VOLUME 76, NUMBER 10 PHYSICAL REVIEW LETTERS 4 MRCH 1996

Spiral Waves in Chaotic Systems
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Spiral waves are investigated in chemical systems whose underlying spatially homogeneous dynamics
is governed by a deterministic chaotic attractor. We show how the local periodic behavior in the vicinity
of a spiral defect is transformed to chaotic dynamics far from the defect. The transformation occurs
by a type of period doubling as the distance from the defect increases. The change in character of the
dynamics is described in terms of the phase space flow on closed curves surrounding the defect.

PACS numbers: 05.45.+b, 05.40.+j, 47.27.—i, 82.20.Wt

Spiral waves are commonly observed in oscillatory andvhere ¢, (r, t) is the local concentration of species=
excitable media [1]. They are often responsible for thex,y,z [we have suppressed the argumentscpfon the
patterns one sees in chemical systems and can give risetight hand side of (2)] and-; are rate coefficients that
spatiotemporal states such as defect-mediated turbulencentain the concentrations of species that are fixed to
whose erratic dynamics is characterized by the creatiomaintain the system out of equilibrium. The diffusion
and destruction of pairs of defects (spiral wave cores) witltoefficients of all three species are equabto
opposite topological charge [2]. The topological charge Suppose the system is spatially homogeneous and the

n, is defined by [3] dynamics is described by the ordinary differential equa-
1 tions based on the reactive terms in (2). The resulting

2 quﬁ(r) ndl=n,, (1) mass action rate law supports a chaotic attractor that arises
where ¢ (r) is the local phase and the integral is takenPY @ period-doubling cascade [4,5]. The chaotic attrac-
along a closed curve surrounding the defect. tor in the(cccyc;) phase space is oriented so that its pro-

In this Letter we examine the nature of such spirall€ction onto théc,, ¢,) plane clearly exhibits the (folded)
wave states in chemical media where the underlyind’hase space flow a}round the unstable fixed point (focus)
dynamics is itself chaotic. More specifically, we consider¢” = (ci. ¢y cZ) which spawned the attractor. Conse-
systems where the dynamics of the spatially homogeneouiently, to define the phase anglewe change variables
system, described by ordinary differential equations, hafom ¢ = (cx, ¢y, ¢;) to a cylindrical coordinate system
a deterministic chaotic attractor which arises througH# ¢-2) with origin atc™ andz directed along:; [6]. As
a period-doubling cascade. Consequently, the simpledf€ System undergoes a sequence of period-doubling bi-
models for the dynamics considered here require at lea¢rcations¢ increases by 2" with each period of the
three phase space variables in contrast to the two-variabRScillation, where”, n = 1,2,3,..., , is the periodicity
descriptions of excitable or oscillatory media [1]. We of t_he attractor. For period-1 oscHIanns the other two
examine how this local deterministic chaos can supporYariables can be uniquely parametrized by the phase
spiral waves in the spatially distributed medium. We? = p(¢#), z = z(¢) but this is no longer true after the
also show that systems of this kind can exhibit defectfirst period doubling bifurcation. However, this variable
mediated turbulence and demonstrate that the underlyingffices for the determination of the location and charge of
local temporal dynamics is quite different from that in a topological defect in the spatially-distributed medium.

simple oscillatory media. Next, we consider the spatially-distributed chaotic sys-
Consider the Willamowski-Rossler [4] reaction- €m- Figure 1 is a plot of the local phase angiér) in -
diffusion equations, a two-dimensional medium obtained by numerically in-
tegrating (2) [7]. One sees a complex pattern of spiral
dcy(r, 1) ) ’ . o
— = KiCx — K—1Cy — KaCxCy T K-2Cy defectslwhose number varies with time. All defects have
topological charge:, = =1. The system evolved from
— K4CxCp t Ky + DVc, , an initial state with a single defect in the center of the
de, (r, 1) , system [8]. In the early stages c_)f the evolution the over-
- = K2CxCy — K-2Cy = K3Cy all number of defects grows rapidly and then, depending
9t on the ratio of the diffusion length to the system size, it
+ k3 + szcy , either saturates monotonously or rises to a maximum and
dc. (v, 1) decreases to some stationary average value about which it
— = = — K4CyC; + K_y *+ Ksc, fluctuates. Note the different rates of evolution in certain
ot parts of the medium. While the dynamics has an almost
- K,5c§ + DV?c, , (2) periodic character in the regions subject to the organizing
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' ‘ tered onr,(z). The local concentration fields may now
be expressed in these coordinateg:, #,1). To investi-
gate this local dynamics in detail we choose the diffusion
coefficient to be sufficiently large and use no-flux bound-
ary conditions so that the medium supports a single spiral
wave that persists for long periods of time. Panels (a)—

J (c) of Fig. 2 show trajectories in the concentration phase
~ spacec(r, 6,t) for several values of along a ray ema-

‘ ’ nating from the defect oriented at an angle= (3/4).

One observes a period-doubling progression from a per-
_ turbed period-1 limit cycle near the defect, to perturbed
period-2 and period-4 attractors as the distance increases
[10]. This basic pattern of period doublings is observed
for all angles but the circular symmetry of the system is
not maintained. The origin of this effect will be discussed
-. ”~ below when the dynamics on closed paths surrounding the

FIG. 1. Defect-mediated turbulence in a chaotic medium.defeCt, s examin.ed. .
The local phases(x,y,?) is shown as gray shades in the Variants of this phenomenon were seen in the defect-

spatial xy plane. Defects can be located as the termini ofmediated turbulent regime when the dynamics was ob-
the white, equiphase contour lines. The time interval betweeserved in a coordinate frame centered on a moving defect.
frames corresponds to one period of the spiral rotation. Timg=g, enough from the defect, locally one finds chaotic dy-

increases from left to right and top to bottom. Rate parameter : : S . o
arex; =312, k1 = 02, k> = 1.572, k> = 0.1, k3 = 10.8, hamics [cf. Fig. 2(d)] which is suppressed in the vicinity

K3 = 0.12, Kq = 1.02, K_4 = 0.01, K; = 16.5, and K-5 =

0.5. The integration time step it = 5 X 10~* and the scaled A
diffusion coefficient isDAt/(Ax)?> = 1073. Periodic boundary a
conditions are used. C

30 2

201

influence of large, well-established spirals (upper left and
lower right corners of the panels) the evolution is much

faster in domains where vortex-antivortex birth and an-

nihilation take place (the vortex-antivortex pair seen in

the lower left corners of the first two panels disappears
as time increases). From visual inspection of the indi-
vidual snapshots of the local phase in this figure, it is

difficult to detect differences between this type of defect-

mediated turbulence and that in oscillatory media. Nev-
ertheless, fundamentally different kinds of local dynamics
consisting of perturbed period-doubled cycles and chaotic
motion underlie and influence the dynamics of the spiral
structures seen in this figure.

The very fact that stable spiral waves exist in a medium
with underlying chaotic dynamics demonstrates that the
reaction-diffusion kinetics in the vicinity of the spiral
centers is by no means chaotic—the spiral dynamics
locally suppresses the chaos [9]. However, the behavior
in those parts of the medium which are sufficiently far
from any topological defect shows neither temporal nor
spatial order.

Thus we must consider how the local, period-1, spa-
tiotemporal dynamics near a defect is transformed intd-IG. 2. Phase space trajectories, 6, ¢) for x, = 1.567 and
complex chaotic dynamics far from a defect. For this purthe other rate parameters as in Fig. 1 at fix¢e= (3/4)7
pose we now examine the local dynamics in a referencl! three values ofr: (@) period-1 limit cycle at- = 0.194;

- ) period-2 orbit atr = 0.206, and (c) period-4 orbit at =
frame that is centered on one of the defects. We denoig344 The scaled diffusion coefficient BA/(Ax)? = 0.01

the time-dependent position of a defect in theplane as  and no-flux boundary conditions are used. (d) Local chaotic
r (r) and work in a polar coordinate syste(n, 6) cen-  dynamics at a point in Fig. 1 far removed from a defect.
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of the defect. Viewed from the defect, asincreases,

chaos appears by a truncated period-doubling cascade, c a
similar to that seen in stochastically perturbed versions of 30 =

flows and maps with no spatial degrees of freedom [11]. 20

We are now faced with the question of how the locally pe- 10

riodic dynamics can transform to locally chaotic dynamics
asr varies and maintain the spiral wave structure in the
vicinity of the spiral core.

The nature of this transformation can be deduced from 30
the temporal behavior of(r, 6, ) for some fixed value 201
of r, sayr’. Suppose the defect hags = +1 so that the 10f
phase¢ must change b2# asé varies througt27, and [
r"is such that the local dynamics @, #) is a period2” c
attractor. Thus even though the phase space trajectory of 30,
an individual point on the circle with radius may be a sl

period2" attractor, the set of pointS = {c(r,60,1): 0 =
0 <2m, r =r', t = 1,} must form a closed curv = 101
S (e¢) which loops once arounef in thec phase space. The
curveS cannot span the periat- attractor which loops*
2" times in the course of a cycle. Howevérdeforms as
time evolves in such a manner that the trajectory of a point
on S may be that of a perio@? orbit, but the continuity
of S is maintained throughout the evolution.
To make the nature of this deformation 6F clear,
consider Fig. 3, which showS = {¢(r,0,1): 0 =6 =
27, r = 0.219, t} for t = 11,1, 13,14 Wherer is mea-
sured in the fractions of the system size. For 0.219
and almost alp the local attractor is a period-2 limit cy- FIG. 3. Plots ofS in thec phase space for = 0.219 for four
cle (P-2) with a small inner loop and a large outer loop.different timesr;: (&) 1, = 0.0; (b) » = 0.209; (c) 3 = 0.326;
For reference, one period of P-2 is shown in each panel @9 (d) s = 0.721. Time is expressed in the fractions of
. . . . - .~ average time period of P-2.5 is shown as filled diamonds
Fig. 3 as a light solid line. The, f'"ed_ dlar_nonds are pointsyile the solid curve represents one period of the P-2 orbit at
on S. One sees that at any fixed time instant: #;, S [ = 0.219,60 = (3/4)=]. The simulation conditions are the
is a simple closed curve in thephase space. This curve same as in Fig. 2.
deforms as time progresses as follows: In panel fals
a large closed curve that lies on the outer loop of P-2. As
time increases, panel (hy, deforms so that its upper left may be summarized as follows: Close to the defect
portion lies on the inner loop of P-2 and smoothly joins tothe local dynamics is approximately periodic and ras
that portion of S remaining on the outer loop. In panel increases a critical value af is reached where the local
(c) at timez; one sees that deformation is complete &hd dynamics undergoes a “bifurcation” to period-2. This
lies entirely along the inner loop of P-2. Finally, in panel process continues until a chaotic attractor is obtained.
(d), S expands so that when the expansion is completés in noisy maps and flows this spatial period-doubling
it again lies along the outer loop of P-2 as in panel (a)sequence truncates at some finite value beyond which a
Analogous but more complicated versions of such defornoisy chaotic attractor is found. The number of noisy
mations are seen for higher periodic orbits. period doublings that may be observed is a function of the
We have observed above that in the course of theystem parameters, for example the diffusion coefficient,
dynamics the curvé joins portions of the inner and outer and the characteristic distance between defects or between
loops of the P-2 attractor [panel (c) in Fig. 3]. In view a defect and the boundaries.
of the continuity of the medium, this implies that there The phenomena described here should exist in any sys-
must be a point on a circle with = r’ where the period- tem exhibiting a period-doubling sequence to chaos and
2 bands merge and the dynamics becomes effectivelye experimentally observable, for example, in chemical
period-1. This accounts for the above-mentioned brokemeactions carried out in continuously-fed unstirred reac-
circular symmetry and the fact that the period-doublingtors [12]. If conditions are adjusted so that the spatially-
progression observed along rays may exhibit differenhomogeneous system supports a chaotic attractor, well
characteristics due to band merging at certain anjles  known in the Belousov-Zhabotinsky reaction [13], then
As one moves from the vicinity of a defect to the suitable initial conditions, similar to those that are com-
bulk medium the nature of the spatiotemporal dynamicsnonly used to initiate spiral waves in excitable media,
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should produce the spiral wave states described here. Typ[] One may also use a spherical polar coordinate system
ically, in experiments on well-stirred systems, the period centered orc® in which case the azimuthal angle can be
doubling sequence is often difficult to resolve since it oc-  used to define the phase.
curs |n a Very narrow parameter range Thls does not |m_[7] The Simu|ati0nS were Carried out Using bOth eXp|ICIt Euler
ply that the period doubling that occurs as one moves away me(;hzds_vvatg:[;m_e ;nd fgf‘fe stepsﬁgf =I 1077 — 1?{ !
from the defect is confined to a narrow spatial domain. To ~ 2"¢ 2+ = 10 X » respeclively, as Well as
observe the phenomena described in this paper it is only split-step Fourier tra_nsform methods for periodic and no-
. . - flux boundary conditions.
rlecessary to place the Sy,Stem inthe Cha_onc regime, O,r ne%] Initial conditions were chosen to favor the formation of
it. The spiral structure will Ioc_:aIIy organize the dynamics, a topological defect. The,(r) and c,(r) concentrations
and the passage to the chaotic dynamics far from the defect \ere varied to produce spatially orthogonal gradients
should be observable. while the ¢, concentration was fixed at.(r) = ¢}, so
Our work suggests the possibility of a variety of that a defect was introduced in the center of the spatial
phenomena whose existence depends on at least three domain. It is possible to choose smoothly varying phase
phase space variables. Questions concerning the nature of conditions so no defects form; thus the defect-mediated
defect dynamics and interactions in chaotic media remain__ turbulent state coexists with simple phase turbulence.
to be explored. [9] Such behavior is seen in coupled map lattices with chgotlc
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