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Optical Bullet Holes: Robust Controllable Localized States of a Nonlinear Cavity
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Stable localized states are predicted for a saturable absorber in an optical cavity. These “bullet
holes” resemble 2D spatial solitons, and we demonstrate an optical memory array scheme based on
them. A topological argument shows that one or more unstable localized states coexist with the stable
bullet hole.

PACS numbers: 42.65.Sf, 42.65.Tg

Stable localized states are among the most interestirigered is the cavity mistuning parametdt; is the external
spatiotemporal structures exhibited by extended nonlinegsump field, A is the detuning of its frequency from
systems. If robust, they are also interesting—especialljhe medium resonance, arxd” is the medium density
in optics—as “bits” for parallel information storage and expressed as an optical absorptivity. The time has been
processing. One could envisage such structures as tisealed to the decay rate of the intracavity field, and the
two-dimensional spatial analogs of the temporal solitondields to the square root of saturation intensity. The
which promise to revolutionize long-distance telecommu-diffraction parameten = L.s/k, Wherek is the optical
nications [1]. The flaw in a straightforward analogy is thatwave vector and.. is the effective cavity length [5].
the nonlinear Schrédinger equation (NLS) has stable soli- The purely absorptivéA = 0) case has the advantage
tons only in(x, 7), while in (x, y, r) the “solitons” are unsta- of algebraic simplicity, and offers an example of structure
ble, collapsing to a singularity [2]. Localized states haveformation with absorptive nonlinearity [6]. We assume
also been examined in Ginzburg-Landau equations, usuallyis case below, except whefeappears explicitly. Then
concentrating on “pulses” in just one spatial dimension [3]time-independent, spatially homogeneous solutiBn®f

Here we present analytical and numerical evidence foEq. (1) obey
the existence of stable two-dimensional (2D) localized E; 20c
states (LS) in a driven optical cavity containing a saturable 5 1 +i6 + T+ E]R (2
absorber. In transmission these would appear as transpar- o s
ent disks on an absorbing background, most simply forme@nd, depending on the values 6fand C, the plane-
by aiming a short pulse of light at the target location.wave input-output characteristic may be either mono-
These two attributes prompt the term “optical bullet holes"stable or bistable. Previously, LS in this system have
(OBH). The long-term prospect of very fast, micron-scale Peen predicted for the bistable case, where they were
generation using “optical bullets” [4] is an additional moti- termed “diffractive autosolitons” and viewed as mutually
vation and an attractive prospect. Unlike real bullet holestrapped switching waves linking the two stable states
OBH can be moved around, and we demonstrate a self/]: and, independently, for the special case of “nascent
correcting control scheme for the address “bullets” in 2DPistability” [8]. Here we deal with stable OBH in
OBH arrays. the monostable regime, demonstrating that they are a

While our results are founded on numerical evidence, w@henomenon independent of bistability.
take advantage of cylindrical symmetry to demonstrate a Es has a modulational instability (MI) fakS > S + 1,
simple, but robust, topologically based method for locatingvhere I = |E|> and S = 2C/(I + 1)* is a saturation
the LS and demonstrating their stability. This approacH’arameter, as was first shown in [5]. We will be
are at issue, especially because it does not require arfysolitary wave structure can sit orseblehomogeneous
assumptions about near integrability of the governing?@ckground. _
equations, or smallness of amplitude of the solution. The unstable wave vector at Ml threshold has magni-

We study the mean-field ring cavity model for a two- tude K. = /—6/a, which is real only if¢ is negative.
level medium [5,6]. In the good cavity limit, with fast The generated off-axis field then propagates at an angle
relaxation of the medium variables, the system may b&vhich exactly compensates the cavity mistuning [6]. We
described by a single partial differential equation in theinterpret the OBH in a similar vein: At its center the OBH

complex fieldE, profile allows the Laplacian term in (1) to cancel the mis-
20(1 — i) tuning term, enabling resonant excitation and consequent
IE = —E[(l + i0) + m} bleaching. The OBH acts a self-induced waveguide, with
the guidance provided by the (negative) loss profile—for
+ E; + iaV*E. (1) A = 0thereis no linear or nonlinear index profile.

0031-900796/76(10)/1623(4)$10.00 © 1996 The American Physical Society 1623



VOLUME 76, NUMBER 10 PHYSICAL REVIEW LETTERS 4 MRCH 1996

We begin with results on creation and control of OBHglobal gauge invariance can be extended to the case of
in a full numerical simulation. We integrate the partial tilted wave fronts: E; = E; e'®*, E = Fe'®* whereK
differential equation (1) on a square grid using a split-is a constant vector. From Eq. (3, must obey
step method. The OBH are created by an initial Gaussian ) . 2
pulse of amplitude greater than, and width comparable to, [0, + 2aK - W)]F = = F —i[6 + aK"]F + E,
the solution sought. One can also track an OBH branch 2C(1 — iAF

I S 2
across some parameter range. 1 + A2 + |F|? AR
The inset in Fig. 1 shows a typical OBH. Relative 3)
to the background field,, it has a strong central peak

surrounded by a fairly shallow trough. Figure 1 itself The time derivative has become a convective derivative,
shows the OBH plotted in the compleX plane and and so any static solution which exists for an aligned input
for comparison theE values of the coexisting hexagonal (K = ()) should survive but move with Ve|ocit2/aK on
pattern. The similarity invites interpretation of thesemisalignment. That misalignment leads to a lateral drift
hexagons as a close-packed lattice of OBH. Also showgf optical patterns has been found in several systems
is a cylindrically symmetric OBH solutioi(r) computed  [9,10], but its connection to phase symmetry, and thus
directly from Eq. (1)—see below. The excellent matchits generality, has not been stressed (though mentioned in
lends confidence in these results. [11] in a laser model).

The number and location of OBH depends only on the Consider now a more general space-dependent phase
system’s history (address pulses), and not on the steagyodulation:
input field, so they can be used as bits in an optical i) .
memory. IfN OBH can exist without undue interaction Ep = Epe’™,  E = Fe'™. (4)

in the available transverse area, one can divide it intQinder this local gauge transformation the damping and
N pixels, each of which can contain just one or zerogetuning coefficients develop a spatial dependence, and
OBH. This give2" coexistent stable states, i.e., it  the drift velocity of the solution is now given by =
memory. _ _ _ . 2a(V¢). In consequence, an OBH will move towards the
Pixel functions with some kind of “pOtentIa| well” local maximum 0f¢ (x’y) and remain there’ and so a p|Xe|
(1) under a constant phase shift of bahand £;. This  array. Large errors in address location were imposed to
demonstrate that here the address tolerance is the pixel
pitch, typically several times larger than the island size
] limiting the address tolerance of material pixels [12].
s & 1 Figure 1 suggests that LS are stationary, localized,
' ,“;’ cylindrically symmetric solutions of Eqg. (1). We now
/»’ : obtain and discuss such solutions, which we write in the
4 form E(r) = E,[1 + A(r)], where evidentlyA(r) must
vanish at larger for LS. At the origin, appropriate
7 - boundary conditions ard(0) = Ag # 0 and 9,A(0) =
oA 5 _ A,(0) = 0. More general “ring” LS withA(0) = 0 may
F - exist, but are not considered here.
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FIG. 1. Plot in the complext plane of the stable local-
ized state obtained from both two-dimensional simulations
(diamonds) and radial integration (solid line) for= —1.2, (a) (b)

C =54, andl = 1.5. Also plotted is the coexistent stable

hexagonal solution. The localized state solutions spiral ouFIG. 2. Writing the letters IT in localized states on a square
from, and eventually back into, the plane-wave fixed pointarray of pixels created by a phase modulated pump. The real
(bottom left). The inset in the top left showg| plotted in  part of the fieldE is shown at (a)f = 20 and (b)¢ = 800

the transverse plane for the stable OBH. cavity lifetimes. 6 = —1.2, E; = 6.65, andC = 54.
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An instructive approach to finding LS is to integrate
Eqg. (1) inward towards = 0, starting at a large radiug
where it can be linearized, and thdé-) obeys

aV2[A:|= 0 —i(S+1) iIS
(5)

A¥ —ilS 6 + i(S + 1)
A

o A

The eigenvalues ofM are obviously relevant: They

are

A
A*

A+ =0 = i[(S + 1)* — [28%]'/2, (6)
BecauseS + 1 > IS in the LS regime (below the MI
threshold), we can define

A= (2 (7)

a
Then a general solution of (6) which decaysras> « is
Ax(r) = BKo(Ar)e ® + [BKo(Ar)] e?. (8)
Ky is a generalized Bessel function apd> 0 obeysS +
1 = IScosh2¢). B is an arbitrary complex constant, the
choice of which uniquely parametrizéscalizedsolutions
to the nonlinearequation (1). Our task is to find values

1/2
) , ReA > 0.
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FIG. 3. Bifurcation diagram showinig\(» = 0)| for the stable
OBH branch and the two unstable solution branches with which
it collides, as a function of (¢ = —1.2, C = 5.4). The values

stem. Also shown are the results from two-dimensional

of B which generate solutions obeying the LS boundaryVere calculated by radial integration of the time-independent
sy

condition atr = 0.

To accomplish this, we fix; appropriately (typically
ri ~ 204/a), chooseB, initialize A(r;) and A,(r;) us-
ing (8), and integrate (1) inward te = ro ~ 0. De-
fine f(B) = lim,—oA,(ro). For most B, f diverges
logarithmically, but there will be curves of initial con-
ditions in the complexB plane for which R¢ = 0, and
others for which Irfi = 0. Apart from the special case
B = 0 (which generates the flat solutidn= 0), intersec-
tions of these curves define.lFSr this case, and for many

simulations indicating excellent agreement.

radial-integration search technique for finding the solu-
tions themselves. The search in this case is over the
complex growth rateg of the perturbation. For all
LS discussed, the largest growth ratereal and fol-
lows the pattern implied by Fig. 3, with only the mid-
dle branch being stable. At= 1.5, the growth rates are

other nonlinear spatiotemporal systems, these curves afe = +0.14, —0.11, +0.90 for the lowest, middle, and up-
continuous and reasonably well behaved. Their interpermost branches in Fig. 3, consistent with simulations.
sections are therefore topological features, robust againgithough we have dealt here only with cylindrically sym-

small changes in parameters (such/ag’, A, andé in

metric states, the search method, and more importantly the

the present case). For the same reason, the existence atdbility analysis, is readily extended to include states and
properties of LS found by this approach are not sensitivgperturbations with an azimuthal variation.
to the type and accuracy of the numerical methods used to From our analysis it follows that at any value bthe

find them.

Figure 3 showgAg| for the LS solutions as a function
of I for the monostable cas€ = 5.4, 6 = —1.2. For
comparison, the corresponding, values obtained from

number of LS must besven so the three branches in
Fig. 3 imply a fourth. We plot all four LS fod = 1.5

in Fig. 4. The two states about to merge and annihilate
around! = 1.54 are already quite similar, but the “fourth”

the simulations are shown, and there is clearly excellent quite different, with a weak central peak and a much

agreement.
Note that gpair of solutions appears dt= 1.1 in what

stronger ring than the others. Are these four the entire
set? No. Infact, fof = 1.5 there at leasten We note

appears to be a saddle-node bifurcation. It follows fromthat multiple LS have been found previously for the 2D

our association with curve crossings in tBeplane that

NLS [13].

LS are always created and destroyed in pairs, forming None of the previous investigations of 2D LS in optical
multiple branches coexistent with the flat backgroundcavities have gone beyond simulation. This work identi-

Figure 3 also shows a third branch, whichl @round 1.54

fies the existence of multiple branches for the first time,

collides with the OBH branch observed in the simulationsand shows the bifurcation scenario underlying the numeri-

precisely where that OBH seems to lose stability.
We have been able to infer the linear stability of all

cal observations of OBH. Our methods for the identifica-
tion and tracking of such states provide a powerful search

these solutions by a method somewhat similar to oumethod for LS in other systems, whether optical or not.
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T T T ] fusion, and so on [14]. Optical bistability, which is readily
H ] observable in these systems, requires parameters similar to
- ] those leading to OBH formation.

] Semiconductor microstructures lend themselves to
\ ' miniaturization, prompting the question of how small
\ these OBH can be made. Although the present model
i (1) relies on the paraxial approximation, recent work on
\\\ ] microfeedback structures [15] shows that nonparaxial
\\\

-
—

[E(N]
T

] localized states exist in a model closely similar to the
] present one. With the right materials, and bulletlike
] address pulses, there are prospects of wavelength-scale
_ ] parallel information storage and processing based on
i ] these OBH.
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FIG. 4. Plot of |[E| as a function ofr for four OBH found

as solutions of the time-independent system witk= —1.2,
I = 1.5, andC = 5.4.
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