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Boundary Effects on Spectral Properties of Interacting Electrons in One Dimension
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The single electron Green’s function of the one-dimensional Tomonaga-Luttinger model in the
presence of open boundaries is calculated with bosonization methods. We show that the critical
exponents of the local spectral density and of the momentum distribution change in the presence of
a boundary. The well understood universal bulk behavior always crosses over to a boundary dominated
regime for small energies or small momenta. We show this crossover explicitly for thellargérbard
model in the low-temperature limit. Consequences for photoemission experiments are discussed.

PACS numbers: 71.10.Pm, 71.27.+a

There is currently great interest in “Luttinger liquid low-energy limit of locally interacting 1D electrons [2,8],
physics” [1,2], sparked by a new generation of exper-defined by the Hamiltonian density
iments on low-dimensional electron structures. Exam- i d + . d
ples include measurements of the point contact tunneling = UF|:¢’L,0'id_‘r//L,a' - ¢R,aid—¢R,a:|
conductance between two fractional quantum Hall edge . *
channels [3] and high-resolution photoemission studies + g7 IR + gJ7 IR + g3(ULI 7 + IRIR7)
of quasi-one-dimensional metals [4,5]. Additional inter- 1 1
est stems from the fact that the Luttinger liquid—i.e., the * 84LodroVR Lo @)
low-energy, long-wavelength physics of interacting elecHereJ; ; =: gbZ/R,(,e//L/R,(, : are the chiral Fermion cur-
trons in one dimension (1D)—provides us with the onlyrents of the left and right moving components of the elec-
known non-Fermi liquid phase with unbroken symmetry.tron field ¥, (x), expanded about the Fermi pointscg:
For this reason the notion of a “Luttinger liquid” (LL) has ¥, (x) = e %~y ,(x) + e** i ,(x). The Hamilton-
played a prominent role in studies of generic features ofan (1) describes left and right moving relativistic Fermions
correlated electron systems, and it has been suggested tl@af1+1) dimensions which interact via forward scattering
some of its properties (e.g., anomalous propagators, spimvithout spin flip g, g2, and g3) or with spin flip (g4).
charge separation) carry over to higher dimensions [6]. “Umklapp” processes are suppressed away from half-band

So far little attention has been paid to the effect offilling, so this model provides a complete picture of possi-
boundarieson the spectral properties of Luttinger liquids ble local interactions in this case. (Trivial forward scatter-
(except in the context of spin chains [7]). This is surpris-ing terms which can be absorbed by redefining the Fermi
ing since boundary effects are bound to be important irvelocity have not been explicitly written out.)
several of the proposed laboratory realizations. For ex- The TL Hamiltonian is conveniently bosonized [9] by
ample, in a recent series of experiments on the Bechgaardtroducing charge and spin currents and the correspond-
salts(TMTSF),X (X is a counterion), the Heandi pho-  ing bosons¢. and ¢, with conjugate momental,. and
toemission spectra were measured in the metallic phadd, respectively:
[5]. This class of materials is known to exhibit strong o/s 1 | 1
electron correlations and is a prime candidate for LL be- J; = = £ J1) = —=Il)s + dxbess). (2)

V2 ar

havior. The experimental results suggest an anomalous ) ) .
gnd accordingly for right movers. The resulting theory

describes separate spin and charge excitations moving

— VUr 4 & — Y5 _ & -
=5 + 5> and vy, = 5 5=, e

suppression of the spectral weight close to the Fermi leve

It was argued in [5] that consistency with the LL scenario™* >

requires long-range electron-electron interactions, but adith velocities v,

we will show here, boundary effects also deplete the specPectively:

tral weight and may influence the observed data. _ » ’ g » ’
Specifically, we have examined the effect of an oper?-[ o V;C vl(0:¢,)” + IL] + E[(a”b”) - IL]

boundary on the local single-particle spectral density of a B —

spinful LL. We have also studied the momentum distribu- + g4 X constX cosv8m b, (3)

tion in a finite system with open boundary conditions. Inwhereg. =g, + g, andg, = g> — g;. The charge inter-

both cases we observe a strong influence from the bounection g. can be absorbed into the free Hamiltonian by a

aries, which causes novel scaling behavior with energiesimple rescaling of the charge boson, but the spin inter-

and momenta close to the Fermi level. actionsg, and g4 obey Kosterlitz-Thouless renormaliza-
As our model we take an extended version of thetion group equations [10] with flow lines along hyperbolas

Tomonaga-Luttinger (TL) Hamiltonian, describing the g2 — g7 = const (to lowest order). Fqy, > —|g4| the
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spin sector develops a gap in the low energy, long wavethis integral can be done exactly [11] with the result
length limit, but for g, < —|g4| the system flows to a that the spectral density scales at the Fermi surface as

stable fixed poinig* = — /g§ _ gigﬁ — 0. Forg, = N(w) = |w|*, where the exponent in the bulk is given by

—|g4| the interaction corresponds to one single marginally a=(K>+K>+K>+K ?/4—-1. (10)

irrelevant operator, so thaf = ¢, = 0. Ifthe flowto a However, the boundary clearly has an effect on this

Canonical wansformation o obiain a ree theont s.) . S\POneNt. and simple povier corting shows that e ex-
’ pect a crossover to a boundary dominated regimesfot
¢, — K,¢,, 1I,—11,/K,, (4)  v,/r with a novel exponentz = (K. 2 + K 2)/2 — 1.
where to first order in the coupling constants Interestingly, the boundary exponemj thereforealways
2 4 _ 2 _ 1 _ dominates for sufficiently smallo. Moreover, we no-
k=1 5_15/4771}3’ _I?C . ! gC/47Tv_C' ®) tice that the last two terms in Eq. (7) make a contribution
We now consider a semi-infinite system with @pen yhich oscillates at twice the Fermi wave vector and drops

boundary condition at the origin and thus require theqt yith the distance from the boundary proportional to
electron fieldW¥,(x) to vanish atx = 0. This implies

- . €S ik =(KIHKD/2 - This contribution is reminiscent of a
¥1.0(0) = —¢r+(0), orin terms of the bosons, (0) = Ejedel oscillation, although it can probably not be ob-

—$re(0) + K and ¢.,(0) = — g, (0), which al-  served directly, since experimental measurements of the

lows an analytic continuation of the left movers onto thedensity of states (e.g., photoemission) will average over

negative half axis in terms of right movers several lattice sites. We therefore ignore those “Friedel”
dr,(x,1) = —¢pr,(—x,1) + const, x <0 (6) termsin the following calculations.

As an example, we consider the low-temperature Hub-

ard model away from half filling, which is well under-

stood in terms of the TL model [2]. In this case, the

SU(2) invariance forceX, = 1, and it is known from
ethe ansatz calculations th&t? — 1/2 as U — «

12]. From these numbers, the well known resulw) o«

(v = s,c,const = 0,@1(;1). We can therefore de- b
scribe the theory in terms of left movers only which
live on the full complex planevithoutan explicit bound-

ary condition. Using this formalism, the single electron
Green’s function can be calculated in a straightforwar

way: ' w'/3 for small w follows immediately for the bulk regime
(Wi, )W, (y,0)) = G (x,y,1) w > v./r. In the presence of the boundary, however,
+ e kGG (=, —y, 1) we cross over to the bpundary exponery = 1/2 _for .
. o o < v./r. After rescaling the variable of integration in
— MG (x, =y, 1) Eq. (9), we see that the spectral density is a function of

— R G(—x, v, 1), (7) the scaling variablew only (up to an overall constant):

, , _ o N(r,w) = r '8f(rw). After a deformation of the in-
where the chiral Green’s functio(x, y, 1) is a product  (eqration contour, a numerical integration of Eq. (9) is
of spin and charge contributions straightforward (we subtract the divergent part). The re-

(KK )8 sults in Fig. 1 clearly show the crossover from boundary
Glx,y, 1) = Vljw(v”t Tx =) behavior forrw /v, < 1 with exponeniwg = 1/2 to bulk
X (0t — x + y) KK 8 behavior_forrw/uc > 1 with exponentr = 1/8 (the cor-
g responding power laws are superimposed). The observed
(K;2-K2)/8
4 oK
y ( 4xy| ) L ®

[vir? — (x + y)*]

Here, x and y denote the distance from the boundary
(x = 0) and the time carries an implicit ultraviolet cutoff
t — ie. We can see that in the limity > |(x — y)> —
v2¢2| the last factor in Eq. (8) goes to unity and we
recover the known bulk correlation function [2] (as we
do in the noninteracting cagé. = K; = 1).

To understand the physical implications of the bound-
ary correlation function we study thecal spectral density
N(w, r), which is given in terms of the Green’s function

0.0 : : ‘
as 0.0 2.0 4.0 6.0 8.0

1 o
N(w,r) = —] YL (r,0), W, (r, ) dr,  (9) ¢
. 27 J = . . . FIG. 1. The spectral density as a functionsa in arbitrary
wherew is measured relative to the Fermi energy @nd  ynits. The corresponding power laws far= 1/8 and a =

the distance from the boundary. Without the boundary]/2 are also shown.
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oscillations in Fig. 1 are an interesting secondary effect, In experiments the condition for boundary behavior
which vanish asymptotically as $hor/v.)(wr) 3/  » < v./r will be fulfiled over an energy range ~
[but those arenot due to the “Friedel” terms in Eq. (7) Er/{, wheref is the distance from the boundary in units of
which have been neglected]. the lattice spacing. This means that if the effective length
Our results have direct relevance for photoemissiorf of the 1D chains is about one hundred lattice spacings,
experiments on quasi-1D metals. At low temperatureshe boundary effects are observed over a region of
the photoemission intensity(w) is proportional to the =100 meV around the Fermi energy (e.g., corresponding
local spectral densitW(w, r), integrated over the region to an “impurity” density of 1% close to the cleaved
of escaping electrons and weighted by the Fermi-Dirasurface). Turning to the photoemission data reported

distribution frp (w): in [5], a combination of boundary effects and a finite
experimental resolution go a long way to account for the
I(w) ] drfrp(w)N(w,r). (11)  observed suppression of spectral weight at the Fermi level.

The experiments indeed suggest a scalifi@)ops * w *s
[We neglect the small thermal shift iN(a),r) at low with agps > 1 extending’ however, over a |arger energy
temperatures.] ) ) ] interval, and some additional mechanism (e.g., long-range
In a boundary dominated regiori(w) is seen to be jnteractions [5,11] or electron-phonon coupling [13]) may
dramatically reduced at the Fermi level compared t0 &ave to be invoked to fully explain the data. Another way
“bulk region.” Moreover, the finite energy resolutianof  f directly examining the boundary region would be to
the photon lines effectively introduces an averaging oveprope the single crystal face where the open ends of the

the “true” spectral density chains are. Since the electrons have an escape depth of
1 (0—xP/2A? only a few lattice spacings, the boundary exponent should
H@)obs = L2 A f ¢ 1(x)dx . (12) e observable over a much larger energy range.

. . . . As a second example of the effect of open boundaries,
This averaging completely wipes out the power-law sin-

ularities in either the bulk or the boundary case as show}} < consider the momentum distribution ofiaite system
gula ; ry ! With length L and open boundary conditions, which can
in Fig. 2, where we plotted(w),ps In arbitrary units at

T = 50 K for boundary @y = 1/2) and bulk ¢ = 1/8) be expressed in terms of the chiral Green'’s function

L
regimes, respectively, assuming an experimental resolu- ,(x, 1) = l] dx dy cosk(x — y)G(x,y,0), (13)
tion of A = 20 meV (experimental values according to L Jo ) )

[5]). The corresponding three-dimensional case= 0) where k is measured relative to the Fermi wave vector
is also shown for comparison. In the neighborhood ofkr [We also implicitly subtrac(0, L) to remove any di-
the Fermi level the observed boundary dominated sped/rgences]. The bulk behavior can be determined by tak-
tral density appears to be depleted with an exponent dg L — > and by simple power counting we see that
one or larger (compared to the exponent= 1/8 of the ~ 7(k,%) « [k|*, wherea is again given in Eq. (10). How-

bulk spectral function without temperature or averagingever, boundary effects will be present, and moreover we
effects). have to consider that we are now dealing witHirte

system (i.e., open boundary conditions both at 0 and
x = L). One way of determining the correct correlation

10 NN ‘ functions in this case is to assume conformal invariance
T N\ in the complex plane’ = x + iv,7 (which is justified
08 | \ 1 in the low-energy, long-wavelength limit and with decou-
SN pled spin and charge sectors). We then simply perform
oo \\ 1 a conformal transformation onto a cylinder with circum-
& S0\ ference2L: z/ — ¢'7¥/L [after the analytic continuation
o4t a=10 "‘x.._\\ 1 in Eq. (6)]. Since we know the chiral Green’s function
- o=1/8 "’"‘1\\ in the plane £'), we immediately obtain the result for the
02 ~———-a=0 A\ 1 finite case [14] (using the transformation rules for primary
fields) .
00 \ ‘ o) oL wlwt +x—y)\ "
-100.0 -50.0 0.0 50.0 o — —_— )
®/[meV] Glx,y, 1) J;L( sin 2L
FIG. 2. The predicted intensity,, in arbitrary units as 2L —x - ~(K,=KY/8
. obs _ ( . m(v,t — x y))
a function of w for boundary and bulk cases (i.e., for X|—s
power laws withap = 1/2 and @ = 1/8, respectively). The ™ 2L

Temperature T = 50 K) and finite resolution £ = 20 meV) .
effects have been taken into account according to Egs. (11) and 5T sin 5T
(12). (14)

corresponding three-dimensional cage = 0) is also shown. sin™ sin™ (K, *—K3)/8
x | — L L
SIin

m(v,t+x+y) . w(v,t—x—y)
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0.425

— In conclusion, we have shown that an open boundary has
P o a pronounced influence on the observed critical exponents
in quasi-one-dimensional metals. The spectral density was
shown to bealwaysdominated by the boundary exponent
for frequencies close to the Fermi energy, which has
direct consequences for the interpretation of photoemission
experiments. The momentum distribution exhibits strong
finite size and also boundary effects close to the Fermi
wave vector and the crossover to “bulk” behavior is
extremely slow.
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