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Spiral Waves in Chaotic Systems
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Spiral waves are investigated in chemical systems whose underlying spatially homogeneous dynamics
is governed by a deterministic chaotic attractor. We show how the local periodic behavior in the vicinity
of a spiral defect is transformed to chaotic dynamics far from the defect. The transformation occurs
by a type of period doubling as the distance from the defect increases. The change in character of the
dynamics is described in terms of the phase space flow on closed curves surrounding the defect.

PACS numbers: 05.45.+b, 05.40.+j, 47.27.–i, 82.20.Wt
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Spiral waves are commonly observed in oscillatory a
excitable media [1]. They are often responsible for
patterns one sees in chemical systems and can give ri
spatiotemporal states such as defect-mediated turbul
whose erratic dynamics is characterized by the crea
and destruction of pairs of defects (spiral wave cores) w
opposite topological charge [2]. The topological cha
nt is defined by [3]

1
2p

I
=fsrd ? dl ­ nt , (1)

where fsrd is the local phase and the integral is tak
along a closed curve surrounding the defect.

In this Letter we examine the nature of such sp
wave states in chemical media where the underly
dynamics is itself chaotic. More specifically, we consid
systems where the dynamics of the spatially homogene
system, described by ordinary differential equations,
a deterministic chaotic attractor which arises throu
a period-doubling cascade. Consequently, the simp
models for the dynamics considered here require at l
three phase space variables in contrast to the two-var
descriptions of excitable or oscillatory media [1]. W
examine how this local deterministic chaos can supp
spiral waves in the spatially distributed medium. W
also show that systems of this kind can exhibit defe
mediated turbulence and demonstrate that the underl
local temporal dynamics is quite different from that
simple oscillatory media.

Consider the Willamowski-Rössler [4] reactio
diffusion equations,

≠cxsr, td
≠t

­ k1cx 2 k21c2
x 2 k2cxcy 1 k22c2

y

2 k4cxcz 1 k24 1 D=2cx ,

≠cysr, td
≠t

­ k2cxcy 2 k22c2
y 2 k3cy

1 k23 1 D=2cy ,

≠czsr, td
≠t

­ 2 k4cxcz 1 k24 1 k5cz

2 k25c2
z 1 D=2cz , (2)
0031-9007y96y76(10)y1619(4)$10.00
d
e
e to
nce
on
th
e

n

l
g
r
us

as
h
st

ast
ble

rt
e
t-
ing

where ctsr, td is the local concentration of speciest ­
x, y, z [we have suppressed the arguments ofct on the
right hand side of (2)] andk6i are rate coefficients tha
contain the concentrations of species that are fixed
maintain the system out of equilibrium. The diffusio
coefficients of all three species are equal toD.

Suppose the system is spatially homogeneous and
dynamics is described by the ordinary differential equ
tions based on the reactive terms in (2). The result
mass action rate law supports a chaotic attractor that ar
by a period-doubling cascade [4,5]. The chaotic attra
tor in thescxcyczd phase space is oriented so that its pr
jection onto thescx , cyd plane clearly exhibits the (folded
phase space flow around the unstable fixed point (foc
cp ­ scp

x , cp
y, cp

zd which spawned the attractor. Conse
quently, to define the phase anglef we change variables
from c ­ scx , cy, czd to a cylindrical coordinate system
sr, f, zd with origin atcp andz directed alongcz [6]. As
the system undergoes a sequence of period-doubling
furcationsf increases by2p2n with each period of the
oscillation, where2n, n ­ 1, 2, 3, . . . , `, is the periodicity
of the attractor. For period-1 oscillations the other tw
variables can be uniquely parametrized by the phasef,
r ­ rsfd, z ­ zsfd but this is no longer true after the
first period doubling bifurcation. However, this variab
suffices for the determination of the location and charge
a topological defect in the spatially-distributed medium.

Next, we consider the spatially-distributed chaotic sy
tem. Figure 1 is a plot of the local phase anglefsrd in
a two-dimensional medium obtained by numerically i
tegrating (2) [7]. One sees a complex pattern of spi
defects whose number varies with time. All defects ha
topological chargent ­ 61. The system evolved from
an initial state with a single defect in the center of th
system [8]. In the early stages of the evolution the ov
all number of defects grows rapidly and then, depend
on the ratio of the diffusion length to the system size,
either saturates monotonously or rises to a maximum
decreases to some stationary average value about whi
fluctuates. Note the different rates of evolution in certa
parts of the medium. While the dynamics has an alm
periodic character in the regions subject to the organiz
© 1996 The American Physical Society 1619
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FIG. 1. Defect-mediated turbulence in a chaotic mediu
The local phasefsx, y, td is shown as gray shades in th
spatial xy plane. Defects can be located as the termini
the white, equiphase contour lines. The time interval betw
frames corresponds to one period of the spiral rotation. T
increases from left to right and top to bottom. Rate parame
arek1 ­ 31.2, k21 ­ 0.2, k2 ­ 1.572, k22 ­ 0.1, k3 ­ 10.8,
k23 ­ 0.12, k4 ­ 1.02, k24 ­ 0.01, k5 ­ 16.5, and k25 ­
0.5. The integration time step isDt ­ 5 3 1024 and the scaled
diffusion coefficient isDDtysDxd2 ­ 1023. Periodic boundary
conditions are used.

influence of large, well-established spirals (upper left a
lower right corners of the panels) the evolution is mu
faster in domains where vortex-antivortex birth and a
nihilation take place (the vortex-antivortex pair seen
the lower left corners of the first two panels disappe
as time increases). From visual inspection of the in
vidual snapshots of the local phase in this figure, it
difficult to detect differences between this type of defe
mediated turbulence and that in oscillatory media. N
ertheless, fundamentally different kinds of local dynam
consisting of perturbed period-doubled cycles and cha
motion underlie and influence the dynamics of the sp
structures seen in this figure.

The very fact that stable spiral waves exist in a medi
with underlying chaotic dynamics demonstrates that
reaction-diffusion kinetics in the vicinity of the spira
centers is by no means chaotic—the spiral dynam
locally suppresses the chaos [9]. However, the beha
in those parts of the medium which are sufficiently f
from any topological defect shows neither temporal n
spatial order.

Thus we must consider how the local, period-1, s
tiotemporal dynamics near a defect is transformed i
complex chaotic dynamics far from a defect. For this p
pose we now examine the local dynamics in a refere
frame that is centered on one of the defects. We den
the time-dependent position of a defect in thexy plane as
rdstd and work in a polar coordinate systemsr , ud cen-
1620
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tered onrdstd. The local concentration fields may now
be expressed in these coordinates:csr, u, td. To investi-
gate this local dynamics in detail we choose the diffusi
coefficient to be sufficiently large and use no-flux boun
ary conditions so that the medium supports a single sp
wave that persists for long periods of time. Panels (a
(c) of Fig. 2 show trajectories in the concentration pha
spacecsr, u, td for several values ofr along a ray ema-
nating from the defect oriented at an angleu ­ s3y4dp.
One observes a period-doubling progression from a p
turbed period-1 limit cycle near the defect, to perturb
period-2 and period-4 attractors as the distance increa
[10]. This basic pattern of period doublings is observ
for all angles but the circular symmetry of the system
not maintained. The origin of this effect will be discusse
below when the dynamics on closed paths surrounding
defect is examined.

Variants of this phenomenon were seen in the defe
mediated turbulent regime when the dynamics was o
served in a coordinate frame centered on a moving def
Far enough from the defect, locally one finds chaotic d
namics [cf. Fig. 2(d)] which is suppressed in the vicini

FIG. 2. Phase space trajectoriescsr, u, td for k2 ­ 1.567 and
the other rate parameters as in Fig. 1 at fixedu ­ s3y4dp
for three values ofr: (a) period-1 limit cycle atr ­ 0.194;
(b) period-2 orbit atr ­ 0.206, and (c) period-4 orbit atr ­
0.344. The scaled diffusion coefficient isDDtysDxd2 ­ 0.01
and no-flux boundary conditions are used. (d) Local chao
dynamics at a point in Fig. 1 far removed from a defect.
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of the defect. Viewed from the defect, asr increases,
chaos appears by a truncated period-doubling casc
similar to that seen in stochastically perturbed versions
flows and maps with no spatial degrees of freedom [1
We are now faced with the question of how the locally p
riodic dynamics can transform to locally chaotic dynam
as r varies and maintain the spiral wave structure in
vicinity of the spiral core.

The nature of this transformation can be deduced fr
the temporal behavior ofcsr, u, td for some fixed value
of r, sayr 0. Suppose the defect hasnt ­ 11 so that the
phasef must change by2p asu varies through2p, and
r 0 is such that the local dynamics atsr 0, ud is a period-2n

attractor. Thus even though the phase space trajecto
an individual point on the circle with radiusr 0 may be a
period-2n attractor, the set of pointsS ­ hcsr , u, td : 0 #

u # 2p , r ­ r 0, t ­ t1j must form a closed curveS ­
S scd which loops once aroundcp in thec phase space. Th
curveS cannot span the period-2n attractor which loopscp

2n times in the course of a cycle. However,S deforms as
time evolves in such a manner that the trajectory of a po
on S may be that of a period-2n orbit, but the continuity
of S is maintained throughout the evolution.

To make the nature of this deformation ofS clear,
consider Fig. 3, which showsS ­ hcsr , u, td : 0 # u #

2p , r ­ 0.219, tj for t ­ t1, t2, t3, t4 where r is mea-
sured in the fractions of the system size. Forr ­ 0.219
and almost allu the local attractor is a period-2 limit cy
cle (P-2) with a small inner loop and a large outer loo
For reference, one period of P-2 is shown in each pane
Fig. 3 as a light solid line. The filled diamonds are poin
on S . One sees that at any fixed time instant,t ­ ti, S

is a simple closed curve in thec phase space. This curv
deforms as time progresses as follows: In panel (a),S is
a large closed curve that lies on the outer loop of P-2.
time increases, panel (b),S deforms so that its upper lef
portion lies on the inner loop of P-2 and smoothly joins
that portion ofS remaining on the outer loop. In pane
(c) at timet3 one sees that deformation is complete andS
lies entirely along the inner loop of P-2. Finally, in pan
(d), S expands so that when the expansion is comp
it again lies along the outer loop of P-2 as in panel (
Analogous but more complicated versions of such de
mations are seen for higher periodic orbits.

We have observed above that in the course of
dynamics the curveS joins portions of the inner and oute
loops of the P-2 attractor [panel (c) in Fig. 3]. In vie
of the continuity of the medium, this implies that the
must be a point on a circle withr ­ r 0 where the period-
2 bands merge and the dynamics becomes effecti
period-1. This accounts for the above-mentioned bro
circular symmetry and the fact that the period-doubli
progression observed along rays may exhibit differ
characteristics due to band merging at certain anglesu.

As one moves from the vicinity of a defect to th
bulk medium the nature of the spatiotemporal dynam
de,
of
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FIG. 3. Plots ofS in thec phase space forr ­ 0.219 for four
different timesti : (a) t1 ­ 0.0; (b) t2 ­ 0.209; (c) t3 ­ 0.326;
and (d) t4 ­ 0.721. Time is expressed in the fractions o
average time period of P-2.S is shown as filled diamonds
while the solid curve represents one period of the P-2 orbi
fr ­ 0.219, u ­ s3y4dpg. The simulation conditions are th
same as in Fig. 2.

may be summarized as follows: Close to the def
the local dynamics is approximately periodic and asr
increases a critical value ofr is reached where the loca
dynamics undergoes a “bifurcation” to period-2. Th
process continues until a chaotic attractor is obtain
As in noisy maps and flows this spatial period-doubli
sequence truncates at some finite value beyond whic
noisy chaotic attractor is found. The number of noi
period doublings that may be observed is a function of
system parameters, for example the diffusion coefficie
and the characteristic distance between defects or betw
a defect and the boundaries.

The phenomena described here should exist in any
tem exhibiting a period-doubling sequence to chaos a
be experimentally observable, for example, in chemi
reactions carried out in continuously-fed unstirred rea
tors [12]. If conditions are adjusted so that the spatial
homogeneous system supports a chaotic attractor,
known in the Belousov-Zhabotinsky reaction [13], the
suitable initial conditions, similar to those that are com
monly used to initiate spiral waves in excitable med
1621
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should produce the spiral wave states described here. T
ically, in experiments on well-stirred systems, the peri
doubling sequence is often difficult to resolve since it o
curs in a very narrow parameter range. This does not
ply that the period doubling that occurs as one moves aw
from the defect is confined to a narrow spatial domain.
observe the phenomena described in this paper it is o
necessary to place the system in the chaotic regime, or
it. The spiral structure will locally organize the dynamic
and the passage to the chaotic dynamics far from the de
should be observable.

Our work suggests the possibility of a variety o
phenomena whose existence depends on at least t
phase space variables. Questions concerning the natu
defect dynamics and interactions in chaotic media rem
to be explored.
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