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Fractional Exclusion Statistics and Two Dimensional Electron Systems
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Using the Thomas-Fermi approximation, we show that an interacting two dimensional electron gas
may be described in terms of fractional exclusion statistics at zero and finite temperatures when the
interaction has a short-range component. We argue that a likely physical situation for this phenomenon
to occur may exist in two dimensional quantum dots.

PACS numbers: 05.30.—d, 73.20.Dx

Fractional exclusion statistics or the generalized excluactions are neglected, then the system also obeys Haldane
sion principle was first proposed by Haldane [1,2] in thestatistics at finite temperature. This opens up the excit-
context of excitations in spin chains. Experimentally, theing possibility that the bulk properties of a mesoscopic
best evidence comes from recent neutron inelastic scatwo dimensional system may be understood by regarding
tering experiment [3] on the compound KCGyRwvhich it as an almost ideal fractional statistics gas confined in
is a one dimensional Heisenberg antiferromagnet abova potential well.

40 K. The observed inelastic scattering is best fitted by The claims made in this paper are based on the Thomas-
spinon excitations in a spin chain whose pairwise interackFermi (TF) method [13]. Being a mean-field method, it
tion falls off as the inverse square of the lattice distanceannot reproduce two-body correlations, but is successful
[4]. The dynamic correlation function for such a systemin giving a good estimate of bulk properties like the
has been calculated by Haldane and Zirnbauer [5]. Thground-state energy and the single-particle spatial density.
concept of fractional exclusion statistics has been genett has previously been applied with success to atoms [14],
alized to the case of a gas of particles [6] defined by awuclei [15], and metal clusters [16]. In two dimensions,
distribution function [7,8] that allows for partial or multi- TF yields an accurate approximation to the total energy of
ple occupancy of a single-particle state. In principle, thea many-anyon system [17]. For an ideal gas obeying the
statistics is applicable to particles in any spatial dimengeneralized exclusion statistics, TF calculation has been
sion, but most known examples are mathematical modelshown to yield the exact answer for the energy in the
in one dimension [9—11] with a pairwise inverse-squardargeV limit [18]. It is therefore reasonable to expect
interaction. The first calculation for a two dimensionalthat the method gives meaningful answers. We start by
realistic system in this context was done by Johnson andonstructing the energy density functional for the ground-
Canright [12], who demonstrated, by exact diagonalizastate energy of a system of interacting spin-half fermions.
tion of a small number of interacting electrons, that theConsider theV-fermion Hamiltonian in two dimensions,
bulk excitations in fractional quantum Hall effect (FQHE) 1 X N

liquids exhibit Haldane statistics. In this paper, we show H = - S pE+ D Vi) + D valli; — D,

that under certain conditions a two dimensional interact- il i=1 J<k

ing electron gas in its ground state may exhibit these (1)
statistics. The conditions are shown to be favorable fowhereV, is a one-body confining potential whose specific
electrons in a quantum dot. In this case, it is shown thatorm is not crucial at present and, is the two-body
the dominant effect of the interaction may be incorporategotential that is repulsive. In a mean-field theory, the
in the fractional statistics of the gas. If the residual int?r-expression for the energy at zero temperature is given by

E- | dzr[z’f: 7 + Vi)p(r) + %[p(r) [ @ ot = 7 = € [ @ ot P - ?’I)”,
@

wherep(r) is the spatial single-particle density(r) is the |
kinetic energy density, and(r, ') is the density matrix. P = (N — N_)/N, whereN- is the number of up or

In the above we have taken into account the effect of botldown spins, the factolC = (1 + |P|)/2. The spatial
direct and exchange terms in the interaction energy. Thdensity is normalized such that = [d?r p(r). In the
factor 1/2 is the correction due to the overcounting of pairs.Thomas-Fermi method, the kinetic energy density)

The constanC is determined by the spin polarization of is itself expressed in terms of the densjyr) and its

the gas: for unpolarized electrons, itlig2, whereas for a gradients. The energy and the density are determined self-
fully polarized system, it is 1. For arbitrary polarization consistently by a variational principle. In two dimensions,
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the TF expression is(r) = 7 p2(r), taking into account of the exchange term is

the spin-degeneracy factor of 2. In this case, there is no

gradient correction in the bulk up t0(%%). However, D jIvaljiy = f lp(r1, )PV (7 — Fal)d?ry d*ry,
there are edge corrections when the sample is of finite i.J

size [19]. (4)
Next consider the energy due to the two-body interacwhere p(r, r2) = >, i (r))i(r2). At this stage, it is
tions. The matrix element of the direct term is useful to perform the density-matrix expansion following

Skyrme [20]. Definingr = 7 — 7/, andR = (7| + 7»)/2
D <jIvalijy = ] p(r)p(r)V(F — Rld*r d*rs, and expanding the density up to this orde#jrwe obtain
ij .
@) p() =pR +7/2)
where the sum (here as well as in what follows) is over the = pR) + 57 - V)p + 3G -V)Pp +---. (5)

occupied single-particle statemly. The matrix element| The direct matrix element may then be written as

Saivipy = [ @rva) [ @Rp®) = 5 [ v [ @RVoRT (6)

i,j

Similarly the density matrix (7, 7,) may be expanded up to second ordeF iaboutR, and on angle averaging

p(F1.7) = 2 IR + 7/2di(R = 7/2) = Z[wﬂiz)m) o PWIV  (V — 20Y w»] (7)

i

and the exchange contribution to second order is given by
S (ijIVsljiy = [ &r Vo(r) f PR p*(R) — f &Pr r2Vo(r) [ SR (R)p(R) + - ®)
i.j

Here the kinetic energy density is defined as

r = = STH ) + Pyl + 5 YO - (V). ©)

i

Often the kinetic energy density is defined either by the filrSEnergy of the system is given by
term or by the second term in the above equation without 52
the overall 2. What we naturally get in the expansionis E = f dzr[ ”
an average of both these commonly used forms. We have 2m
computed each one of these forms exactly using harmonic 1

oscillator wave functions for a few particles. While the + §{7Tp3(r) — [Vo(r)PiMs + }

first and second terms show oscillations around the smooth (11)

TF density, the definition given above almost precisely ,

coincides with the TF density even with as few as twowhereM, = Jdr va(r)r* are the moments of the two-
particles. body potential. Note that we obtain an expression similar

We note that the leading terms in both direct andt© the above if we use an expansion of the form [21]
exchange terms are the same (proportionaptp. For o
spin-half fermions the interaction energy is given by Va(r) = > ¢;b¥ V¥ 8 (F), (12)
j=0

mp(r) + Vilp(r) + 5 (Mo

Z[(ij|V2|ij> = By Om,m i1Vl ji)], (10)  whereb is the range of the potential ang are related to

ij the jth moment of the potential, asM,; = 2% j! ¢;b?.
wherem; is the spin projection. Summing over all parti- The spatial density is now determined by the variation
cle indices immediately gives a factar + |P|)/2 forthe 6(E — wN) = 0, where u is the chemical potential at
exchange contribution, wher@ is the spin polarization zero temperature. The variation immediately gives the
of the system. Therefore, if there is no other degree oéquation for the density
freedom, or if the spins are all polarized, the contribution j;2 m* M
from the leading terms to the interaction energy vanishes—*[ —2},0(0 +

. > m 2mh

as it happens in FQHE systems. However, for the un-
polarized 2D electron systems there is a factor%d’br @wp(r) = u = Vi(r).
exchange contribution. Here we concentrate on the un- 4
polarized case. Combining all the contributions the total (13)
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In the largeN limit we expect the density in the bulk (but not very large), it is easy to estimate that the sec-
to be approximately constant. We can therefore negleaind term becomes important only for ranges of the order
the derivative term in this limit. Further, if the potential of 100 A or above. Another way to view the problem is
is extremely short ranged, the term proportional to theo regard the short-range part of the two-body interaction,
second moment of the potential may also be neglectedvhich dominated4y, to alter the statistics only. The long-
(We will elaborate on these approximations shortly.)range part oV,, giving the higher moments, modifies the

Then the density is given by self-consistent mean field. Consider, for example, the elec-
m trons in two dimensional quantum dots. The two-body po-
po(r) = {m (v = Vi) =0, (14) tential is usually taken to be the Coulomb interaction, and
0, r=ro, the confining potential of the device is modeled by the os-
where ry is the classical turning point defined hy =  Ccillator potential. However, itis expected that the effective
Vi (ro) and two-body interaction after averaging over the probability

M densities in the direction perpendicular to the plane will
m g (15)  be more complicated. Many qualitative features of the sys-
2mh tem may be explained by several choices of the potential.
is now the statistics parameter as we show below. In thds in the case of FQHE liquids, we assume that the model
effective range expansion (12}, = M,. The expression interaction has a short-range p#t (r) and a long-range
for po in Eq. (14) may be interpreted as if the fermionspartV,,(r). We use the moments expansion for the short-
in the one-body confining potenti&); are noninteracting, range part and neglect the effect of higher moments. The
but that theyobey the generalized exclusion statistics forself-consistent equation for the density is then given by
occupancyat zero temperature,

a=1+

1

= E’ 6<Iu”
n(e) ‘0’ c>n (16)

o= [gi -0 10
where the mean TF potential is defined as
This may be easily seen as follows. For noninteracting ) / ..
fermions, the Thomas-Fermi density of statdg) in an U(r) = Vi(r) + f d*rp(r VoI5 = #1).  (21)
external potentiaV,(r) is
5 ) The equation further simplifies for circularly symmetric
g(e) = 2 drd 127 5[6 Y Vl(r)] (17) density. Expanding the potential in partial waves,
27 h 2m* o
(2mh) .m I Vl»_»,l_iz / o
The overall factor of 2 on the right-hand side is due to ullF = 71) = - 2 v (r, ') cosn( ),
the spin degeneracy. Using the new occupancies given m=0

by Eq. (16), we get the TF potential reduces to
N = 1 f”g(é) de Ur)=Vv(r) + f r'dr' p(rvo(r,r'). (22)
a Jo
| In the above equation we have ignored the exchange

2 2 2
= fz d7rdp 0|:M _r Vl(r)] (18) effects that are not important for the long-range poten-
« (2mh)? 2m* tials. Thus Eq. (22) is the self-consistency condition to
The functiond(y) = 1 for y > 0, and zero otherwise. determine the density(r), and in general is not solvable
Now performing thep integration immediately yields analytically.
the total number of particles, with densipy(r) given Finally we consider briefly the finite temperature prob-
by Eq. (14). Indeed we have now the precise conditiolem using the Thomas-Fermi method. We restrict our
under which ideal exclusion statistics is realized withinattention to the case where the two-body potential is ex-
the framework of the Thomas-Fermi method. tremely short ranged and regard the system as ideal. The
In the more realistic situation, the higher moments mayemperaturd’” is expressed in units of the Boltzmann con-
not be neglected, and the system is a nonideal fraction&fant, so that it has the dimensions of energy. The one-
statistics gas. In the thermodynamic limit, we may write Pody potential is now temperature dependent, and is given

* by
o . 3m M2
o) = polr) 1= My 4] a9 vy = i) + 2 e
wherepy(r), given by Eq. (14), is the density for the ideal s
field emission spectroscopy case. Note that= 4c;b? =Viir)— (1 = a) 7h p(r,T) (23)
whereb is the range of the potential. The typical densi- m* o

ties in two dimensional systems of interest is of the ordewhere « is the statistics parameter defined by Eq. (15).
of 1075 /A2, Using the values afi* = 0.067m., whichis ~ We have assumed that the external poteritjél) is tem-
the effective electron mass in GaAs materials, angt 1  perature independent. In the above equation, the density
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p(r,T) for the fermions is obtained from the relation (in- energy density have the same dependence on the spatial

cluding the spin degeneracy of 2) density.
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and the chemical potential is determined by = P

[d*r p(r,T). The p integration above may be done
analytically, giving
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