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New Scenario for Transition to Turbulence?
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Numerical study of the one-dimensional nonlinear partial differential equation, equivalent to that
proposed Recent Advances in Engineering Scien@&pringer-Verlag, Berlin, 1989)] to describe
longitudinal seismic waves, is presented. The equation has a threshold of short-wave instability and
symmetry, providing slow long-wave dynamics. It is shown that the threshold of the short-wave
instability corresponds to a point of “continuous” (second order) transition from a spatially uniform
state to a chaotic regime. Thus, contrary to the conventional scenarios, turbulence arises from the
spatially uniform state as a result ofie and the only onsupercritical bifurcation.

PACS numbers: 47.27.Cn, 47.52.+j, 47.27.Eq, 47.20.Ky

In some cases a pattern-forming extended dissipativguantities parametrizing the whole set of invariant trans-
system has, besides the trivial symmetry under a shiftormations) [8] provides us with grounds to expect that
of the origin of the spatiotemporal coordinate frame, amualitative features of Eq. (1) are not specific to this par-
additional group of continuous symmetry. Such examplesicular equation but common to many different systems
are convection in a liquid layer with stress-free boundarywith additional symmetry too.
conditions [1,2], systems with Galilean invariance [3], a It is well known that close to the threshold of short-
traveling front in phase transition phenomena or inwave instability a pattern-forming system has a certain
reaction-diffusion systems [4,5], electroconvection in lig-hierarchy of scales, so that the solution of the governing
uid crystals with a homeotropic alignment of the directorequation(s) may be presented as a product of a steady,
beyond the threshold of the Frederiksz transition [6], andapidly varying in space periodic function, and a slowly
others. It is well known that the additional symmetry varying, both in space and in time, amplitude (envelop)
generates an extra band of slowly varying modes, i.e[7]. The important property of systems with additional
adds extra degrees of freedom to the order parametsymmetry is that, contrary to the conventional cases
describing the dynamics of pattern formation [7], thatwithout this symmetry, the control parameter cannot
brings about dramatic changes in tpattern stability be scaled out from equations for the slowly varying
problem. Among other things, the most important toamplitudes. There are at least two reasons for that.
the present paper is instability of all weakly nonlinearFirstly, at 0 < ¢ < 1 the relevant problem hathree
spatially periodic patterns that may occur in such systembands of slowly varying in time modes, centered around
[2,8]. In particular, it takes place [8,9] with solutions of k = *1, 0, respectively, and the equations for envelops

the equation to modes withk = =1 have the structure different from
9 2 2\2 2 that to modes withk close to zero [11]. Secondly, the
u d d u . . . -
= + —axz[s - <1 + —8x2> }u <—ax> =0, (1) problem is characterized by mixing of different scales

in perturbative expansion [2,5,8] that forced one to take
whose additional symmetry transformation us— u + into account corrections to a leading approximation to the
const. Here the quantities(x,7) and ¢ are real and amplitude equations. Thus, it is trivial to see that the
the control parametes supposed to be small. A4 >  number of degrees of freedom connected with rescaling
0 the trivial solution of Eq. (1)x = 0 undergoes short- of independent variables is not enough to scale out
wave instability against spatially periodic perturbationsentirely. In such a case interplay of different scales may
with wave numberg from a narrow band centered around result in a complicated pattern dynamics at any finite
k=1 positive e, no matter how small it is.

An equivalent form of Eg. (1) was introduced in Instability of all steady spatially periodic solutions
Ref. [10] to govern longitudinal seismic waves in visco-to Eq. (1) just beyond the threshold of the short-wave
elastic media and later was analyzed in Ref. [11], wherénstability of the trivial state raises a question about
a finite range of stability of steady spatially periodic the state the unstable spatially uniform one evolves
patterns was obtained. However, this result of Ref. [11}o. To answer the question we employed numerical
is wrong due to inadequate truncation of amplitudestudy of Eq. (1). The simulations were developed in
equations. For more details, see Ref. [9]. a finite segment0 = x = L with periodic boundary

Note that the similarity of the pattern stability problem conditions. To avoid difficulties of approximation by
in different systems with the same dimensionality of thefinite differences of the high-order differential operator
continuous group of symmetry (the number of continuouof Eg. (1) we used the Fourier transform afx,¢)
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with respect to the spatial variable. As a result Eq. (1) 14
was reduced to a set of coupled ordinary differential
equations of the first order for amplitudeg,, () of

Fourier modes with wave numbeiks= mp, where m

is an integer andp = 27 /L. Since the modelUy(t)

is slaved to those withn # 0 [9] and plays no role Rel * £ N S
in the pattern-formation problem, this mode was not~—=.
taken into account. To understand the behavior of the V€ S R
system just beyond the threshold of the short-wave
instability and to avoid complications associated with
secondary bifurcations, extremely small values:afere Ll ; / , ;
chosen. The simulations were carried out on a CRAY k \ \ \ \

C-90 supercomputer. A detailed description of the code 0 : - E -
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et
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will be reported elsewhere. Here we mention only that
the code was written especially to deal with smalnd o ) _
was carefully tested against all available analytical results7!C- 1. A '[”'('; 0C2y0|$hgtiﬁge(?e aef‘nd%nnceész;ntﬁ?rlgalsmﬁt éift

. .The numeric_al _study shows that any small—amplitudefhe ampli’tulcjies of the modes wikh=pp (—)andk =1 (- p—)

initial spatial distribution of the order parametefx,0) s shown as an example.

evolves, after a certain transient period, into one or

another time-dependent asymptotic regime. All these

regimes are characterized by excitation of bunches of

modes from narrow subbands centered around the pointg is considerably larger thany; cf. Figs. 3(b) and 4(b).

k = *=n, where the integem may be regarded as a We have no reliable data to conclude if the characteristics
number of the corresponding subband. Amplitudes of thef well-developed chaotic regimes undergo any change
modes fall off rapidly to zero with increase in both the with further decrease qf.

deviation ofk from the center of each subband, at fixed Extending the results to the case of the boundless space
and the numben, at the fixed deviation. (L — «), we arrive at the following conclusion.

To classify the asymptotic regimes note that, since (1) Instability, arising in the problem @ny small pos-
long-wave dynamics is very important for the problemitive e, drives the systems into well-developed spatiotem-
under consideration, the regimes may be very sensitive tporal chaotic states.
the cutoff of long-wave modes caused by finitenesd of  (2) The effective phase spaces of these states have high
(size effect), i.e., to a particular value pf In order to  (continuous?) dimensionality and contain a wide variety
study this effect the following approach was developedof limit cycles that are stable in some directions and
A run with a certain fixed value ofp lasted until unstable in the others.
the asymptotic state was reached. Then, the simulation (3) Chaos corresponds to random “scattering” of phase
terminated,p replaced byp/2, the state obtained at the trajectories by the limit cycles (attraction along stable
moment of termination, perturbed by a small-amplitudedirections with repulsion along unstable ones).
mode with the wave numbér = p/2, used as the initial
condition for a new run, and so on. The study shows
that if p is not small enough, so that only a few Fourier
modes fall into the band of instability of the trivial state
u = 0, the asymptotic regime corresponds to nonlinear 10
periodic oscillations ofU,, (a limit cycle). A typical
example is presented in Fig. 1. Each decrease yitlds
instability of the limit cycle and its transformation either 6
into a more complicated one or (finally) into a chaotic ReU
state; see Fig. 2. An example of a well-developed chaotic /g
state is shown in Figs. 3 and 4. In the phase space of the 2

12

amplitudesU,, the regime, corresponding to these figures,

is characterized by exponential growth of the separation ’ y )

of two trajectories starting out close to each other. The -2

study of the power spectra and correlation functions

for modes from different subbands indicates that each a0 20 20 260 20 0 s s
subband has a certain characteristic tipehat is nothing et

but the characteristic time scale of the fine structure of|G. 2. The same quantities as those shown in Fig. 1. The
the dependencE,,(1); see Figs. 3(b) and 4(b). Note that asymptotic state g¢ = 0.01.
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FIG. 3. Well-developed chaotic regimes = 107™%, p =  F|G. 4. The same as that shown in Fig. 3 for the mode with
3.125 X 1073, (a) Real part of the amplitude of the mode with j — 1.

k = p versus time. (b) A small fragment of the same curve,
clearly indicating presence of the characteristic time in the fine
structure of the curve.

value and backward that did not indicate any hysteretic
phenomena.
It may seem that the extremely small values of the

(4) Chaotic dynamics of different modes have a finebifurcation parameter considered in the present paper
structure with a certain characteristic time scaled & are meaningless since the governing equation does not
approximately. The characteristic time diverges at 0, include fluctuations. On the other hand, it is known
so that at smalk such a dynamics may be callstbow that in equilibrium phase transition phenomena close to
turbulence the transition point fluctuations can change the type of

Note that contrary to the conventional equations, exbifurcation fromsupercriticalto weakly subcritical [12].
hibiting a chaotic behavior, such as, e.g., the GinzburgHowever, contrary to this case, macroscopicpattern-
Landau equation with complex coefficients, in our casdorming systems the relevant dimensionless parameter,
the small bifurcation parameter cannot be eliminated frontharacterizing the effect, contains the ratio of an atomic
the problem, as already emphasized above, so the slogorrelation length to a macroscopic pattern’s scale [13]
turbulence is reallslow. and the above effect always is negligible [14].

The amplitudes of chaotic modes at slow turbulence are Thus, the considered dissipative system with short-
scaled approximately age that indicates theupercriti-  wave instability and additional symmetry, generating slow
cal (normal) bifurcation. However, it is difficult to pro- long-wave dynamics, does exhibit a new scenario of
vide high accuracy for the scaling, treating data relatedransition to turbulence which is equivalent to second
to chaotic dynamics. Therefore it is desirable to obtainorder phase transitions in equilibrium systems.
more evidence of the supercritical character of the bifur- One of the authors (M.1.T.) is grateful to A. Bishop,
cation. Such evidence was obtained in the simulations bf. Hohenberg, P. Huerre, S. Kai, K. Kawasaki, Y. Kura-
“adiabatic” scanning of from zero to a small positive moto, and R. Roy for stimulating discussions.
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