frequenay are realized. On we could not scaleS(w) for different e onto a single
increasing «, Fig 1, the above peaks survive but arecurve, as is the case for different tunneling amplitudes and
broadened. The system exhibits oscillations for shorgero bias. Thus a finite bias for weak dissipation does not
timess < 1/A,, whereA, is the renormalized tunneling change the qualitative aspects of the dynamics. Beyond
frequency (see below). As discussed above, the long = 0.2 the inelastic peaks are negligible, even for very
time behavior is always incoherent for any finike  Small values oA, and the incoherent part dominates [see
and A. The position of the peaks, which is a measurealso Fig. 4].
of the renormalized tunneling frequency, is reduced; For the exactly solvable Toulouse limit, = %,the nu-
i.e., as expected, dissipation hinders tunneling. Figure inerical results forS(w) fit very well onto the resonant
illustrates these features far = 0.1. For « < 1 and level model result for all values af, as shown in Fig. 3.
small A, scaling arguments give a renormalized tunnelingThe response consists of a single peak at 0 of width
frequencyA, = A(%)ﬁ [4]. Numerical results forr =  Agp = 7pV3L, Where Vi wri = = wiy co(8) and
0.01 gave for the Iinelastic peak positiond,’, values wrL, wgm are the respective high-energy cutoffs of the
within 5% of this result forA = 0.05, 0.07, and 0.1 resonant level and Kondo models [7]. Sinagy =
[12]. Although the amplitude of the damped oscillations2D = w., we can relate the various models by deter-
decreases with increasingy, the rescaled spin response mining wgry from the exact resonant level model result
Sa(w)/S4(0) is a universal function of» /A7 (depending S(w = 0) = —x:- We found thatf;% = 1.125 in all
on «). This is shown in the inset to Fig. 1 far = 0.1.  cases with a variation of less than 0.1% [12].
Hence, for weak dissipation, increasidg for A < o, The regimes < a < 1 corresponds to the antiferro-
does not destroy the damped oscillations. As we showhagnetic Kondo regime, for which there have been few
below, only increasingr has this effect. reliable results for the dynamic susceptibility. The renor-
Figure 1 fora = 0.1 and the zero bias case of Fig. 2 malization group results presented here provide an essen-
for @ = 0.2 show that the damped oscillations becometially exact solution in this region, as can be seen from
strongly suppressed with increasing even forA << 1. Table I. The single quasielastic peakSfw) narrows ex-
The oscillations disappear completely at approximatelyponentially fora — 1, i.e., J, j — 0 (Fig. 4). Tunnel-
a = 0.33 [13], well below the Toulouse point = 5 (see ing is incoherent for all values oA. Figure 4 shows
below). A small biase <« A, i.e., small relative to the the crossover from damped oscillations for weak dissipa-
bare tunneling amplitude, but comparable to the renortion to incoherent relaxation for strong dissipation. The
malized tunneling amplitudeA?, leads to a suppression crossover occurs at approximately= 0.33. From the
of the inelastic peaks, and an increase in the tunnelingcaling properties of,(w) for different A, this value is
frequency relative to the zero bias value; Fig. 2. This inindependent ofA (for A < w.). The crossover point
crease in the effective tunneling frequendy,(¢), is well  separates two strong-coupling regimes, corresponding to
described by the weak coupling theory expression [5](a) damped short time oscillations for small and (b)
A,(e) = /€2 + A¥2. The effect of a bias, however, is incoherent relaxation of the spin and Kondo behavior for
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FIG. 1. The response functiofi(w) of the AKM for a =
0.1(J; = 4.698) and A = 0.08 (solid line), A = 0.1 (dotted
line), andA = 0.15 (dashed line). The position of the inelastic amplitude for the zero bias case.
peaks is atA} = 0.045, 0.063, and 0.087, respectively. The
inset shows thatS(w)/S(0) is a universal function of the

rescaled energyo/AY[S(0) ~ ﬁ].

D=%=1.

FIG. 2. S(w) for @ = 0.2(J; = 3.01), A = 0.001, and dif-
ferent biase/A7. A} = 0.079A is the renormalized tunneling

For the finite bias cases,
1, 1, 2, we find for the renormalized tunneling am-

c ! ! plitude A, /A% = 1.05, 1.33, and 1.93, respectively, which is
Energies are in units of within 6% agreement of the weak coupling result [§} =

JA*2 + €2. Energies are in units dp = %= = 1.
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10.0 To summarize, we have shown that at low energies,
0=ow =A< w., the equilibrium dynamics of the
80 | dissipative two-state system is very well described by the
AKM for dissipation0 = a« = 1. Agreement with exact
o results was obtained in the limiting cases— 0, % 1.
g 60¢ The validity of the generalized Shiba relation, within
% errors consistent with the numerical data, was verified in
s 40r 1 the range < a < 1 andA < w..
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