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Wigner Random Banded Matrices with Sparse Structure: Local Spectral Density of States
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Random banded matrices with linearly increasing diagonal elements are recently considered as an
attractive model for complex nuclei and atoms. Apart from early papers by Wigner there were no
analytical studies on the subject. In this Letter we present analytical and numerical results for local
spectral density of states (LDOS) for a more general case of matrices with a sparsity inside the band.
The crossover from the semicircle form of LDOS to that given by the Breit-Wigner formula is studied
in detail.

PACS numbers: 05.45.+b, 02.10.Sp

Recently, there was a growing interest in the statistical Another type of the RBM—that with the mean value of
properties of random banded matrices (RBM) (see, e.gdiagonal elements increasing linearly along the main diag-
[1], and references therein). TheNexX N matricesH,,,, onal: H,, = an—has attracted recently a lot of research
can be characterized as those containing nonzero elememtstivity [8—13]. In a tight-binding analogy mentioned
only within a wide band of the sizé < N around the above these matrices describe a quantum particle in a 1D
main diagonal. It was realized that matrices with suchdisordered system subject to a constant electric field. An-
a structure are appreciably different in their statisticalother interpretation was developed in [9,11] where matri-
properties from those forming the classical Gaussiares of such kind are considered as Hamiltonians of generic
ensembles studied by many authors [2]. More preciselygonservative systems with complex behavior, like heavy
the RBM of infinite size do not show the famous effectatoms and nuclei. Indeed, a very detailed study of com-
of level repulsion that is the direct consequence of theound states in the chaotic Ce atom [13,14] has revealed
localized nature of their eigenvectors [3—5]. that the latter class of the RBM can be used rather effi-

The most studied type of RBM is that with the zero ciently to describe such a physical system. This particular
mean value of all matrix elements and with the vari-kind of RBM was introduced for the first time by Wigner
ance given byH2, = V2a(l n — m | /b), the function about 40 years ago [15]. For this reason we refer to this
a(r) decaying exponentially (or faster) at> 1. Such ensemble as that formed by Wigner random banded matri-
matrices were shown to be relevant for understandinges (WRBM). Quite close ideas were developed recently
some properties of the quantum kicked rotator, one of th§l2] where the model for a general integrable Hamiltonian
paradigmatic models in the domain of quantum chaos [4]H, perturbed by some generic perturbatignwas inves-

On the other hand, the matriéf,,, can be treated both tigated. It was argued that the mattiéfy + V), in the
as a tight-binding Hamiltonian of a quantum particle in abasis of semiclassical eigenstates of the unperturbed part
1D system with long range random hoppings and as aii/y has the form okparseWRBM.

adequate model for quasi disordered wires [6]. In a As is known, much more informative characteristics
number of publications properties of such matrices wereompared to the global DOS is the so-callecal spectral
studied both numerically and analytically; see referencedensity of stateqin the literature, LDOS). The latter
in [1]. In particular, it was found that for matrices of infi- function, also known in nuclear physics adrength
nite size any eigenvector has a typically finite number (ofunction,is defined as

the order ofl.. « b?) of essentially nonzero components. 5

When the matrix is of a large finite sizé > b > 1, its p(E,n) = Z | 4, (W)IF6(E ~ E.), (2)
statistical properties were shown to be determined by the ) g )

scaling parametel/N [5,6]. As to the density of states Wherey, (n) is thenth component of the eigenvectgy,

(DOS) it has generally a form of the semicircular law [7] corresponding to the energy levél,, n =1,2,....N.
After averaging over the disorder the LDOS depends

5 5 (in the limit N — =) on the parametet = E — an
p(E) = {TRHRO —E% | E|=Ry, (1) only: p(E,n) = pr(z). As a result, the global DOS
0, | E [> Ry, is energy independentp(E) = x S, p(E.n) — -
provided the parametex is small enough for the sum
with Ry = b'/2 being the semicircle radius. being replaced by the integral [16].
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The quantity of the most physical interest is theper row is jus2M and the quantitys = b/M is natural
width I" of the LDOS: It generates a new length to term “sparsity.”
scaleln.,x = I'/a; see details in [6,9,11]. If one treats In order to calculate the LDOS let us follow the
linearly increasing diagonal elements as eigenvalues ahethod used previously for sparse matrices without band
an unperturbed Hamiltonian, the off-diagonal elementstructure [21]. Relegating all technical details to a more
play a role of perturbation and the lengih., can be extended publication, let us just mention that the mean
interpreted as an effective number of unperturbed statdscal DOS is expressed in the form of a functional
coupled by the perturbation [9]. In the limit,.x << 1  integral, which is finally calculated by the saddle-point
standard perturbation theory can be applied since thapproximation exploiting the parametérs> 1 andN >
perturbation is weak. We will refer to this regime as 1. Unfortunately, it is hard to get a rigorous estimate for
the perturbativeone. In the opposite limit,,,x > 1 the  the domain of validity of the method for different values
problem is essentially nonperturbative. The latter case isf «, M, andb. However, for the case dixed sparsity
our main concern in the present paper. one can show that it is actually exact everywhere in the

In the case of very large well inside the perturbative nonperturbative regime of the model.
regime the form of LDOS is determined mostly by the Performing this straightforward but lengthy calculation
distribution of diagonal elements (e.g., Gaussian). On th@nd treating the discrete variabié";—’"' in the limit» >
other hand, fow in the nonperturbative regime the region | as a continuous one, we express the LDQSE — an)
of parameters was indicated in [17] where the Lorentziann terms of a functiorG(z;, w;) satisfying the equation

shape . | |
I'/2m £ G w) = v ]_ duf(%)

3 M
(E — an® + [2/4 ®) ”
f dw Lwu—Glw,u)
X —5e:? ’
0

wl/27

pew(E, n) =

is expected withl' = 277pV? [18]. Actually, this form

of LDOS was obtained by Wigner in his early studies of s

WRBM [15] as a result of some limiting procedure. X f drrh(t)Ji(tJowi), (5)
Equation (3) is a commonly accepted approximation for 0

the LDOS in nuclear physics known as the Breit-Wignefyhere the notationg. = ab/V andz; = z/V are used.

(BW) formula. It is considered to be well in agreementThe | DOS is expressed in terms of the solut®fx;, 1)
with experimental data for nuclei [19] and complex atomsgs follows:

[13]. This fact makes the WRBM much more attrac-
tive as a model for physical systems as compared with
the full random matrices. However, a broader applica-
tion of this ensemble is restricted by the absence of a gen- 1 o ,
eral theoretical understanding of their properties. Indeed, plz1) = Z—Ref dwe!®1/276), (6)
. . . . . T 0
the method used in Wigner's pioneering papers [15] is
rather involved, partially heuristic, and seems to be basethe pair of Egs. (5) and (6) constitute the main analytical
upon a specific form of the parameters chosen. In paresult of the present paper and give the expression for the
ticular, it is quite unclear how universal are Wigner re-LDOS of sparse WRBM in the closed form.
sults [e.g., the Breit-Wigner form of the LDOS, Eq. (3)] Let us first consider the case of tHixed number
against variations of the parametersh, form of the dis- of nonzero matrix elements per ro# = const when
tribution of the off-diagonal elements, and, ultimately, theb — o. At given M the form of the LDOS depends
sparsity [20]. on the value of the parametex = ab/V. When this
Motivated by all this, we have performed an analyticalparameter is of the order of unity the LDOS form cannot
consideration of the LDOS for general WRBM with be universal; i.e.; it should be dependent on the particular
an arbitrary degree of sparsity. For this purpose wdorm of the distributioni(7) and onM. However, the
consider random symmetric matricés,,, = anéd,, + important universality emerges in the limit > 1. It
t.m » Where the probability distribution aof,,,,» = m is  appears that in the large domain &f;,z; the solution
given by of Eqg. (5) can be approximately written &Xz;, w;) =
gow1, Whereg is independent of,. Indeed, substituting
Pltum) = (1 = pum)0(tam) + Pumhi(tam) . (4)  this expression in the right-hand side of Eq. (5) we get

with h(¢) = %h(t/V) being a generic distribution with 7fO)M P
zero mean and the variandé®. The probability p,,, go=——F——"+ 0<w1m>, @)
of being nonzero for any element is taken to be of M

the form pu, = 5f(I n — m | /b), where f(r) decays which proves that our approximation is self-consistent
exponentially or faster at infinity and %f(r/b) =1. as long asz;,w; < u. Such a form of G(z1, wy)
In such a definition the mean number of nonzero elementsnmediately results in the BW form of the LDOS, Eq. (3),
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in the region|z|/V < w, where the widtH" of the LDOS  of Egs. (10) and (11) together with the direct computation

is given by of the LDOS from eigenvectors of large matrices of size
2o f(O)VM M V2 N = 1000 and band sizé = 10 without sparsityS = 1.
I'= =2mf (0)_ — B)  The parameteV was kept constant in a way ensuring the

semicircle radius to be unity whereas the parameter
was used to change. The functionf(|n — m|/b) was
taken to be a step functiori: = 0 for |[n — m| > b. For
such parameters? < N and the finite size corrections
are small. On the other hand, there is a region #or
e o . S where the BW shape for the LDOS is expected. The
]Ehetﬁond't'.on'“ f>> 1 :h's glv]efhthgxllowlng.restrlcnon results are presented in Fig. 1 where the smooth curves
orthe reg|on ot existence of the BV regime are solutions of Egs. (10) and (11) and histograms are
2 <./ obtained by the average of Eq. (2) over the number of
2mf(0) = 2mf(0)/b. ©) matrices and over those eigenvectors that are not sensitive
Another case deservmg separate investigation is wheto the finite value ofN. From this figure the whole
the sparsity S = b/M is fixed atb — o rather thanM transition from the semicircle to the BW form is seen in
itself. In particular, theS = 1 case corresponds to the detail. An unexpected peculiarity of these data is that in
standard WRBM where we expect our formulas to bethe critical point (forx = 2) there is a local minimum
in agreement with those derived by Wigner [15]. Sincein the center of the LDOS.
b > 1 is equivalent for this case td/ > 1, we can A specific question is about the form of tails of the
search for the solution of equation f6t(z;, w,) in terms  LDOS in the BW regime [11,13,15]. It is a rather hard
of an expansion with respect tty M. One can satisfy task to extract the analytical expression for these tails
oneself that at the leading order iryM one can put from Egs. (10) and (11). For this reason an additional
G(z1, w1) = 1/2g,(z1/vVbS)w+/bS where the function numerical check has been done for= 8 and Ry = 1:

This allows us to give the estimate for the maximal
localization lengthly., = I'/a « MV?/a’b. As was
pointed out above, oumnonperturbativetreatment (in
particular, the saddle-point evaluation of the functional
integral) can be valid only if,.x > 1. Together with

g«(x) is the solution of the following equation: see Fig. 2. From this figure a sharp transition from the
du BW to the exponential form is clearly seeniat— an =
gelx) = == f flu = /=5 ab = kRov/8 ~ 2.8. The detailed analysis shows that it
Reg.(u) <0, (10)

where the control parametet = oV ~'/bS is intro- (E.n)
duced. The LDOS is given correspondingly by pum‘_'_,_,T,_#r,_;..i.,.,,, T
1 e

— —Re 2 _ 2
pL(Z) R iZ _ RgK(Z/R), bv /S (11) |;|_|;|_1:
After introducing the function r(z) = %[iz - n_m
Rg.(z/R)]"! the two equations Egs. (10) and (11) "
are identical to those derived by Wigner [15] pro-  ®&| H

vided « = 1,5 =1, and f(¢r) is the step function il

7(t) = 6(lz| — 1). Itis evident that in the finite sparsity %% |
case the form of the LDOS is completely determined by oz |
the only parametek « ab'/2. This fact is in agreement ool Lj’ﬂ”” I
with the mentioned numerical observation [16]. oo LU |
Whenk <« 1 one can immediately find from Egs. (10) w:u' '
and (11) that the LDOS is given by the standard semi-
circular law Eq. (1) withRy = (86V?2/S)!/? as the ra- i
dius of the semicircle. Wher increases the BW form 21 it
of the LDOS (3) emerges, the widthi and the domain i i
of validity of BW formula being given by the same ex-  on =H%54S
pressions Egs. (8) and (9). However, now the widlth i |

is actually independent of the parameterbecause of 0o |

b/M = const. One should stress that in the BW regime am | Il
the value ofx is bound because of the condition Eq. (9) .| |_
which can be rewritten ag27f(0)b = k = /27 f(0). [

003 -

This domain is quite narrow for not large enough values 12 08 04 00 04 08 -12 08 04 00 04 08
of b taken in numerical experiments [8,10].

To show the transition from the semicircle regime to
that of the BW we have performed the numerical studyFIG. 1. Dependence of the LDOS on the control parameter
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