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An Explanation of the Density Maximum in Water
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An explanation of the anomalous density maximum in water near 4±C can be given in terms of a
competition between the presence of open second-neighbor oxygen-oxygen structure at 4.5 Å
dense second-neighbor structure obtained from the bending of hydrogen bonds. Since no compu
model of water has provided an explanation of this anomaly, altering the water-water potential to
more realistic interactions in the second-neighbor shell is proposed. Support for this idea is pro
here by considering the exactly soluble Takahashi fluid model.

PACS numbers: 61.25.Em, 61.20.Gy
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Liquid water is one of the most mysterious materi
known. It is “a still poorly known liquid” [1]; an
“anomalous liquid and solvent” [2]; and “we know ho
to work out the properties of ice and steam, but we h
no clear idea why there is such a thing as ordinary liq
water” [3].

One of the most familiar mysteries is the dens
anomaly: At sufficiently low temperatures, warmin
the liquid causes it toshrink. There is an increasing
awareness that understanding this one property will re
the origins of all the other anomalous properties
water, and thus will provide a complete molecular-le
description of this most important liquid. Howeve
currently popular computational models of water a
simply unable to reproduce this anomaly, as so a
stressed in the abstracts of two very recent papers [
It would seem that, if a model does not possess
basic property of the real liquid, it cannot provide a
sort of an accurate picture in biological, chemical,
geophysical applications, on which an ever increas
amount of computational effort is now being spent.

Recent experimental investigations have suggested
portant avenues of approach towards the ultimate r
lution of this problem. For example, vibrational Ram
data [6] over a range of temperatures from the superco
region indicate a mixture of resonances, one exhibit
strong hydrogen bonding as in normal ice, the other h
ing a lower degree of such bonding. Still more reve
ing are isochoric differential x-ray scattering data
liquid D2O [7], again spanning both supercooled and n
mal temperature ranges. These results show the pres
of at least twosecond-neighborpeaks in the radial dis
tribution function, one near 3.4 Å, which grows in wi
increasing temperature differential, the other near 4.5
which decreases with temperature. Apparently, as
temperature increases, more densely packed second n
bors near 3.4 Å are created in the liquid at the expens
the ordinary second neighbors of the open tetrahedral
work. These new neighbors have already been descr
as “fifth neighbors” in the work of Sciortino, Geiger, an
Stanley [8]. What further identification is possible?
0031-9007y96y76(10)y1651(4)$10.00
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From the early crystallographic work [9,10] it is al
ready well know that changes in the crystal structur
of the various ice polymorphs always occuroutside the
first-neighbor shell. Going to the second shell in norm
ice Ih, the oxygen-oxygen distance is the continuation
the open tetrahedral network structure at,4.5 Å. How-
ever, in the higher densitysr . 1.15 gycm3d crystalline
ice polymorphs, hydrogen bonds that form the secon
neighbor shell are bent [9], creating condensed oxyge
oxygen distances. In fact, in the most stable moderat
dense forms of ice, this second-neighbor distance lies n
3.4 Å. In a recent paper on neutron diffraction studi
[11] of liquid D2O under pressure down to temperatur
of 265 ±C, bond bending is again suggested: “The e
fect of pressure is subtle in the sense that it does
change substantially the number of hydrogen bonds,
the O· · · O · · · O angles are modified.” This is exactly
what happens when the open oxygen-oxygen bonding
the second-neighbor shell changes over to the more de
structure at 3.4 Å. All these structural features in th
liquid and in the crystalline polymorphs of water provid
a picture that is in perfect concordance with the differe
tial x-ray diffraction results [7] for the liquid, and help to
identify the new neighbors as a structure already inh
ent in condensed phases of water. It seems clear t
that the water-water potential in computational mode
should be modified in such a way that it can provid
a subsidiary second-neighbor oxygen-oxygen minimu
near 3.4 Å, while keeping intact under appropriate the
modynamic conditions the open tetrahedral structure.

In this Letter, the feasibility of the above idea i
tested with an exactly solvable analytical model. In o
der to carry out this analysis, we must consideronly sec-
ond neighbors in liquid water, ignoring the first neigh
bors altogether. The justification for this simplificatio
rests on two experimental properties, (1) the number d
sity and structure in the first shell of the liquid are no
strongly affected by temperature [7], and (2) the oxyge
oxygen nearest-neighbor distances inall forms of the
liquid and ice are the same,,2.8 Å [7,9,10]. For these
reasons, nearest neighbors cannot play a significant rol
© 1996 The American Physical Society 1651
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determining thermally induced or pressure induced de
sity variations in liquid water, except weakly throug
ordinary compressibility and thermal expansion. Th
nearest neighbors can be considered as part of an inv
ant inner “core.” One might then expect thatthe second-
neighbor structure determines the density.This structure
is seen to depend on two minima, a close-in metasta
one near 3.4 Å and a farther-out deeper minimum
,4.5 Å. The shallower minimum may not be eviden
from quantum calculations on small water clusters, part
ularly the dimer.

Because of the foregoing considerations, an exac
solvable one-dimensional model can be employed for
investigation of the density maximum in water. We ca
simply treat the second neighbors in the real liquid
“first neighbors” in the theoretical model.

This type of problem was first solved for a hard sphe
potential by Tonks [12], and was later generalized b
Takahashi [13] and others [14]. The Hamiltonian in th
Takahashi model is

H ­
NX

i­1

p2
i

2m
1 V sqid , (1)

whereN particles each of massm and momentapi have
the potential energy

V sqid ­
N21X
i­1

ysjqi11 2 qi jd . (2)

Since the system is to be studied for a range of te
peratures and pressures, it is convenient to work in
isobaric-isothermal ensemble in which the partition fun
tion [15] is

QN sP, Td ­
1

N!hN

Z `

0
dL

Z
e2bsPL1H d dN qdN p ,

(3)

whereL is the “volume” in the one-dimensional system
P is the “pressure,” which is actually just the tension
the two ends of the fluid, and the other symbols ha
their usual meanings. The single integral sign collective
stands forN momentum integrals, with limits2` to 1`,
andN position intervals, 0 toL. The Gibbs free energy is

GsP, T d ­ 2kBT lnQN sP, Td . (4)

The momentum integrals in (3) may be evaluated
yield

QN sL, T d ­
1

N!

µ
2pmkBT

h2

∂Ny2 Z `

0
dLe2bPL

3
Z L

0
dqN · · ·

Z L

0
dqi · · ·

Z L

0
dq1

3 exp

∑
2b

N21X
i­1

ysjqi11 2 qijd
∏

. (5)

The multidimensionalconfigurational integral over the
positions of all the particles can be determined exactly
1652
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one dimension by showing that it isN! times the integral
over the special region,0 , q1 , q2 , q3 · · · , qN ,

L [11–13]. Therefore the isobaric-isothermal partitio
function reduces to

QN sP, T d ­

µ
2pmkBT

h2

∂Ny2 Z `

0
dLe2bPL

3
Z L

0
dqN

Z qN

0
dqN21e2bysqN 2qN21d

· · ·
Z q2

0
dq1e2bysq22q1d. (6)

This integral is the Laplace transform of convolutions, s
using the convolution theorem [16], one obtains

QN sP, Td ­

µ
2pmkBT

h2

∂Ny2 1
bP

fksP, T dgN21 1
bP

,

(7)

whereksP, Td is the Laplace transform ofe2by,

ksP, T d ­
Z `

0
dx e2bPxe2bysxd. (8)

Now taking the thermodynamic limit in whichL !
`, N ! `, while the volume per particlel ­ LyN held
constant, gives for the Gibbs free energy

GsP, Td ­ 2
N
b

∑
1
2

ln

µ
2pmkBT

h2

∂
1 lnksP, T d

∏
. (9)

The total volume of the system in this limit is [17]

L ­

µ
≠G
≠P

∂
T

­ 2
N

bksP, T d

µ
≠ksP, T d

≠P

∂
T

, (10)

and the volume per particlel and the densityr are given
by

l ­
1
r

­ 2
1

bksP, T d

µ
≠ksP, Td

≠P

∂
T

. (11)

Therefore, to obtain the density, one must first choo
a potential, then perform thek integral in Eq. (8), and
differentiate the result with respect toP.

In the original Takahashi model [13,14] there is a ha
core for0 , x , a, and the potential is zero forx . 2a.
Any analytically tractable potential can be used in t
region a , x , 2a. In order to reproduce the second
neighbor characteristics of real water, we can theref
extend the Takahashi model to two wells, dividing t
region betweena and 2a into three equal parts. Thes
parts correspond to an inner well, a plateau, and an o
well, respectively. The potential can then be written

ysxd ­

8>>>><>>>>:
`, 0 , x , a; hard core,

2e, a , x , 4ay3; inner well,
0, 4ay3 , x , 5ay3; plateau,

2le, 5ay3 , x , 2a; outer well,
0, x . 2a,

(12)
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remembering that the two second-neighbor wells in r
water have been replaced here by nearest-neighbor w
The quantitiesl and e are positive. The integral fork
yields

ksP, T d ­
1

bP
u3ff 1 us1 2 fd 2 u2s1 2 ud s1 2 fldg ,

(13)

where u ­ e2bPay3 and f ­ ebe . Using Eq. (11), the
equation of state becomes

Psl 2 ad ­ kBT

1
Pa
3

uf1 2 f 2 us2 2 3ud s1 2 fdlg
f 1 us1 2 fd 2 u2s1 2 ud s1 2 fld

.

(14)

It is easy to see that this equation reduces to the expe
result in all appropriate limits—hard sphere, single we
ideal gas, etc.

Near absolute zero,u is small andf is large. The
equation of state then reduces to

Psl 2 ad ø kBT 1
2Pa

3
u2fl21

1 1 u2fl21 . (15)

In the case where the inner well isdeeperthan the outer
well, l # 1 and terms involvingf vanish. Thus the
right hand side of Eq. (15) goes to zero asT ! 0, and
the crystalline state of minimum volume,l ­ a, where
all the spheres are touching, is obtained. On raising
temperature, the system simply expands and no den
maximum occurs.

On the other hand, for the case of “water,” where t
outer well is deeper (l . 1), the terms involvingf are
dominant, and atT ­ 0 K the equation of state become

l 2 a ø
2a
3

u2

u2
c 1 u2

, (16)

whereuc is defined by the relationshipf12l ­ u2
c . This

gives rise to a “critical pressure”Pc ­ 3esl 2 1dy2a. It
is then evident that the zero temperature limit of volum
per particle is a discontinuous function ofu,

l ­

8<: a, P . Pc;
4ay3, P ­ Pc;
5ay3, P , Pc.

(17)

Physically, these three possibilities correspond to all
particles being in the inner well, in both wells with equ
probability, or in the outer well. At zero pressure a
T ­ 0 K, the system exists in a crystalline state with
the particles in the deeper, outer well, withl ­ 5ay3.
Of course, as soon as the temperature is different fr
zero, the discontinuity in volume disappears and, as
normal for any substance, the volume is a continuo
monotonically decreasing function of the pressure. T
application of pressure simply forces the particles in
greater confinement, in this case into the inner w
creating a higher overall density, as in the dense
polymorphs of the real system.
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FIG. 1. The reduced densityraym as a function of reduced
temperaturekBTye for l ­ 10 and for P ­ 10eya for the
double well model. For explanation of symbols, see text.

More interesting are temperature changes for press
lower than critical. Keeping the pressure fixed at not t
high a value and raising the temperature fromT ­ 0 K
causes particles in the outer well to “boil” into the inn
well, increasing the overall density. This effect, followe
by the inevitable expansion at high temperatures, t
produces a density maximum. As a specific examp
we choosel ­ 10 and P ­ 10eya. Since this pressure
is less than the critical pressure, which equals13.5eya,
a density maximum is obtained. This is seen in Fig.
whereraym is plotted as a function ofkBTye.

Though it is, of course, unrealistic to comparersT d for
the one-dimensional model with that of real water, it
of interest to note that by appropriate parameter sca
of the one-dimensional result, it is possible to mat
exactlythersT d curve of real liquid water at both norma
and elevated pressures. There is thus no doubt that
can also be done for a three-dimensional computatio
model for water. In fact, increasing the pressure in
one-dimensional model shows that the density maxim
becomes broader and shifts to lower temperatures, fin
disappearing sufficiently high pressures. This is exac
the type of behavior observed in the real liquid [18].

In summary, it has been shown that by mapping
two known second neighbors in real liquid water on
first-neighbor locations in a one-dimensional model a d
sity maximum is obtained. The one-dimensional mo
also captures other pressure-temperature properties o
mysterious and important liquid. Since realistic dens
maxima are clearly absent in popular computational wa
models [4,5], it might be necessary, in order to reprodu
the known temperature and pressure effects, to insert
pirically the appropriate double-well feature into the wat
water potential. Three-dimensional studies along th
lines are currently taking place in our laboratory [19].

Gregory I. Gellene is acknowledged for interesti
discussions about this problem and for many suggest
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