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Optical Bullet Holes: Robust Controllable Localized States of a Nonlinear Cavity
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Stable localized states are predicted for a saturable absorber in an optical cavity. These “bul
holes” resemble 2D spatial solitons, and we demonstrate an optical memory array scheme based
them. A topological argument shows that one or more unstable localized states coexist with the sta
bullet hole.

PACS numbers: 42.65.Sf, 42.65.Tg
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Stable localized states are among the most interes
spatiotemporal structures exhibited by extended nonli
systems. If robust, they are also interesting—espec
in optics—as “bits” for parallel information storage a
processing. One could envisage such structures a
two-dimensional spatial analogs of the temporal solit
which promise to revolutionize long-distance telecomm
nications [1]. The flaw in a straightforward analogy is th
the nonlinear Schrödinger equation (NLS) has stable s
tons only insx, td, while in sx, y, td the “solitons” are unsta
ble, collapsing to a singularity [2]. Localized states ha
also been examined in Ginzburg-Landau equations, us
concentrating on “pulses” in just one spatial dimension

Here we present analytical and numerical evidence
the existence of stable two-dimensional (2D) localiz
states (LS) in a driven optical cavity containing a satura
absorber. In transmission these would appear as tran
ent disks on an absorbing background, most simply form
by aiming a short pulse of light at the target locatio
These two attributes prompt the term “optical bullet hol
(OBH). The long-term prospect of very fast, micron-sca
generation using “optical bullets” [4] is an additional mo
vation and an attractive prospect. Unlike real bullet ho
OBH can be moved around, and we demonstrate a
correcting control scheme for the address “bullets” in
OBH arrays.

While our results are founded on numerical evidence
take advantage of cylindrical symmetry to demonstra
simple, but robust, topologically based method for locat
the LS and demonstrating their stability. This appro
should be widely applicable in situations where 2D
are at issue, especially because it does not require
assumptions about near integrability of the govern
equations, or smallness of amplitude of the solution.

We study the mean-field ring cavity model for a tw
level medium [5,6]. In the good cavity limit, with fas
relaxation of the medium variables, the system may
described by a single partial differential equation in
complex fieldE,

≠tE ­ 2E

∑
s1 1 iud 1

2Cs1 2 iDd
jEj2 1 1 1 D2

∏
1 EI 1 ia=2E . (1)
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Hereu is the cavity mistuning parameter,EI is the external
pump field, D is the detuning of its frequency from
the medium resonance, and2C is the medium density
expressed as an optical absorptivity. The time has b
scaled to the decay rate of the intracavity field, and
fields to the square root of saturation intensity. T
diffraction parametera ­ Leffyk, wherek is the optical
wave vector andLeff is the effective cavity length [5].

The purely absorptivesD ­ 0d case has the advantag
of algebraic simplicity, and offers an example of structu
formation with absorptive nonlinearity [6]. We assum
this case below, except whereD appears explicitly. Then
time-independent, spatially homogeneous solutionsEs of
Eq. (1) obey

EI

Es
­ 1 1 iu 1

2C
1 1 jEsj2

, (2)

and, depending on the values ofu and C, the plane-
wave input-output characteristic may be either mon
stable or bistable. Previously, LS in this system ha
been predicted for the bistable case, where they w
termed “diffractive autosolitons” and viewed as mutua
trapped switching waves linking the two stable sta
[7], and, independently, for the special case of “nasc
bistability” [8]. Here we deal with stable OBH in
the monostable regime, demonstrating that they ar
phenomenon independent of bistability.

Es has a modulational instability (MI) forIS . S 1 1,
where I ­ jEsj

2 and S ­ 2CysI 1 1d2 is a saturation
parameter, as was first shown in [5]. We will b
concerned with the region below this MI threshold whe
a solitary wave structure can sit on astablehomogeneous
background.

The unstable wave vector at MI threshold has mag
tude Kc ­

p
2uya, which is real only ifu is negative.

The generated off-axis field then propagates at an an
which exactly compensates the cavity mistuning [6]. W
interpret the OBH in a similar vein: At its center the OB
profile allows the Laplacian term in (1) to cancel the m
tuning term, enabling resonant excitation and consequ
bleaching. The OBH acts a self-induced waveguide, w
the guidance provided by the (negative) loss profile—
D ­ 0 there is no linear or nonlinear index profile.
© 1996 The American Physical Society 1623
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We begin with results on creation and control of OB
in a full numerical simulation. We integrate the parti
differential equation (1) on a square grid using a sp
step method. The OBH are created by an initial Gauss
pulse of amplitude greater than, and width comparable
the solution sought. One can also track an OBH bran
across some parameter range.

The inset in Fig. 1 shows a typical OBH. Relativ
to the background fieldEs, it has a strong central pea
surrounded by a fairly shallow trough. Figure 1 itse
shows the OBH plotted in the complexE plane and
for comparison theE values of the coexisting hexagona
pattern. The similarity invites interpretation of thes
hexagons as a close-packed lattice of OBH. Also sho
is a cylindrically symmetric OBH solutionEsrd computed
directly from Eq. (1)—see below. The excellent mat
lends confidence in these results.

The number and location of OBH depends only on t
system’s history (address pulses), and not on the ste
input field, so they can be used as bits in an opti
memory. If N OBH can exist without undue interactio
in the available transverse area, one can divide it i
N pixels, each of which can contain just one or ze
OBH. This gives2N coexistent stable states, i.e., anN-bit
memory.

Pixel functions with some kind of “potential well”
attract OBH more effectively to its center and inhib
noise-induced drift. To this end, note the invariance
(1) under a constant phase shift of bothE and EI . This

FIG. 1. Plot in the complexE plane of the stable local-
ized state obtained from both two-dimensional simulatio
(diamonds) and radial integration (solid line) foru ­ 21.2,
C ­ 5.4, and I ­ 1.5. Also plotted is the coexistent stabl
hexagonal solution. The localized state solutions spiral
from, and eventually back into, the plane-wave fixed po
(bottom left). The inset in the top left showsjEj plotted in
the transverse plane for the stable OBH.
1624
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global gauge invariance can be extended to the cas
tilted wave fronts:EI ­ EI0 e

iK?x, E ­ FeiK?x, whereK
is a constant vector. From Eq. (1),F must obey

f≠t 1 s2aK ? ===dgF ­ 2 F 2 ifu 1 aK2gF 1 EI0

2
2Cs1 2 iDdF

1 1 D2 1 jFj2
1 ai=2F .

(3)

The time derivative has become a convective derivati
and so any static solution which exists for an aligned inp
sK ­ 0d should survive but move with velocity2aK on
misalignment. That misalignment leads to a lateral d
of optical patterns has been found in several syste
[9,10], but its connection to phase symmetry, and th
its generality, has not been stressed (though mentione
[11] in a laser model).

Consider now a more general space-dependent ph
modulation:

EI ­ EI0 e
ifsx,yd, E ­ Feifsx,yd. (4)

Under this local gauge transformation the damping a
detuning coefficients develop a spatial dependence,
the drift velocity of the solution is now given byv ­
2as===fd. In consequence, an OBH will move towards th
local maximum offsx, yd and remain there, and so a pix
array can be made iff has an array of maxima. In Fig. 2
we write the letters “IT” in such a four-by-four pixe
array. Large errors in address location were imposed
demonstrate that here the address tolerance is the p
pitch, typically several times larger than the island s
limiting the address tolerance of material pixels [12].

Figure 1 suggests that LS are stationary, localiz
cylindrically symmetric solutions of Eq. (1). We now
obtain and discuss such solutions, which we write in
form Esrd ­ Esf1 1 Asrdg, where evidentlyAsrd must
vanish at larger for LS. At the origin, appropriate
boundary conditions areAs0d ; A0 fi 0 and ≠rAs0d ;
Ar s0d ­ 0. More general “ring” LS withAs0d ­ 0 may
exist, but are not considered here.

FIG. 2. Writing the letters IT in localized states on a squa
array of pixels created by a phase modulated pump. The
part of the fieldE is shown at (a)t ­ 20 and (b) t ­ 800
cavity lifetimes. u ­ 21.2, EI ­ 6.65, andC ­ 5.4.
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An instructive approach to finding LS is to integra
Eq. (1) inward towardsr ­ 0, starting at a large radiusr1
where it can be linearized, and thusAsrd obeys

a=2

∑
A

Ap

∏
­

"
u 2 isS 1 1d iIS

2iIS u 1 isS 1 1d

#∑
A

Ap

∏
­ M

∑
A

Ap

∏
. (5)

The eigenvalues ofM are obviously relevant: They
are

L6 ­ u 6 ifsS 1 1d2 2 I2S2g1y2. (6)
BecauseS 1 1 . IS in the LS regime (below the MI
threshold), we can define

l ­

µ
L1

a

∂1y2

, Rel . 0 . (7)

Then a general solution of (6) which decays asr ! ` is
A`srd ­ BK0slrde2w 1 fBK0slrdgpew . (8)

K0 is a generalized Bessel function andw . 0 obeysS 1

1 ­ IS coshs2wd. B is an arbitrary complex constant, th
choice of which uniquely parametrizeslocalizedsolutions
to thenonlinearequation (1). Our task is to find value
of B which generate solutions obeying the LS bounda
condition atr ­ 0.

To accomplish this, we fixr1 appropriately (typically
r1 , 20

p
a), chooseB, initialize Asr1d and Ar sr1d us-

ing (8), and integrate (1) inward tor ­ r0 , 0. De-
fine fsBd ­ limr0!0 Ar sr0d. For most B, f diverges
logarithmically, but there will be curves of initial con
ditions in the complexB plane for which Ref ­ 0, and
others for which Imf ­ 0. Apart from the special case
B ­ 0 (which generates the flat solutionA ; 0), intersec-
tions of these curves define LS. For this case, and for man
other nonlinear spatiotemporal systems, these curves
continuous and reasonably well behaved. Their int
sections are therefore topological features, robust aga
small changes in parameters (such asI , C, D, and u in
the present case). For the same reason, the existence
properties of LS found by this approach are not sensit
to the type and accuracy of the numerical methods use
find them.

Figure 3 showsjA0j for the LS solutions as a function
of I for the monostable caseC ­ 5.4, u ­ 21.2. For
comparison, the correspondingA0 values obtained from
the simulations are shown, and there is clearly excell
agreement.

Note that apair of solutions appears atI ø 1.1 in what
appears to be a saddle-node bifurcation. It follows fro
our association with curve crossings in theB plane that
LS are always created and destroyed in pairs, form
multiple branches coexistent with the flat backgroun
Figure 3 also shows a third branch, which atI around 1.54
collides with the OBH branch observed in the simulation
precisely where that OBH seems to lose stability.

We have been able to infer the linear stability of a
these solutions by a method somewhat similar to o
ry
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FIG. 3. Bifurcation diagram showingjAsr ­ 0dj for the stable
OBH branch and the two unstable solution branches with wh
it collides, as a function ofI (u ­ 21.2, C ­ 5.4). The values
were calculated by radial integration of the time-independe
system. Also shown are the results from two-dimension
simulations indicating excellent agreement.

radial-integration search technique for finding the so
tions themselves. The search in this case is over
complex growth rateb of the perturbation. For all
LS discussed, the largest growth rate isreal and fol-
lows the pattern implied by Fig. 3, with only the mid
dle branch being stable. AtI ­ 1.5, the growth rates are
b ­ 10.14, 20.11, 10.90 for the lowest, middle, and up-
permost branches in Fig. 3, consistent with simulatio
Although we have dealt here only with cylindrically sym
metric states, the search method, and more importantly
stability analysis, is readily extended to include states a
perturbations with an azimuthal variation.

From our analysis it follows that at any value ofI the
number of LS must beeven, so the three branches in
Fig. 3 imply a fourth. We plot all four LS forI ­ 1.5
in Fig. 4. The two states about to merge and annihil
aroundI ­ 1.54 are already quite similar, but the “fourth
is quite different, with a weak central peak and a mu
stronger ring than the others. Are these four the en
set? No. In fact, forI ­ 1.5 there at leastten. We note
that multiple LS have been found previously for the 2
NLS [13].

None of the previous investigations of 2D LS in optic
cavities have gone beyond simulation. This work iden
fies the existence of multiple branches for the first tim
and shows the bifurcation scenario underlying the nume
cal observations of OBH. Our methods for the identific
tion and tracking of such states provide a powerful sea
method for LS in other systems, whether optical or n
1625
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FIG. 4. Plot of jEj as a function ofr for four OBH found
as solutions of the time-independent system withu ­ 21.2,
I ­ 1.5, andC ­ 5.4.

Admittedly, the “new” branches discovered here are
stable, but unstable states are important for understan
and interpreting system behavior. For example, the
stable lowest branch will determine the switching thre
old for the OBH memory array described earlier. Furth
this branch collides with the background solution precis
at the MI threshold. This is a general feature, which e
ables any stable branches to be found by continuous tr
ing of the unstable branches, starting from the known
threshold.

In this paper we predict the existence of stable, cont
lable optical bullet holes for a saturable absorber in an
tical cavity. These possess at least some of the desir
features of 2D spatial solitons, and we have demonstr
a simple but instructive method by which they can be m
nipulated and controlled to form a 2D optical memory a
ray. We have shown that these states have topolog
aspects which make them physically and numerically
bust, and therefore should be experimentally demonstra
An interesting possibility lies in semiconductor microstru
tures. Semiconductor lasers are describable by a m
which is essentially (1), with the linewidth enhanceme
factor playing the role ofD, and some extra features t
describe spontaneous emission, carrier dynamics and
1626
-
ing
n-
-

r,
ly
-

ck-
I

l-
p-
ble
ed
a-
-
cal
o-
le.
-
del
t

if-

fusion, and so on [14]. Optical bistability, which is readil
observable in these systems, requires parameters simil
those leading to OBH formation.

Semiconductor microstructures lend themselves
miniaturization, prompting the question of how sma
these OBH can be made. Although the present mo
(1) relies on the paraxial approximation, recent work
microfeedback structures [15] shows that nonparax
localized states exist in a model closely similar to th
present one. With the right materials, and bulletlik
address pulses, there are prospects of wavelength-s
parallel information storage and processing based
these OBH.
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