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Manifestation of Classical Bifurcation in the Spectrum of the Integrable Quantum Dimer
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We analyze the classical and quantum properties of the integrable dimer problem. The classical
version exhibits exactly one bifurcation in phase space, which gives birth to permutational symmetry
broken trajectories and a separatrix. The quantum analysis yields all tunneling rates (splittings)
in leading order of perturbation. In the semiclassical regime the eigenvalue spectrum obtained by
numerically exact diagonalization allows one to conclude about the presence of a separatrix and a
bifurcation in the corresponding classical model.

PACS numbers: 05.45.+b, 03.20.+i, 03.65.Sq

The problem of correspondence between classical andtegral of motion is fixed) exhibits a sharp maximum at
guantum-mechanical properties of nonlinear systems ithe separatrix energy. By calculating the corresponding
currently an object of wide interest [1]. One interestingclassical quantity (with the help of Weyl's formula) we
topic concerns Hamiltonian systems with a given symmefind that this singularity appears due to the integration
try (e.g., some permutational symmetry), where classicabver a part of the separatrix manifold which includes a
trajectories exist which are not invariant under the correhyperbolic isolated orbit.
sponding symmetry operation. This topic appears in an- Let us consider the integrable dimer model with Hamil-
alyzing selective bond excitation in chemistry and in thetonian [4]
quantization of discrete breathers [2]. 1

We consider an integrable system with two degrees H = E(Plz + P + X} + X3)
of freedom (TDF), whose classical version exhibits ex-

actly one bifurcation (of periodic orbits) and separatrix n l[(P% + X232 + (P + X2

manifold. This manifold cuts the phase space into three 8
parts—one with invariant trajectories, and two with non- C
invariant trajectories, where the corresponding symmetry T (X1X2 + P1P2). (1)

@s the p_ermutational one. By varying a single parameter ihere P11, X1, are canonically conjugated momenta and
is possible to “switch” between these phase space parts b Ositions ’ of two degrees of freedom. System (1) is

crossing the separatrix. It appears natural_ to expectin t |%tegrable, because the classical Poisson bracket of
gquantum case a drastic change in the splittings of energy

levels (which should be zero in the classical limit for the B=P{+P;+Xi+X; 2)

noninvariant phase space parts). However, the splittingg;ii, g vanishes. Further (1) is invariant under permu-
are nonzero for any given value of the control parametefiation of indices. In the following we list the classical
The only way to avoid contradiction between the Class"properties of (1) derived in [4].

cal_a_nd guantum cases'is to assume that the quantum |6_'V6'|With ¥ = (1/v2)(X + iP) (1) becomes

splittings tend to a steplike function (of, e.g., the level pair

number) in the classical limit. The step should occur at 7 = Vi, + Wi, + l[(\m\pl)z + (ViW,)]

the position of the classical separatrix. This problem can 2

be coined alsalynamical tunnelinghrough a separatrix. + C(VIW, + Wi, 3)

There exist studies of the influence of classical chaos on _ _ . . .

dynamical tunneling [3]. This paper is an extension ofThe equations of motion becorne,, = ioH/0Wy,.

previous studies on classical and quantum properties of Isolated periodic orbits (IPO) satisfy the relation

the dimer system [4—6]. gradH || gradB. Let us parametrize the phase space
We are able to trace the splittings of the level pairsOf (3) with Wip = Ajse/®12, A, = 0. It follows A,

using quantumperturbation methods. We consider thelime independent andp; = ¢, + A with A = 0,7

quasiclassical regime and show that the step indee@nd ¢1> = w time independent. Solving the algebraic

occurs. Therefore we are able to extract informatiorequations for the amplitudes of the IPOs we obtain

about the classical separatrix and bifurcation. Further, 5 1

we show that the quantum density of states (the second I : 412 = 7B, A =0, o =1+ C+ =B, (4
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I1: A2, = lB, A=m. w=1-C+ lB, (5) of e?genfu'nctions qB. Each value qb spansgsubspace
2 of dimensionb + 1 in the space of eigenfunctions. These

I11: A2 = lB 1+ 41 - 4C2/B? |, eigenfunctions are products of the number sta@sof
2 each degree of freedom and can be characterized by a
A=0, w=1+B. (6) symbol |n, m), where we have: bosons on site 1 and

m bosons on site 2. For a given value it follows
m=b — n. So we can actually label each state by
just one number: |n,b — n) = |n). Consequently, the
eigenvalue problem at fixed amounts to diagonalizing
the matrixH,,,,, with

IPO Il corresponds to two elliptic solutions which break
the permutational symmetry. IPO Il exists f8r= B,

with B, = 2C and occurs through a bifurcation from IPO
| [4]. The corresponding separatrix manifold is uniquely
defined by the energy of IPO | at a given value of
B = B,. This manifold separates three regions in phase % + %b + %[nz + (b — n)?],

n=m
space—two with symmetry broken solutions, each one — . '
containing one of the IPOs Ill, and one with symmetry H,,, = Cynb + 1~ n). n=m+l,
conserving solutions containing the elliptic IPO 1l. The CYn + Db = n), n=m-—1,
separatrix manifold itself contains the hyperbolic IPO I. 0, else,
For B = B, only two IPOs exist—IPO | and Il, with (11)

both of them being of elliptic character. Remarkablyand nom = 0.1.2 b
there exist no other IPOs, and the mentioned bifurcation, g PO
and separatrix manifold are the only ones present in tth — Hip-m.-m is @ consequence of the permuta-
classical phase space of (1) [4]. tional symm’:efry oftf

To conclude the analysis of the classical part, we For C = 0 the n.1atrix H,, is diagonal, with the

calculate the energy properties of the different phase Spa{operty that each eigenvalue is doubly degenerated

Notice that the matrixH,,,
a symmetric band matrix. The additional symmetry

parts separated by the separatrix manifold. First it i with exception of the statéb/2) for even values of
straightforward to show that the IPOs (4)—(6) correspon ). The clr;ssical phase space contains only symmetry

t(il max(;ma, m|n|m?, or Is?ddle points O]; the ene_rt'%y n theoroken trajectories, with the exception of IPO Il and the
atr(l)we tenergy in e(;\(;? or_a; given V"’t‘ u4e B::t \]fv'” no separatrix with IPO | (in fact, in this limit the separatrix

other extrema or saddle points present [4]. OllOWS  manifold is nothing but a resonant torus containing both
E, = H(IPO1) = B + le + CB, @) IPOs_ I and II). So with the excep}ion of the separatrix

4 manifold, all tori break permutational symmetry and

1, come in two groups separated by the separatrix. Then
E; = H(IPO I1) = B + 25 — (B, (8)  quantizing each group will lead to pairs of degenerated
eigenvalues—one from each group. There is a clear
E; = H(IPO 11I) = B + le + 2 (9) corrgspondence to'the spectrum of the diagofiaiH 0)
2 matrix H,,,. The eigenvalue$ly, = H;, correspond to

For B < B, we haveE;, > E; (IPO | maximum, IPO  the quantized IPOs Ill. With increasingthe eigenvalues

Il 'minimum). For B = B, it follows E3; > Ey > E;  H, = H,_, ;- correspond to quantized tori further

(IPO I maxima, IPO | saddle, IPO Il minimum). If away from the IPO IIl. Finally the states with = b/2

B < By, then all trajectories are symmetry conserving. Iffor evenb or n = (b — 1)/2 for odd b are tori most

B = By, then trajectories with energi#s < £ = E; are  close to the separatrix. Switching the side diagonals

symmetry breaking, and trajectories wifh = E = E1  on by increasingC will lead to a splitting of all pairs

are symmetry conserving. of eigenvalues. In the case of small valuesbothese
The quantum eigenvalue problem can be properly anagpiittings have no correspondence to the classical system

lyzed in second quantization, which amounts to rep|aCin€|broperties. However, in the limit of large we enter

the complex functionsV’, ¥* in (3) with the boson anni-  the semiclassical regime, and due to the integrability of

hilation and creation operatoes a® with standard com-  the system eigenfunctions should correspond to tori in the

mutation relations [to enforce invariance under exchangg|assical phase space which satisfy the Einstein-Brillouin-

¥ < W* the substitution has to be done after rewritingkeller quantization rules [1].

VU = (PP + UH)): IncreasingC from zero will lead to a splittingAE,, of

5 3 4 + 1., 1+ v the eigenvalue doublets @ = 0. In other words, we
H=">\+> (aray + azaz) + 5[(“1“1) +(@a)7] fing pairs of eigenvalues, which are related to each other
+ 4 through the symmetry of their eigenvectors and (for small
+ Clarax + azay). (10) enoughC) through the small value of the splitting. Let us

Note that/i =1 here, so the eigenvalues of B =  calculate the splittings in leading perturbation order. This
a;ral + a;az are integer numbers. Sindg commutes is done by applying standard perturbation theory to each
with H, we can diagonalize the Hamiltonian in the basisof the state$n) and|p — n) and calculating the perturbed
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eigenvectors until the matrix element of the two perturbed 200000
eigenvectors wittH does not vanish. Because of the band

structure of our matrix the final result has the following a
form [7]: e

b

—n—1 b—n—1 150000 - 0.00 /
— 50000 200000
AE, =2 [] Higen [1 Huw —HD™'. (12) E

i=n i=n+1 m //
For evenb with 2 = n — b/2 and (11) it follows 7
b L
. 2 4 lah 100000
AE, = 2¢27! (G + [ (13)

Qlal — DG - lal)

For odd b with 7 =n — b/2 + %sgn(n - b/2) and
(11) we find - 20000 5 100 200 300
(= + lal! (14) i

il — 2)12(% — i) FIG. 1. Eigenvalues of the symmetric eigenstates (solid line
@lal — 224 — lal)! G.1 lues of th ! (solid line)
The integerii counts the pairs of equal diagonal ele- and antisymmetric eigenstates (dashed line) versus quantum

numberi for b = 600 andC = 50. Inset: Density of states
ments of (11) from the center d#,,, towards the cor- for the eigenvalue spectrum from above (solid line) versus

ners p even:|i| =0,1,2,...,b/2 and b odd: |ii| =  energy. The dashed line is the classical prediction using Weyl's
1,2,...,(b + 1)/2]. Note that for the corner states the formula.

obtained expression for the splitting is identical with the
results in [5]. Let us defingi| = ab/2 with0 < o < 1.
For fixed a application of Stierling’s formula to (13) and

AE, = 2¢21!

(inset in Fig. 1). Using Weyl's formula we can calculate

(14) yields 1/2 its classical counterpart [1]
b [1+«a b
A= 1 — «a L
Te -
- pa(E,b) = ] d*Pd*X8(E — H(P,X))
_eCVl—a?(l+ a 15
Y et -D\1—a) - B X 8(b — B(P.X)). (16)

For largeab the expression (15) should be close to zeraThis integral can be rewritten aspq(E,b) =

if ¥y < 1, and its inverse should be close to zerg if> 1. $1/(IVH||VB|sin®)dS, where the integration is done

So the perturbation result predicts a steplike change in thever the surface of constaft and B and © is the angle

splitting values fory = 1 in the limit of largeab. The between the two gradients. The denominator vanishes

considered asymptotic limit corresponds to the classicabn IPOs. Expanding the denominator in a Taylor series

limit of (10). Thus we expect that the splittings of the in the neighborhood of an IPO it follows that for elliptic

eigenvalue pairs which correspond to symmetry brokedPOs no singularity develops (because the torus surface

classical tori should vanish in this limit. Consequently,vanishes), whereas for hyperbolic IPOs (i.e., on the

the conditiony = 1 predicts the position of the classical separatrix) a logarithmic singularity appears.

separatrix with respect to the variahle By parametrizing the classical phase space uging
Now we calculate the eigenvalue spectrum of (10)and ¢, the expression (16) can be reduced to a single

numerically (for b = 20 this was done in [6]). This integral:

was done using standard Fortran routines with double 1

precision. When splittings had to be calculated with py(E,b) = —

values below107'¢ we used MATHEMATICA routines, .

where the precision can be of any value [8]. In Fig. 1 v [ dy

we show the eigenvalues (grouped with respect to their JC2b2 —4C%y2 — (E — b — b2/4 — y2)2°

eigenfunctions being symmetric or antisymmetric with (17)

respect to permutation) as a function ffor 5 = 600

and C = 50. The classical model has symmetry brokenThe integration has to be done over all values yof

trajectories, and a separatrix with enery., = E; =  where the expression under the root is non-negative.

120600. For the quantum problem we find an inflection This integral shows up with a singularity at the classical

point in the eigenvalue spectrum of each subgroup aseparatrix energy. The numerical integration is compared

precisely this energy ii(= 150). Since A(E) is the in the inset in Fig. 1 with the quantum density of

integrated density of states, its derivative with respect tstates. We find excellent agreement. In the inset in

E gives the density of statgs(E), which hereby exhibits Fig. 2 the splittings are shown with respectio The

a peak at the separatrix energy of the classical systesplitings become anomalously small in the region of
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10" : ‘ ; averaged spacings, the perturbation theory reproduces at
the best the order of magnitude, but fails by, e.g., 50%

T T in the absolute value. Consequently, we note that higher

10° | - ] order terms in the perturbation theory are important even

200 , S when the true splittings are anomalously small.

Still there is useful information in the perturbation

g 10" ol 1 : result as shown in (15). In Fig. 3 we show the classical

4 separatrix energyE; for different values ofC (b =

| 600) and compare it to the peak energy in the quantum

density of statesand to the conditiony = 1 (which

gives us a certaimy, which in turn yields a giver

and through the numerically obtained quantum eigenvalue

0 20 20 0 %0 spectrum a corresponding energy). First we note the

remarkable agreement between the classical curve and

the exact quantum counterpart. But even the perturbation

FIG. 2. Eigenvalue splittings versus quantum numbefor  theory gives values which deviate by only 6% from the

b =150 and € = 10 (calculated with precision 512). Solid g0 regult. So while the perturbation theory fails in
line—exact diagonalization, dashed line—perturbation theory duci he absol | f th ltti it still
result. Note that even for ~ 80 the ratio of both values is of €Producing the absolute values of the splittings, it sti

100

10

=13

-150

i

the order of 0.5. Inset: Eigenvalue splittings versusr » =  contains the information about a classical separatrix with
600 and C = 50 (compare Fig. 1) from exact diagonalization. good precision.

Splittings are of the order of average spacingffox 150 and Finally, we can easily trace the classical bifurcation by
collapse to zero fof: > 150. considering the dependence of the largest eigenvalue of

the quantum spectrum as a function®f E,.x = f(C).

According to the classical system this function is given by
classical symmetry broken solutions, which is bounded?7) for C > b/2 and by (9) forC < b/2. Differentiating
again by the separatrix energy. In Fig. 2 we comparehis function twice with respect t@ should thus yield a
the numerically obtained splittings with the perturbationstep function with the step located @ = 5/2. In the
theory result § = 150, C = 10). Even though the true inset of Fig. 3d>f/dC? is shown forb = 600. The step
splittings become as small a®) ' compared to the atC = 300 is nicely observed.
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