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An Explanation of the Density Maximum in Water
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An explanation of the anomalous density maximum in water né& dan be given in terms of a
competition between the presence of open second-neighbor oxygen-oxygen structure at 4.5 A and a
dense second-neighbor structure obtained from the bending of hydrogen bonds. Since no computational
model of water has provided an explanation of this anomaly, altering the water-water potential to create
more realistic interactions in the second-neighbor shell is proposed. Support for this idea is provided
here by considering the exactly soluble Takahashi fluid model.

PACS numbers: 61.25.Em, 61.20.Gy

Liquid water is one of the most mysterious materials From the early crystallographic work [9,10] it is al-
known. It is “a still poorly known liquid” [1]; an ready well know that changes in the crystal structures
“anomalous liquid and solvent” [2]; and “we know how of the various ice polymorphs always ocoomtsidethe
to work out the properties of ice and steam, but we havdirst-neighbor shell. Going to the second shell in normal
no clear idea why there is such a thing as ordinary liquidce Ih, the oxygen-oxygen distance is the continuation of
water” [3]. the open tetrahedral network structure~at.5 A. How-

One of the most familiar mysteries is the densityever, in the higher densityp > 1.15 g/cn?) crystalline
anomaly: At sufficiently low temperatures, warming ice polymorphs, hydrogen bonds that form the second-
the liquid causes it teshrink. There is an increasing neighbor shell are bent [9], creating condensed oxygen-
awareness that understanding this one property will reveaxygen distances. In fact, in the most stable moderately
the origins of all the other anomalous properties ofdense forms of ice, this second-neighbor distance lies near
water, and thus will provide a complete molecular-level3.4 A. In a recent paper on neutron diffraction studies
description of this most important liquid. However, [11] of liquid D,O under pressure down to temperatures
currently popular computational models of water areof —65 °C, bond bending is again suggested: “The ef-
simply unable to reproduce this anomaly, as so aptlfect of pressure is subtle in the sense that it does not
stressed in the abstracts of two very recent papers [4,5¢hange substantially the number of hydrogen bonds, but
It would seem that, if a model does not possess thithe O---O---O angles are modified.” This is exactly
basic property of the real liquid, it cannot provide anywhat happens when the open oxygen-oxygen bonding in
sort of an accurate picture in biological, chemical, orthe second-neighbor shell changes over to the more dense
geophysical applications, on which an ever increasingtructure at 3.4 A.  All these structural features in the
amount of computational effort is now being spent. liquid and in the crystalline polymorphs of water provide

Recent experimental investigations have suggested in& picture that is in perfect concordance with the differen-
portant avenues of approach towards the ultimate resdial x-ray diffraction results [7] for the liquid, and help to
lution of this problem. For example, vibrational Ramanidentify the new neighbors as a structure already inher-
data [6] over a range of temperatures from the supercooleght in condensed phases of water. It seems clear then
region indicate a mixture of resonances, one exhibitinghat the water-water potential in computational models
strong hydrogen bonding as in normal ice, the other havshould be modified in such a way that it can provide
ing a lower degree of such bonding. Still more reveal-a subsidiary second-neighbor oxygen-oxygen minimum
ing are isochoric differential x-ray scattering data fornear 3.4 A, while keeping intact under appropriate ther-
liquid D,0 [7], again spanning both supercooled and normodynamic conditions the open tetrahedral structure.
mal temperature ranges. These results show the presencen this Letter, the feasibility of the above idea is
of at least twosecond-neighbopeaks in the radial dis- tested with an exactly solvable analytical model. In or-
tribution function, one near 3.4 A, which grows in with der to carry out this analysis, we must considaly sec-
increasing temperature differential, the other near 4.5 Apnd neighbors in liquid water, ignoring the first neigh-
which decreases with temperature. Apparently, as thbors altogether. The justification for this simplification
temperature increases, more densely packed second neighsts on two experimental properties, (1) the number den-
bors near 3.4 A are created in the liquid at the expense dfity and structure in the first shell of the liquid are not
the ordinary second neighbors of the open tetrahedral nestrongly affected by temperature [7], and (2) the oxygen-
work. These new neighbors have already been describerkygen nearest-neighbor distances ath forms of the
as “fifth neighbors” in the work of Sciortino, Geiger, and liquid and ice are the same;2.8 A [7,9,10]. For these
Stanley [8]. What further identification is possible? reasons, nearest neighbors cannot play a significant role in
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determining thermally induced or pressure induced denene dimension by showing that it /! times the integral
sity variations in liquid water, except weakly through over the special region) < q; < ¢, < g3+ < gy <
ordinary compressibility and thermal expansion. TheL [11-13]. Therefore the isobaric-isothermal partition
nearest neighbors can be considered as part of an invafiinction reduces to

ant inner “core.” One might then expect thhe second- 2amksT\N? [ -

neighbor structure determines the densiffhis structure On(P,T) = <—> fo dLe PP

2
is seen to depend on two minima, a close-in metastable }2 an

one near 3.4 A and a farther-out deeper minimum at X f quf dqy e Pvlax—an-v
~4.5 A, The shallower minimum may not be evident % 0

from quantum calculations on small water clusters, partic- . dgie Prie—a), (6)

ularly the dimer. 0

Because of the foregoing considerations, an exactlyhjs integral is the Laplace transform of convolutions, so,
solvable one-dimensional model can be employed for thgsing the convolution theorem [16], one obtains

investigation of the density maximum in water. We can rmkeT\N/2 1 1
simply treat the second neighbors in the real liquid as Qu(P,T) = <723> — kP, TV —,
“first neighbors” in the theoretical model. h BP BP

This type of problem was first solved for a hard sphere ()

potential by Tonks [12], and was later generalized byyherex (P, T) is the Laplace transform af 47,
Takahashi [13] and others [14]. The Hamiltonian in the

Takahashi model is k(P,T) = [ dx e BPx o= Bv(x) (8)
N 2 0

H =3I+ V). (1)

i=1 Now taking the thermodynamic limit in whicl —

whereN particles each of mass and momentg; have o, N — o, while the volume per particlé = L/N held

the potential energy constant, gives for the Gibbs free energy
N—1
Vig) =Y vllgier — ail). @  G.T) = —%Bln(zmz#) + InK(P,T)] )
i=1

Since the system is to be studied for a range of temThe total volume of the system in this limit is [17]

peratures and pressures, it is convenient to work in the PYe N ak(P.T)
isobaric-isothermal ensemble in which the partition func- L= <—> = — < : ) , (20)
tion [15] is PJr BxP.T)\ 9P Jr
1 * and the volume per particleand the density are given
QN(P,T) — ] dL f e*ﬁ(PLJr:]'[) qude, b p p y) g
NWN ), y
©)) P <aK(P,T)> 1)
whereL is the “volume” in the one-dimensional system, p Bx(P,T) oP  Jr

P is the “pressure,” which is actually just the tension attherefore, to obtain the density, one must first choose
the two ends of the fluid, and the other symbols have, tential, then perform the integral in Eq. (8), and
their usual meanings. The single integral sign collectivelyyifferentiate the result with respect B

stands folN momentum integrals, with limits-o to +oo, In the original Takahashi model [13,14] there is a hard
andN position intervals, 0 td.. The Gibbs free energy is ¢qre forg < x < «, and the potential is zero far > 2a.
- _ Any analytically tractable potential can be used in the
G(P,T) = —kgTIn P.T). 4 .
#.7) sTINON(P.T) @ region a < x < 2a. In order to reproduce the second-
_ _ neighbor characteristics of real water, we can therefore
The momentum integrals in (3) may be evaluated teextend the Takahashi model to two wells, dividing the

yield region betweera and 2 into three equal parts. These
On(L.T) 1 (27mkpT N/2 e JLe-BPL parts correspond to an inner vyell, a plateau, anpl an outer
N NI h2 0 well, respectively. The potential can then be written
L L L
0<x<a hard core
X day - - - dg; - d *, ; .
]0 N jo 1 j;) 0 —€, a<x<4a/3; inner well
NZ] v(x) = 0, 4a/3 < x < 5a/3; plateau
X exl{_ﬁ Z v(lgiv1 — C]il)i|~ (5) —)Xe, Sa/3 < x < 2a; outer well
i=1 0, x > 2a,

The multidimensionalconfigurational integral over the
positions of all the particles can be determined exactly in (12)
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remembering that the two second-neighbor wells in real 064
water have been replaced here by nearest-neighbor wells.
The quantitiesA and € are positive. The integral fok
yields | rgo.so i
"(P’T)zg_p"3[¢+"(1 —$) =61 — ) (1 - M), g
(13) %
where§ = ¢ PPa/3 and ¢ = eP<. Using Eq. (11), the g 0o
equation of state becomes
P(l - a) = kBT 052 ' 1 L
Pa 6[1—¢ — 02 —36)(1—¢)*] ! 3 5 7 9

3 b+0(1 —¢)—020—0)(1— )" Reduced temperature
(14) FIG. 1. The reduced densitya/m as a function of reduced

. . . peraturekzT/e for A = 10 and for P = 10€/a for the
It is easy to see that this equation reduces to the expectef] b\ well model. Eor explanation of symbols, see text.

result in all appropriate limits—hard sphere, single well,
ideal gas, etc.

Near absolute zered is small and¢ is large. The ) )
equanon Of state then reduces to More |nterest|ng are temperature Changes fOI’ preSSUI’eS

2Pa 6! lower than critical. Keeping the pressure fixed at not too
P(l — a) = kpT + 3 T+ 00gh (15)  high a value and raising the temperature fréhm= 0 K
. . causes particles in the outer well to “boil” into the inner
In the case where the inner vv_eII dsaepel_‘than the outer well, increasing the overall density. This effect, followed
vyell, A= _and terms involvinge vanish. Thus the by the inevitable expansion at high temperatures, then
right hand .S'de of Eq. (lE_))_goes to zero s~ 0, and produces a density maximum. As a specific example,
the crystalline state of minimum volumeé,= a, where we choosed = 10 and P = 10e/a. Since this pressure
all the spheres are touching, is obtained. On raising thf'S less than the critical pressure, which equEise/a
temperature, the system simply expands and no densitoy density maximum is obtained.’ This is seen in Fi’g. 1,
maximum oCcurs. . ., wherepa/m is plotted as a function dfzT /€.

On the o_ther hand, for the case of water, where the Thoﬁgh it is,%f course, unrealistic to comparél’) for
oute_r well is deeperX> 1), the terms involvinge are the one-dimensional model with that of real water, it is
dominant, and aI' = 0 K the equ?tlon of state becomes of interest to note that by appropriate parameter scaling
L 2a_ 67 (16) of the one-dimensional result, it is possible to match

3602+ 6% exactlythe p(T) curve of real liquid water at both normal
whered, is defined by the relationshig'~* = 62. This and elevated pressures. There_ is thqs no doubt thgt this
gives rise to a “critical pressuré?. = 3e(A — 1)/2a. It can also be done for a th_ree—dlmensmnal computgtlonal
is then evident that the zero temperature limit of volumeMode! for water. In fact, increasing the pressure in the
per particle is a discontinuous function @f one-dimensional model s_hows that the density maximum
becomes broader and shifts to lower temperatures, finally

|l —a

4, p i PCf disappearing sufficiently high pressures. This is exactly
I =14a/3, P=P; (A7) the type of behavior observed in the real liquid [18].
5a/3, P <P In summary, it has been shown that by mapping the

Physically, these three possibilities correspond to all théwo known second neighbors in real liquid water onto
particles being in the inner well, in both wells with equal first-neighbor locations in a one-dimensional model a den-
probability, or in the outer well. At zero pressure andsity maximum is obtained. The one-dimensional model
T = 0 K, the system exists in a crystalline state with allalso captures other pressure-temperature properties of this
the particles in the deeper, outer well, with= 5a/3.  mysterious and important liquid. Since realistic density
Of course, as soon as the temperature is different frormaxima are clearly absent in popular computational water
zero, the discontinuity in volume disappears and, as isnodels [4,5], it might be necessary, in order to reproduce
normal for any substance, the volume is a continuoushe known temperature and pressure effects, to insert em-
monotonically decreasing function of the pressure. Thepirically the appropriate double-well feature into the water-
application of pressure simply forces the particles intowater potential. Three-dimensional studies along these
greater confinement, in this case into the inner welllines are currently taking place in our laboratory [19].
creating a higher overall density, as in the dense ice Gregory |. Gellene is acknowledged for interesting
polymorphs of the real system. discussions about this problem and for many suggestions
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