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Kinetic Pathways of Order-Disorder and Order-Order Transitions
in Weakly Segregated Microstructured Systems
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The kinetics of hexagonal to disordered and hexagonal to body-centered-cubic phase transitions
weakly segregated, microstructured systems (e.g., diblock copolymers) is studied using a time-depende
Ginzburg-Landau (TDGL) approach. Both computer simulation of the TDGL equation and analysis of
a simplified two-mode model reveal nontrivial pathways during the transition.

PACS numbers: 81.10.Aj, 64.70.–p, 81.30.Hd, 83.70.Hq
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A wide variety of chemical and physical systems, su
as Langmuir films, ferrofluids, and diblock copolymer
exhibit ordered periodic domain structures [1]. Irresp
tive of differences in the systems, the domain structu
have surprisingly similar appearance: stripes and cir
lar droplets in two dimensions, and lamellae, hexago
(HEX) cylinders, and body-centered-cubic (bcc) sphe
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in three dimensions. Although the specific origins m
differ from system to system, the formation of spatia
periodic patterns can be attributed to the competing sh
range and long-range interactions. Near the order-diso
transition, these systems can be phenomenologically
scribed by an order parameter free energy functiona
the form
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wherecs$rd is the order parameter, e.g., the local mag
tization in magnetic systems, or the local density cont
between the two types of monomers in diblock copo
mers. t is related to the distance from the order-disor
transition temperature, and the coefficientsb, c, u, andy

are phenomenological parameters which can be comp
from more microscopic models. The last term in Eq.
represents the long-range repulsion, which penalizes lo
wavelength inhomogeneities. The equilibrium propert
of systems described by Eq. (1) have been the subje
extensive experimental and theoretical studies [1,2].

In this Letter, we address the phenomenology of the
netics of the various order-order and order-disorder tr
sitions in weakly segregated, microstructured syste
using a time-dependent Ginzburg-Landau approach. S
cifically we study the kinetic pathways of HEX to diso
dered and HEX to bcc phases after a sudden temper
jump. This study is motivated by the general intrins
interest in understanding kinetics of phase transitions
volving spatially modulated phases, in particular, by rec
experiments on diblock copolymers [3–7]. To be co
crete, we shall use diblock copolymers as the context; h
ever, we believe the phenomenology is quite general
the class of systems described by the free energy Eq.
and will not limit our choice of parameters specifically
those for diblock copolymers [8].

For conserved order parameters, as is appropriate
diblock copolymers, we may write the time-depend
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Ginzburg-Landau equation as [9]

≠c

≠t
 M=2

µ
dF
dc

∂
1 hs$r, td . (2)

HereM is a mobility coefficient, which we assume to b
a constant;hs$r, td is a random force, which for a system
in equilibrium at temperatureT , satisfies the fluctuation
dissipation relation

khs$r , tdhs$r 0, t0dl  22MkBT=2ds$r 2 $r 0ddst 2 t0d .
(3)

As a minimal model, we ignore any hydrodynamic effec
and possible nonlocality in the mobility coefficient [10,11
We will also ignore the noise term in subsequent disc
sions except to include it as providing an initial random
ness in the system. We have conducted studies that inc
the noise term and have confirmed that for the issues we
cus on in this Letter, its effects are not crucial. It may al
be commented that the distinction between conserved
nonconserved order parameter dynamics in the weak
regation limit is not essential because only a single wa
number dominates in this regime. Therefore, most of o
results for the case of conserved order parameters sh
be applicable also for nonconserved order parameters.

We first report results of numerical simulation o
Eqs. (1) and (2). To facilitate the numerical procedure,
bring Eq. (2) into a cell-dynamics form suggested by Oo
and co-workers [12,13], with the following choice of th
© 1996 The American Physical Society 1679
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parameters:M  1, t  0.24, b  0.5, c  0.02, y 
20.3, andu  0.5. Gs$r1 2 $r2d is taken to be the solution
of the Laplace equation,=2Gs$r1 2 $r2d  2ds$r1 2 $r2d.
The simulations are performed on a32 3 32 3 32 simple
cubic lattice. A two dimensional hexagonal sinusoid
wave (in thex-y plane) in the order parameterc is first
set as the initial condition with the wave vector chos
according to the minimum of the quadratic coefficient
the free energy Eq. (1). The system is then equilibra
for over 100 000 steps att  0.24. At this temperature,
the system is in the stable HEX phase [see Figs. 1(a)
1(b)] [14]. Starting from the well-equilibrated HEX
phase, we change the temperature tot values which are,
respectively, in the disordered phase and in the bcc sp
phase. To start the subsequent dynamics, a small ran
noise is added to the perfect HEX waves. The time evo
tion of the system is then monitored by simulating Eq.
numerically. To quantify the temporal behavior of the sy
tem, we introduce a global order parameterQ 

P
$k jc$kj2

where thec$k ’s are the Fourier modes ofcs$rd. At the
mean field level,Q is zero in the disordered phase, and
positive in the ordered phases.

For a large temperature jump deeply into the disorde
phase (t from 0.24 to 0.16), we find that the HEX cylinder
melt after 1000 steps. The melting process appear
be a simple exponential one judged from the behavio
the order parameterQ. Correspondingly, a direct visua
inspection of the microstructure [i.e., a gray-level plot
cs$rd in various cross sections] indicates that the melt
is uniform with a monotonic decrease in the amplitude
the hexagonal waves. This behavior is consistent with
fact that att  0.16 the system is already outside of th
limit of metastability for the HEX phase [14], and therefo
the amplitude of the HEX wave should follow a strict
downhill path in the free energy surface.

However, when the temperature jump is only sligh
into the disordered phase (t  0.24 to t  0.18), an
interesting behavior shows up in the evolution ofQ. A
much slower decay at intermediate times is observed.
the same time, a peak in the structure factor is observed
finite kz, wherekz is the wave vector along the orientatio
of the cylinders, indicating the formation of undulation
that direction. The undulation is seen directly in Fig. 1
where we plot the local order parametercs$rd on a cut in
1680
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the y-z cross section. The breaking of the cylinders in
droplets with a well-defined spacing seems evident. T
intermediate state of modulated droplets lasts for ab
1000 steps, after which the droplets melt uniformly; t
decay of the order parameterQ associated with this latte
stage again appears to be exponential.

Although lacking perfect regularity, the microstructur
shown in Fig. 1(c) are strongly reminiscent of a bcc sph
phase. This impression is supported by the fact that
bcc sphere phase lies in between the HEX phase
the disordered phase in the equilibrium phase diagr
Therefore, we have analyzed the microstructures in te
of the amplitudes of the hexagonal and bcc waves, wh
we denote asA and B, respectively [15]. We observ
that during the melting process, the amplitude ofB first
increases and then decreases to zero; see Fig. 2(a).

Next we study a temperature jump into the bcc sph
phase from the HEX phase. Starting from the sa
equilibrated HEX, we change the parameter abruptly fr
t  0.24 to t  0.19. The bcc order becomes evide
after 4000 steps, the spheres having grown epitaxially fr
the cylinders. The amplitude ofB increases with time to a
fixed value; see also Fig. 2(b). Notice the relatively lo
incubation time before the appearance of the bcc wave

Our foregoing numerical results have shown that
pathways of hexagonal to disordered and bcc phase inv
the disappearance of the amplitude of the hexagonal wa
and the appearance (although in some cases only tran
and imperfect) of bcc waves. This observation, toget
with the fact that in the weak segregation limit the de
sity modulations are nearly sinusoidal, suggests that c
siderable insight might be obtained by focusing on the ti
evolution of these dominant modes. To this end, we m
the simplifying assumption that time evolution of this sy
tem can be described in terms of two order parameteA
andB corresponding to the amplitude of the hexagonal a
bcc waves at the optimal wave vectorkc [16]. With this
prescription for the representation of the modulation in
order parameter, the free energy can be written as

FfA, Bg  2 3t1sA2 1 B2d 2 4ysA3 1 3AB2d

1
45u

2
sA4 1 B4 1 4A2B2d , (4)
FIG. 1. Cross-sectional, gray-level view of the instantaneous configurations from the simulation. (a)x-y cross section att  0;
(b) y-z cross section att  0; (c) y-z cross section att  1000 steps. The dark regions are forc . 0, and the light regions are
for c , 0.
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FIG. 2. Time evolution of the amplitude of bcc wavesB
(a) for a temperature jump slightly into the disordered ph
(from t  0.24 to t  0.18), and (b) for a temperature jum
into the bcc phase (fromt  0.24 to t  0.19). The relatively
large initial B in (a) is due to the initial noise that is include
in the simulation.

where t1  t 2 2
p

bc. Correspondingly, the dynami
equation (2) becomes [16]

≠A
≠t

 2Mk2
cf 2 At1 2 2ysA2 1 B2d

1 15usA3 1 2AB2dg , (5)

≠B
≠t

 2Mk2
c f2Bt1 2 4yAB 1 15usB3 1 2BA2dg .

(6)

Note that if we setB  0, the stationary solution o
Eq. (5) at the temperaturet1 yields the equilibrium value
for the order parameterA0 of the HEX phase in the singl
wave number approximation. The stability of this so
tion after a temperature jump tot0

1 can be analyzed b
performing a linear stability analysis. Ift0

1 lies within
the spinodal of the hexagonal phase, there is no linea
stability. Our calculated phase diagram shows that
spinodal temperature ofA is within the bcc phase region
thus temperature jumps to the disordered phase are
ready outside the metastable region. Therefore, there
always be an initial driving force after the temperatu
jump for A to decay. On the other hand, the behavior
B in Eq. (6) is different depending on the net coefficie
of the linear term on the right-hand side. If the coefficie
is negative, then any small perturbation onB  0 will de-
cay exponentially. However, if the coefficient is positiv
which occurs whenA is negative (this ensures the ep
taxial relationship between the cylinders and the sph
that grow out of them) and within a certain bracket a
when the temperature jump is small, a perturbation fr
e
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B  0 will initially grow. This is the scenario for the
transient appearance of the bcc structure during the m
ing of the hexagonal structure for a slight temperatu
jump to the disordered phase. Our calculation sho
that if the temperature jump is within some window, th
melting of the cylinder will go through a transient bc
phase. In the mean-field phase diagram, this window
bounded by the order-disorder boundary, which is giv
by t1  232y2y405u, and the curvet1  22y2y15u.

We show the phase portrait in terms ofA and B for
the slight temperature jump from the HEX phase to t
disordered phase in Fig. 3(a). The arrow indicates
direction of time progression. The trajectory clearly sho
the appearance of a bcc wave during the melting of
HEX cylinders.

In Fig. 3(b) we show the time evolution of the orde
parameters2A and B after a temperature jump to th
bcc phase. It is seen that whileA has a rapid initial
decay, the growth ofB becomes appreciable only afte
100 time units. This is consistent with the result from o
simulation. Another interesting feature is that there is
long plateau region forA in the intermediate times. In
fact, between 50 and 100 time units, there is little chan
in either A and B, suggesting that the system has com
near to a saddle point.

Further insight into the time evolution of the microstru
tures after a temperature jump is obtained by consider
the free energy surface in the order parametersA and B.
This is possible because in the single wave number
proximation, the Laplacian operator in Eq. (1) is tran
formed to 2k2

c [16], a constant factor. Thus, Eqs. (5
and (6) simply describe the steepest descent of the o

FIG. 3. Results from analyses using Eqs. (5) and (
(a) Phase portrait ofB vs A for a temperature jump slightly
into the disordered phase (fromt  0.24 to t  0.185). The
nonzero initial B is due to the initial perturbation; (b) time
evolution of the order parametersA and B after a temperature
jump into the bcc phase.
1681
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FIG. 4. Free energy contour plots in the order parameter spaceA-B: (a) deeply in the disordered phase (t  0.16), (b) slightly in
the disordered phase (t  0.185), and (c) in the bcc phase (t  0.19).
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parameters (A, B) on the free energy surface. The d
namics can then be understood by following the path
the largest downhill gradient in the free energy landsca
Figure 4 shows contour plots of the free energy in the
rameter spaceA, B for the three situations we have stu
ied. It is clear that for a jump from the hexagonal pha
deeply into the disordered phase, the steepest path is a
the B  0 axis, with the global minimum atA  0 and
B  0, indicating a direct melting of the cylinders withou
the appearance of the droplets. On the other hand, f
shallow temperature jump, while the line alongB  0 is
still in a downhill direction, this line is actually a ridge, an
therefore a small perturbation with a nonzeroB will lead
to a transient growth inB from this path before the system
settles in the global minimumA  0 andB  0. Finally,
for a temperature jump into the bcc phase, the global m
mum is now atA  20.043 and B  0.043, and a sad-
dle point exists atA  20.056 andB  0. The steepes
path can get rather close to this point, which is the rea
for the near stagnation in the time evolution of both ord
parameters.

The epitaxial relationship between the cubic pha
and the HEX phase in diblock copolymers has been
tablished experimentally by Bateset al. [5–7]. These
authors also reported observation of transient sphere s
tures during the melting of the HEX in shear-cessat
experiments [6,7]. In one of these experiments, an
tially disordered phase of asymmetrical poly(ethylen
propylene)-poly(ethylethylene) close to the order-disor
phase boundary is subjected to a constant shear whic
duces a transition to the HEX phase (with the cylind
aligned along the shear direction). Then the shear is s
denly stopped, and the system is now in a condition fav
ing the disordered phase. These authors observed tran
sphere structures which grow epitaxially from the cylinde
by means of neutron scattering. They attribute the tr
sient epitaxial appearance of the spheres to the anisotr
suppression (during shear) and reemergence (after s
is stopped) of thermal fluctuations. Although shear fl
is involved in the experiment, it is our opinion that th
essence of the experiment is to prepare a cylinder ph
and then suddenly change the conditions to favoring
disordered phase. In this regard, the shear-cessation
periment can be likened to the temperature jump studie
this Letter. The dominant mechanism for the appeara
of the transient structure could well be that depicted he
1682
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