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Random banded matrices with linearly increasing diagonal elements are recently considered as an
attractive model for complex nuclei and atoms. Apart from early papers by Wigner there were no
analytical studies on the subject. In this Letter we present analytical and numerical results for local
spectral density of states (LDOS) for a more general case of matrices with a sparsity inside the band.
The crossover from the semicircle form of LDOS to that given by the Breit-Wigner formula is studied
in detail.
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Recently, there was a growing interest in the statisti
properties of random banded matrices (RBM) (see, e
[1], and references therein). TheseN 3 N matricesHnm

can be characterized as those containing nonzero elem
only within a wide band of the sizeb ø N around the
main diagonal. It was realized that matrices with su
a structure are appreciably different in their statisti
properties from those forming the classical Gauss
ensembles studied by many authors [2]. More precis
the RBM of infinite size do not show the famous effe
of level repulsion that is the direct consequence of
localized nature of their eigenvectors [3–5].

The most studied type of RBM is that with the ze
mean value of all matrix elements and with the va
ance given byH2

nm ­ V 2asj n 2 m j ybd, the function
asrd decaying exponentially (or faster) atr ¿ 1. Such
matrices were shown to be relevant for understand
some properties of the quantum kicked rotator, one of
paradigmatic models in the domain of quantum chaos
On the other hand, the matrixHnm can be treated both
as a tight-binding Hamiltonian of a quantum particle in
1D system with long range random hoppings and as
adequate model for quasi-1D disordered wires [6]. In a
number of publications properties of such matrices w
studied both numerically and analytically; see referen
in [1]. In particular, it was found that for matrices of infi
nite size any eigenvector has a typically finite number
the order ofl` ~ b2) of essentially nonzero component
When the matrix is of a large finite sizeN ¿ b ¿ 1, its
statistical properties were shown to be determined by
scaling parameterb2yN [5,6]. As to the density of state
(DOS) it has generally a form of the semicircular law [7

rsEd ­

8<: 2
pR2

0

q
R2

0 2 E2, j E j# R0 ,

0, j E j. R0 ,
(1)

with R0 ~ b1y2 being the semicircle radius.
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Another type of the RBM—that with the mean value o
diagonal elements increasing linearly along the main di
onal: Hnn ­ an—has attracted recently a lot of researc
activity [8–13]. In a tight-binding analogy mentione
above these matrices describe a quantum particle in a
disordered system subject to a constant electric field. A
other interpretation was developed in [9,11] where ma
ces of such kind are considered as Hamiltonians of gen
conservative systems with complex behavior, like hea
atoms and nuclei. Indeed, a very detailed study of co
pound states in the chaotic Ce atom [13,14] has revea
that the latter class of the RBM can be used rather e
ciently to describe such a physical system. This particu
kind of RBM was introduced for the first time by Wigne
about 40 years ago [15]. For this reason we refer to t
ensemble as that formed by Wigner random banded ma
ces (WRBM). Quite close ideas were developed recen
[12] where the model for a general integrable Hamiltoni
H0 perturbed by some generic perturbationV0 was inves-
tigated. It was argued that the matrixsH0 1 V0dnm in the
basis of semiclassical eigenstates of the unperturbed
H0 has the form ofsparseWRBM.

As is known, much more informative characteristic
compared to the global DOS is the so-calledlocal spectral
density of states(in the literature, LDOS). The latter
function, also known in nuclear physics asstrength
function,is defined as

rsE, nd ­
X
n

j cnsndj2dsE 2 End , (2)

wherecnsnd is thenth component of the eigenvectorcn

corresponding to the energy levelEn, n ­ 1, 2, . . . , N.
After averaging over the disorder the LDOS depen
(in the limit N °! `) on the parameterz ­ E 2 an
only: rsE, nd ­ rLszd. As a result, the global DOS
is energy independent:rsEd ­

1
N

PN
n­1 rsE, nd !

1
aN

provided the parametera is small enough for the sum
being replaced by the integral [16].
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The quantity of the most physical interest is th
width G of the LDOS: It generates a new lengt
scalelmax ­ Gya; see details in [6,9,11]. If one treat
linearly increasing diagonal elements as eigenvalues
an unperturbed Hamiltonian, the off-diagonal eleme
play a role of perturbation and the lengthlmax can be
interpreted as an effective number of unperturbed sta
coupled by the perturbation [9]. In the limitlmax ø 1
standard perturbation theory can be applied since
perturbation is weak. We will refer to this regime a
the perturbativeone. In the opposite limitlmax ¿ 1 the
problem is essentially nonperturbative. The latter cas
our main concern in the present paper.

In the case of very largea well inside the perturbative
regime the form of LDOS is determined mostly by th
distribution of diagonal elements (e.g., Gaussian). On
other hand, fora in the nonperturbative regime the regio
of parameters was indicated in [17] where the Lorentz
shape

rBW sE, nd ­
Gy2p

sE 2 and2 1 G2y4
(3)

is expected withG ø 2prV 2 [18]. Actually, this form
of LDOS was obtained by Wigner in his early studies
WRBM [15] as a result of some limiting procedure.

Equation (3) is a commonly accepted approximation
the LDOS in nuclear physics known as the Breit-Wign
(BW) formula. It is considered to be well in agreeme
with experimental data for nuclei [19] and complex atom
[13]. This fact makes the WRBM much more attra
tive as a model for physical systems as compared w
the full random matrices. However, a broader applic
tion of this ensemble is restricted by the absence of a g
eral theoretical understanding of their properties. Inde
the method used in Wigner’s pioneering papers [15]
rather involved, partially heuristic, and seems to be ba
upon a specific form of the parameters chosen. In p
ticular, it is quite unclear how universal are Wigner r
sults [e.g., the Breit-Wigner form of the LDOS, Eq. (3
against variations of the parametersa, b, form of the dis-
tribution of the off-diagonal elements, and, ultimately, t
sparsity [20].

Motivated by all this, we have performed an analytic
consideration of the LDOS for general WRBM wit
an arbitrary degree of sparsity. For this purpose
consider random symmetric matricesHnm ­ andnm 1

tnm , where the probability distribution oftnm, n # m is
given by

P stnmd ­ s1 2 pnmddstnmd 1 pnmh1stnmd , (4)

with h1std ­
1
V hstyV d being a generic distribution with

zero mean and the varianceV 2. The probability pnm

of being nonzero for any element is taken to be
the form pnm ­

M
b fsj n 2 m j ybd, where fstd decays

exponentially or faster at infinity and
P

`
r­0

1
b fsrybd ­ 1.

In such a definition the mean number of nonzero eleme
1604
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per row is just2M and the quantityS ­ byM is natural
to term “sparsity.”

In order to calculate the LDOS let us follow th
method used previously for sparse matrices without ba
structure [21]. Relegating all technical details to a mo
extended publication, let us just mention that the me
local DOS is expressed in the form of a function
integral, which is finally calculated by the saddle-poi
approximation exploiting the parametersb ¿ 1 andN ¿
1. Unfortunately, it is hard to get a rigorous estimate f
the domain of validity of the method for different value
of a, M, andb. However, for the case offixedsparsity
one can show that it is actually exact everywhere in t
nonperturbative regime of the model.

Performing this straightforward but lengthy calculatio
and treating the discrete variablea

jn2mj

b in the limit b ¿
1 as a continuous one, we express the LDOSrLsE 2 and
in terms of a functionGsz1, v1d satisfying the equation

m

M
Gsz1, v1d ­ v

1y2
1

Z `

2`

duf

µ
ju 2 z1j

m

∂
3

Z `

0

dv

v1y2
e

i

2
vu2Gsv,ud

3
Z `

0
dtthstdJ1st

p
vv1d , (5)

where the notationsm ­ abyV andz1 ­ zyV are used.
The LDOS is expressed in terms of the solutionGsz1, v1d
as follows:

rLszd ­
1
V

r̃szyV d,

r̃sz1d ­
1

2p
Re

Z `

0
dveivz1y22Gsz1 ,vd. (6)

The pair of Eqs. (5) and (6) constitute the main analytic
result of the present paper and give the expression for
LDOS of sparse WRBM in the closed form.

Let us first consider the case of thefixed number
of nonzero matrix elements per row:M ­ const when
b ! `. At given M the form of the LDOS depends
on the value of the parameterm ­ abyV . When this
parameter is of the order of unity the LDOS form cann
be universal; i.e.; it should be dependent on the particu
form of the distributionhstd and onM. However, the
important universality emerges in the limitm ¿ 1. It
appears that in the large domain ofv1, z1 the solution
of Eq. (5) can be approximately written asGsz1, v1d ­
g0v1, whereg0 is independent ofz1. Indeed, substituting
this expression in the right-hand side of Eq. (5) we get

g0 ­
pfs0dM

2m
1 O

µ
v1

m

z2
1 1 m2

∂
, (7)

which proves that our approximation is self-consiste
as long asz1, v1 ø m. Such a form of Gsz1, v1d
immediately results in the BW form of the LDOS, Eq. (3



VOLUME 76, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 4 MARCH 1996

a

a

h

e
b
c

)
-

b
t

)

-

9

e

to
d

ion
ize

he

s

he
rves
are
of

itive

in
t in

e
rd
ails
nal

the

it

r

in the regionjzjyV ø m, where the widthG of the LDOS
is given by

G ­
2pfs0dVM

m
; 2pfs0d

M
b

V 2

a
. (8)

This allows us to give the estimate for the maxim
localization lengthlmax ­ Gya ~ MV 2ya2b. As was
pointed out above, ournonperturbative treatment (in
particular, the saddle-point evaluation of the function
integral) can be valid only iflmax ¿ 1. Together with
the conditionm ¿ 1 this gives the following restriction
for the region of existence of the BW regime:

1
b

q
2pfs0d &

a

V
p

M
&

q
2pfs0dyb . (9)

Another case deserving separate investigation is w
the sparsityS ­ byM is fixed atb ! ` rather thanM
itself. In particular, theS ­ 1 case corresponds to th
standard WRBM where we expect our formulas to
in agreement with those derived by Wigner [15]. Sin
b ¿ 1 is equivalent for this case toM ¿ 1, we can
search for the solution of equation forGsz1, v1d in terms
of an expansion with respect to1yM. One can satisfy
oneself that at the leading order in1yM one can put
Gsz1, v1d ­ 1y2gksz1y

p
bSdv1

p
bS where the function

gksxd is the solution of the following equation:

gksxd ­ 2
1
k

Z `

2`
fsju 2 xjykd

du
iu 2 gksud

,

Regksud , 0 , (10)

where the control parameterk ­ aV 21
p

bS is intro-
duced. The LDOS is given correspondingly by

rLszd ­
1
p

Re
1

iz 2 RgkszyRd
, R2 ­ bV 2yS . (11)

After introducing the function rszd ­
1
p fiz 2

RgkszyRdg21 the two equations Eqs. (10) and (11
are identical to those derived by Wigner [15] pro
vided a ­ 1, S ­ 1, and fstd is the step function
fstd ­ usjtj 2 1d. It is evident that in the finite sparsity
case the form of the LDOS is completely determined
the only parameterk ~ ab1y2. This fact is in agreemen
with the mentioned numerical observation [16].

Whenk ø 1 one can immediately find from Eqs. (10
and (11) that the LDOS is given by the standard sem
circular law Eq. (1) withR0 ­ s8bV 2ySd1y2 as the ra-
dius of the semicircle. Whenk increases the BW form
of the LDOS (3) emerges, the widthG and the domain
of validity of BW formula being given by the same ex
pressions Eqs. (8) and (9). However, now the widthG

is actually independent of the parameterb because of
byM ­ const. One should stress that in the BW regim
the value ofk is bound because of the condition Eq. (
which can be rewritten as

p
2pfs0db * k *

p
2pfs0d.

This domain is quite narrow for not large enough valu
of b taken in numerical experiments [8,10].

To show the transition from the semicircle regime
that of the BW we have performed the numerical stu
l
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of Eqs. (10) and (11) together with the direct computat
of the LDOS from eigenvectors of large matrices of s
N ­ 1000 and band sizeb ­ 10 without sparsity:S ­ 1.
The parameterV was kept constant in a way ensuring t
semicircle radiusR0 to be unity whereas the parametera

was used to changek. The functionfsjn 2 mjybd was
taken to be a step function:f ­ 0 for jn 2 mj . b. For
such parametersb2 ø N and the finite size correction
are small. On the other hand, there is a region fork

where the BW shape for the LDOS is expected. T
results are presented in Fig. 1 where the smooth cu
are solutions of Eqs. (10) and (11) and histograms
obtained by the average of Eq. (2) over the number
matrices and over those eigenvectors that are not sens
to the finite value ofN . From this figure the whole
transition from the semicircle to the BW form is seen
detail. An unexpected peculiarity of these data is tha
the critical point (fork ø 2) there is a local minimum
in the center of the LDOS.

A specific question is about the form of tails of th
LDOS in the BW regime [11,13,15]. It is a rather ha
task to extract the analytical expression for these t
from Eqs. (10) and (11). For this reason an additio
numerical check has been done fork ­ 8 and R0 ­ 1;
see Fig. 2. From this figure a sharp transition from
BW to the exponential form is clearly seen atE 2 an ø
ab ­ kR0

p
8 ø 2.8. The detailed analysis shows that

FIG. 1. Dependence of the LDOS on the control parametek.
1605
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FIG. 2. The tail of the LDOS fork ­ 8 and R0 ­ 1. The
smooth solid curve is the solution of Eqs. (10) and (11); t
dotted curve (a) is the Breit-Wigner formula (3); the dotte
straight line (b) is the exponential dependence.

is impossible to distinguish between the pure exponen
dependence and that found in Ref. [13] where Wigne
expression for the tails [15] was corrected (see also [11

The results obtained here allow one to understand
nature of thescaling parameters governing the statistic
properties of sparse WRBM in different regimes. Indee
statistical properties of eigenvectors and eigenvalues
expected to be determined by the ratiob? ­ lylmax

where l is actual localization length in the unperturbe
basis (see details in [9]). Numerical experiments [8–1
for the standard WRBM indeed revealed that the behav
of the system is completely determined by the val
of the scaling parameterl ­ l`ylmax where l` is the
localization lengthl for the limit a ­ 0. This parameter
can also be called the “ergodicity parameter” [9] since
l ¿ 1 any eigenstate is spread uniformly over the sc
lmax and thus occupies the maximal possible number
available states in phase space [in this caseb?sld ø 1].

In [22] it was found that sparsity does not actual
affect the basic fact of proportionalityl` ~ b2 at a ­ 0.
However, the constantCM ­ l`yb2 is expected to be very
small at small enough values ofM. In contrast, in thefixed
sparsitycaseM ~ b ¿ 1 one typically hasCM , 1. In
the latter situation the scaling parameter is easily sho
to bel ~ sabd2 for the BW regime. Then the condition
k ¿ 1 is equivalent tol ¿ b, immediately showing that
the BW regime corresponds to the complete ergodic
l` ¿ lmax, and as a consequence to the Wigner-Dys
level statistics (see discussion in [11]). However, if t
numberM is fixed rather than the ratiobyM, one finds
l ~ CMsab3y2d2 for the BW domain restricted byl ¿
CMb. For very sparse matrices the latter condition
compatible with “nonergodicity” criterial & 1 in view of
CM ø 1. Indeed, in [12] where the extreme caseM ­ 1
was studied, the level repulsion was found to be quite w
and dependent on the combinationab3y2 in agreement
with the argumentation presented above.
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