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Manifestation of Classical Bifurcation in the Spectrum of the Integrable Quantum Dimer

S. Aubry
Laboratoire Léon Brillouin, CEN Saclay, 91191 Gif-sur-Yvette, France

S. Flach, K. Kladko, and E. Olbrich
Max-Planck-Institute for Physics of Complex Systems, Bayreuther Strasse 40 H.16, D-01187 Dresden, Germ

(Received 13 October 1995)

We analyze the classical and quantum properties of the integrable dimer problem. The classical
version exhibits exactly one bifurcation in phase space, which gives birth to permutational symmetry
broken trajectories and a separatrix. The quantum analysis yields all tunneling rates (splittings)
in leading order of perturbation. In the semiclassical regime the eigenvalue spectrum obtained by
numerically exact diagonalization allows one to conclude about the presence of a separatrix and a
bifurcation in the corresponding classical model.
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The problem of correspondence between classical
quantum-mechanical properties of nonlinear systems
currently an object of wide interest [1]. One interestin
topic concerns Hamiltonian systems with a given symm
try (e.g., some permutational symmetry), where class
trajectories exist which are not invariant under the cor
sponding symmetry operation. This topic appears in
alyzing selective bond excitation in chemistry and in t
quantization of discrete breathers [2].

We consider an integrable system with two degre
of freedom (TDF), whose classical version exhibits e
actly one bifurcation (of periodic orbits) and separatr
manifold. This manifold cuts the phase space into th
parts—one with invariant trajectories, and two with no
invariant trajectories, where the corresponding symme
is the permutational one. By varying a single paramete
is possible to “switch” between these phase space part
crossing the separatrix. It appears natural to expect in
quantum case a drastic change in the splittings of ene
levels (which should be zero in the classical limit for th
noninvariant phase space parts). However, the splitti
are nonzero for any given value of the control parame
The only way to avoid contradiction between the clas
cal and quantum cases is to assume that the quantum
splittings tend to a steplike function (of, e.g., the level p
number) in the classical limit. The step should occur
the position of the classical separatrix. This problem c
be coined alsodynamical tunnelingthrough a separatrix
There exist studies of the influence of classical chaos
dynamical tunneling [3]. This paper is an extension
previous studies on classical and quantum properties
the dimer system [4–6].

We are able to trace the splittings of the level pa
using quantumperturbation methods. We consider th
quasiclassical regime and show that the step ind
occurs. Therefore we are able to extract informati
about the classical separatrix and bifurcation. Furth
we show that the quantum density of states (the sec
0031-9007y96y76(10)y1607(4)$10.00
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integral of motion is fixed) exhibits a sharp maximum
the separatrix energy. By calculating the correspond
classical quantity (with the help of Weyl’s formula) w
find that this singularity appears due to the integrati
over a part of the separatrix manifold which includes
hyperbolic isolated orbit.

Let us consider the integrable dimer model with Ham
tonian [4]

H ­
1
2

sP2
1 1 P2

2 1 X2
1 1 X2

2 d

1
1
8

fsP2
1 1 X2

1 d2 1 sP2
2 1 X2

2 d2g

1
C
2

sX1X2 1 P1P2d . (1)

Here P1,2, X1,2 are canonically conjugated momenta a
positions of two degrees of freedom. System (1)
integrable, because the classical Poisson bracket of

B ­ P2
1 1 P2

2 1 X2
1 1 X2

2 (2)

with H vanishes. Further (1) is invariant under perm
tation of indices. In the following we list the classica
properties of (1) derived in [4].

With C ­ s1y
p

2dsX 1 iPd (1) becomes

H ­ Cp
1C1 1 Cp

2C2 1
1
2

fsCp
1C1d2 1 sCp

2C2d2g

1 CsCp
1C2 1 Cp

2C1d . (3)

The equations of motion becomeÙC1,2 ­ i≠Hy≠C
p
1,2.

Isolated periodic orbits (IPO) satisfy the relatio
gradH jj gradB. Let us parametrize the phase spa
of (3) with C1,2 ­ A1,2eif1,2 , A1,2 $ 0. It follows A1,2

time independent andf1 ­ f2 1 D with D ­ 0, p

and Ùf1,2 ­ v time independent. Solving the algebra
equations for the amplitudes of the IPOs we obtain

I : A2
1,2 ­

1
2

B , D ­ 0 , v ­ 1 1 C 1
1
2

B , (4)
© 1996 The American Physical Society 1607
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II : A2
1,2 ­

1
2

B , D ­ p , v ­ 1 2 C 1
1
2

B , (5)

III : A2
1 ­

1
2

B

√
1 6

q
1 2 4C2yB2

!
,

D ­ 0 , v ­ 1 1 B . (6)

IPO III corresponds to two elliptic solutions which brea
the permutational symmetry. IPO III exists forB $ Bb

with Bb ­ 2C and occurs through a bifurcation from IPO
I [4]. The corresponding separatrix manifold is unique
defined by the energy of IPO I at a given value
B $ Bb. This manifold separates three regions in pha
space—two with symmetry broken solutions, each o
containing one of the IPOs III, and one with symmet
conserving solutions containing the elliptic IPO II. Th
separatrix manifold itself contains the hyperbolic IPO
For B # Bb only two IPOs exist—IPO I and II, with
both of them being of elliptic character. Remarkab
there exist no other IPOs, and the mentioned bifurcat
and separatrix manifold are the only ones present in
classical phase space of (1) [4].

To conclude the analysis of the classical part,
calculate the energy properties of the different phase sp
parts separated by the separatrix manifold. First it
straightforward to show that the IPOs (4)–(6) correspo
to maxima, minima, or saddle points of the energy in t
allowed energy interval for a given value ofB, with no
other extrema or saddle points present [4]. It follows

E1 ­ HsIPO Id ­ B 1
1
4

B2 1 CB , (7)

E2 ­ HsIPO IId ­ B 1
1
4

B2 2 CB , (8)

E3 ­ HsIPO IIId ­ B 1
1
2

B2 1 C2. (9)

For B , Bb we haveE1 . E2 (IPO I maximum, IPO
II minimum). For B $ Bb it follows E3 . E1 . E2
(IPO III maxima, IPO I saddle, IPO II minimum). If
B , Bb, then all trajectories are symmetry conserving.
B $ Bb, then trajectories with energiesE1 , E # E3 are
symmetry breaking, and trajectories withE2 # E # E1

are symmetry conserving.
The quantum eigenvalue problem can be properly a

lyzed in second quantization, which amounts to replac
the complex functionsC, Cp in (3) with the boson anni-
hilation and creation operatorsa, ay with standard com-
mutation relations [to enforce invariance under exchan
C , Cp the substitution has to be done after rewritin
CCp ­

1
2 sCCp 1 CpCd]:

H ­
5
4

1
3
2

say
1 a1 1 a

y
2 a2d 1

1
2

fsay
1 a1d2 1 say

2 a2d2g

1 Csay
1 a2 1 a

y
2 a1d . (10)

Note that h̄ ­ 1 here, so the eigenvaluesb of B ­
a

y
1 a1 1 a

y
2 a2 are integer numbers. SinceB commutes

with H, we can diagonalize the Hamiltonian in the bas
1608
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of eigenfunctions ofB. Each value ofb spans a subspace
of dimensionb 1 1 in the space of eigenfunctions. Thes
eigenfunctions are products of the number statesjnl of
each degree of freedom and can be characterized b
symbol jn, ml, where we haven bosons on site 1 and
m bosons on site 2. For a given valueb it follows
m ­ b 2 n. So we can actually label each state b
just one numbern: jn, b 2 nl ; jnd. Consequently, the
eigenvalue problem at fixedb amounts to diagonalizing
the matrixHnm with

Hnm ­

8>>><>>>:
5
4 1

3
2 b 1

1
2 fn2 1 sb 2 nd2g , n ­ m ,

C
p

nsb 1 1 2 nd , n ­ m 1 1 ,
C

p
sn 1 1dsb 2 nd , n ­ m 2 1 ,

0 , else ,

(11)

and n, m ­ 0, 1, 2, . . . , b. Notice that the matrixHnm

is a symmetric band matrix. The additional symmet
Hnm ­ Hsb2nd,sb2md is a consequence of the permut
tional symmetry ofH.

For C ­ 0 the matrix Hnm is diagonal, with the
property that each eigenvalue is doubly degenera
(with exception of the statejby2d for even values of
b). The classical phase space contains only symme
broken trajectories, with the exception of IPO II and th
separatrix with IPO I (in fact, in this limit the separatri
manifold is nothing but a resonant torus containing bo
IPOs I and II). So with the exception of the separatr
manifold, all tori break permutational symmetry an
come in two groups separated by the separatrix. Th
quantizing each group will lead to pairs of degenerat
eigenvalues—one from each group. There is a cl
correspondence to the spectrum of the diagonal (C ­ 0)
matrix Hnm. The eigenvaluesH00 ­ Hbb correspond to
the quantized IPOs III. With increasingn the eigenvalues
Hnn ­ Hsb2nd,sb2nd correspond to quantized tori furthe
away from the IPO III. Finally the states withn ­ by2
for even b or n ­ sb 2 1dy2 for odd b are tori most
close to the separatrix. Switching the side diagon
on by increasingC will lead to a splitting of all pairs
of eigenvalues. In the case of small values ofb these
splittings have no correspondence to the classical sys
properties. However, in the limit of largeb we enter
the semiclassical regime, and due to the integrability
the system eigenfunctions should correspond to tori in
classical phase space which satisfy the Einstein-Brillou
Keller quantization rules [1].

IncreasingC from zero will lead to a splittingDEn of
the eigenvalue doublets ofC ­ 0. In other words, we
find pairs of eigenvalues, which are related to each ot
through the symmetry of their eigenvectors and (for sm
enoughC) through the small value of the splitting. Let u
calculate the splittings in leading perturbation order. Th
is done by applying standard perturbation theory to ea
of the statesjnd andjb 2 nd and calculating the perturbed
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eigenvectors until the matrix element of the two perturb
eigenvectors withH does not vanish. Because of the ba
structure of our matrix the final result has the followin
form [7]:

DEn ­ 2
b2n21Y

i­n

Hi,si11d

b2n21Y
i­n11

sHnn 2 Hiid21. (12)

For evenb with ñ ­ n 2 by2 and (11) it follows

DEn ­ 2C2jñj s b
2 1 jñjd!

s2jñj 2 1d!2s b
2 2 jñjd!

. (13)

For odd b with ñ ­ n 2 by2 1
1
2 sgnsn 2 by2d and

(11) we find

DEn ­ 2C2jñj21 s b21
2 1 jñjd!

s2jñj 2 2d!2s b11
2 2 jñjd!

. (14)

The integer ñ counts the pairs of equal diagonal el
ments of (11) from the center ofHnm towards the cor-
ners [b even: jñj ­ 0, 1, 2, . . . , by2 and b odd: jñj ­
1, 2, . . . , sb 1 1dy2]. Note that for the corner states th
obtained expression for the splitting is identical with th
results in [5]. Let us definejñj ­ aby2 with 0 , a , 1.
For fixeda application of Stierling’s formula to (13) and
(14) yields

DEn ø
b

pe

√
1 1 a

1 2 a

!1y2

gab ,

g ­
eC

p
1 2 a2

2asab 2 1d

√
1 1 a

1 2 a

!1ys2ad

. (15)

For largeab the expression (15) should be close to ze
if g , 1, and its inverse should be close to zero ifg . 1.
So the perturbation result predicts a steplike change in
splitting values forg ­ 1 in the limit of largeab. The
considered asymptotic limit corresponds to the class
limit of (10). Thus we expect that the splittings of th
eigenvalue pairs which correspond to symmetry brok
classical tori should vanish in this limit. Consequent
the conditiong ­ 1 predicts the position of the classica
separatrix with respect to the variablea.

Now we calculate the eigenvalue spectrum of (1
numerically (for b ­ 20 this was done in [6]). This
was done using standard Fortran routines with dou
precision. When splittings had to be calculated w
values below 10216 we used MATHEMATICA routines,
where the precision can be of any value [8]. In Fig.
we show the eigenvalues (grouped with respect to th
eigenfunctions being symmetric or antisymmetric wi
respect to permutation) as a function ofñ for b ­ 600
and C ­ 50. The classical model has symmetry brok
trajectories, and a separatrix with energyEsep ­ E1 ­
120 600. For the quantum problem we find an inflectio
point in the eigenvalue spectrum of each subgroup
precisely this energy (ñ ø 150). Since ñsEd is the
integrated density of states, its derivative with respect
E gives the density of statesrsEd, which hereby exhibits
a peak at the separatrix energy of the classical sys
d
d

-

e

o

he

al

n
,

)

le
h

1
ir

h

n

at

to

m

FIG. 1. Eigenvalues of the symmetric eigenstates (solid li
and antisymmetric eigenstates (dashed line) versus quan
numberñ for b ­ 600 andC ­ 50. Inset: Density of states
for the eigenvalue spectrum from above (solid line) vers
energy. The dashed line is the classical prediction using We
formula.

(inset in Fig. 1). Using Weyl’s formula we can calcula
its classical counterpart [1]

rclsE, bd ­
Z

d2Pd2XdsssE 2 HsP, Xdddd

3 dsssb 2 BsP, Xdddd . (16)

This integral can be rewritten asrclsE, bd ­H
1ysj=Hjj=BjsinQddS, where the integration is don

over the surface of constantH andB andQ is the angle
between the two gradients. The denominator vanis
on IPOs. Expanding the denominator in a Taylor ser
in the neighborhood of an IPO it follows that for ellipti
IPOs no singularity develops (because the torus surf
vanishes), whereas for hyperbolic IPOs (i.e., on t
separatrix) a logarithmic singularity appears.

By parametrizing the classical phase space usingA1,2

and f1,2 the expression (16) can be reduced to a sin
integral:

rclsE, bd ­
1
p

3
Z dyp

C2b2 2 4C2y2 2 sE 2 b 2 b2y4 2 y2d2
.

(17)

The integration has to be done over all values ofy,
where the expression under the root is non-negat
This integral shows up with a singularity at the classic
separatrix energy. The numerical integration is compa
in the inset in Fig. 1 with the quantum density o
states. We find excellent agreement. In the inset
Fig. 2 the splittings are shown with respect toñ. The
splittings become anomalously small in the region
1609
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FIG. 2. Eigenvalue splittings versus quantum numberñ for
b ­ 150 and C ­ 10 (calculated with precision 512). Solid
line—exact diagonalization, dashed line—perturbation the
result. Note that even for̃n ø 80 the ratio of both values is of
the order of 0.5. Inset: Eigenvalue splittings versusñ for b ­
600 and C ­ 50 (compare Fig. 1) from exact diagonalization
Splittings are of the order of average spacing forñ , 150 and
collapse to zero for̃n . 150.

classical symmetry broken solutions, which is bound
again by the separatrix energy. In Fig. 2 we compa
the numerically obtained splittings with the perturbatio
theory result (b ­ 150, C ­ 10). Even though the true
splittings become as small as102100 compared to the

FIG. 3. Separatrix energy versusC for b ­ 600 for the
classical system (solid line). The thick long-dashed line
the position of the maximum in the quantum density of stat
The thin dash-dotted line is the perturbation theory predict
(g ­ 1). Inset: Second derivative of theC dependence of
the maximum eigenvalue of the quantum spectrum forb ­ 600
versusC. The classical prediction is a step function with valu
2,0 and step positionC ­ 300.
1610
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averaged spacings, the perturbation theory reproduce
the best the order of magnitude, but fails by, e.g., 5
in the absolute value. Consequently, we note that hig
order terms in the perturbation theory are important e
when the true splittings are anomalously small.

Still there is useful information in the perturbatio
result as shown in (15). In Fig. 3 we show the classi
separatrix energyE1 for different values ofC (b ­
600) and compare it to the peak energy in the quant
density of statesand to the condition g ­ 1 (which
gives us a certaina, which in turn yields a givenñ
and through the numerically obtained quantum eigenva
spectrum a corresponding energy). First we note
remarkable agreement between the classical curve
the exact quantum counterpart. But even the perturba
theory gives values which deviate by only 6% from t
exact result. So while the perturbation theory fails
reproducing the absolute values of the splittings, it s
contains the information about a classical separatrix w
good precision.

Finally, we can easily trace the classical bifurcation
considering the dependence of the largest eigenvalu
the quantum spectrum as a function ofC: Emax ­ fsCd.
According to the classical system this function is given
(7) for C . by2 and by (9) forC , by2. Differentiating
this function twice with respect toC should thus yield a
step function with the step located atC ­ by2. In the
inset of Fig. 3d2fydC2 is shown forb ­ 600. The step
at C ­ 300 is nicely observed.
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