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Boundary Effects on Spectral Properties of Interacting Electrons in One Dimension
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The single electron Green’s function of the one-dimensional Tomonaga-Luttinger model in the
presence of open boundaries is calculated with bosonization methods. We show that the critical
exponents of the local spectral density and of the momentum distribution change in the presence of
a boundary. The well understood universal bulk behavior always crosses over to a boundary dominated
regime for small energies or small momenta. We show this crossover explicitly for the large-U Hubbard
model in the low-temperature limit. Consequences for photoemission experiments are discussed.

PACS numbers: 71.10.Pm, 71.27.+a
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There is currently great interest in “Luttinger liqui
physics” [1,2], sparked by a new generation of exp
iments on low-dimensional electron structures. Exa
ples include measurements of the point contact tunne
conductance between two fractional quantum Hall ed
channels [3] and high-resolution photoemission stud
of quasi-one-dimensional metals [4,5]. Additional inte
est stems from the fact that the Luttinger liquid—i.e., t
low-energy, long-wavelength physics of interacting ele
trons in one dimension (1D)—provides us with the on
known non-Fermi liquid phase with unbroken symmet
For this reason the notion of a “Luttinger liquid” (LL) ha
played a prominent role in studies of generic features
correlated electron systems, and it has been suggested
some of its properties (e.g., anomalous propagators, s
charge separation) carry over to higher dimensions [6].

So far little attention has been paid to the effect
boundarieson the spectral properties of Luttinger liquid
(except in the context of spin chains [7]). This is surpr
ing since boundary effects are bound to be important
several of the proposed laboratory realizations. For
ample, in a recent series of experiments on the Bechga
saltssTMTSFd2X (X is a counterion), the HeI andII pho-
toemission spectra were measured in the metallic ph
[5]. This class of materials is known to exhibit stron
electron correlations and is a prime candidate for LL b
havior. The experimental results suggest an anoma
suppression of the spectral weight close to the Fermi le
It was argued in [5] that consistency with the LL scena
requires long-range electron-electron interactions, but
we will show here, boundary effects also deplete the sp
tral weight and may influence the observed data.

Specifically, we have examined the effect of an op
boundary on the local single-particle spectral density o
spinful LL. We have also studied the momentum distrib
tion in a finite system with open boundary conditions.
both cases we observe a strong influence from the bou
aries, which causes novel scaling behavior with energ
and momenta close to the Fermi level.

As our model we take an extended version of t
Tomonaga-Luttinger (TL) Hamiltonian, describing th
0031-9007y96y76(9)y1505(4)$06.00
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low-energy limit of locally interacting 1D electrons [2,8]
defined by the Hamiltonian density

H ­ yF

"
c

y
L,si

d
dx

cL,s 2 c
y
R,si

d
dx

cR,s

#
1 g1Js

L J2s
R 1 g2Js

L Js
R 1 g3sJs

L J2s
L 1 Js

R J2s
R d

1 g4c
y
L,scR,sc

y
R,2scL,2s . (1)

HereJs
LyR ;: c

y
LyR,scLyR,s : are the chiral Fermion cur-

rents of the left and right moving components of the ele
tron field Cssxd, expanded about the Fermi points6kF:
Cssxd ­ e2ikF xcL,ssxd 1 eikF xcR,ssxd. The Hamilton-
ian (1) describes left and right moving relativistic Fermion
in (1+1) dimensions which interact via forward scatterin
without spin flip (g1, g2, and g3) or with spin flip (g4).
“Umklapp” processes are suppressed away from half-ba
filling, so this model provides a complete picture of pos
ble local interactions in this case. (Trivial forward scatte
ing terms which can be absorbed by redefining the Fe
velocity have not been explicitly written out.)

The TL Hamiltonian is conveniently bosonized [9] b
introducing charge and spin currents and the correspo
ing bosonsfc and fs with conjugate momentaPc and
Ps, respectively:

J
cys
L ;

1
p

2
sJ "

L 6 J
#
Ld ­

1
p

4p
sPcys 1 ≠xfcysd , (2)

and accordingly for right movers. The resulting theo
describes separate spin and charge excitations mo
with velocities yc ­

yF

2 1
g3

2p and ys ­
yF

2 2
g3

2p , re-
spectively:

H ­
X

n­s,c

(
ynfs≠xfnd2 1 P2

ng 1
gn

4p
fs≠xfnd2 2 P2

ng

)
1 g4 3 const3 cos

p
8pfs, (3)

wheregc ­ g1 1 g2 and gs ­ g2 2 g1. The charge inter-
actiongc can be absorbed into the free Hamiltonian by
simple rescaling of the charge boson, but the spin int
actionsgs and g4 obey Kosterlitz-Thouless renormaliza
tion group equations [10] with flow lines along hyperbola
g2

s 2 g2
4 ­ const (to lowest order). Forgs . 2jg4j the
© 1996 The American Physical Society 1505
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spin sector develops a gap in the low energy, long wa
length limit, but for gs , 2jg4j the system flows to a

stable fixed pointgp
s ­ 2

q
g2

s 2 g2
4, gp

4 ­ 0. For gs ­
2jg4j the interaction corresponds to one single margina
irrelevant operator, so thatgp

s ­ gp
4 ­ 0. If the flow to a

stable fixed point occurs, we can rescale the bosons b
canonical transformation to obtain a free theory (n ­ s, c)

fn ! Knfn, Pn ! PnyKn , (4)

where to first order in the coupling constants

K2
s ­ 1 2 gp

s y4pys, K2
c ­ 1 2 gcy4pyc . (5)

We now consider a semi-infinite system with anopen
boundary condition at the origin and thus require t
electron fieldCssxd to vanish atx ­ 0. This implies
cL,ss0d ­ 2cR,ss0d, or in terms of the bosonsfL,cs0d ­

2fR,cs0d 1
p

p

2 K21
c and fL,ss0d ­ 2fR,ss0d, which al-

lows an analytic continuation of the left movers onto t
negative half axis in terms of right movers

fL,nsx, td ­ 2fR,ns2x, td 1 const, x , 0 (6)

(n ­ s, c, const ­ 0,
p

p

2 K21
c ). We can therefore de

scribe the theory in terms of left movers only whic
live on the full complex planewithout an explicit bound-
ary condition. Using this formalism, the single electro
Green’s function can be calculated in a straightforwa
way:

kCy
ssx, tdCssy, 0dl ­ eikF sx2ydGsx, y, td

1 e2ikFsx2ydGs2x, 2y, td

2 eikFsx1ydGsx, 2y, td

2 e2ikFsx1ydGs2x, y, td , (7)

where the chiral Green’s functionGsx, y, td is a product
of spin and charge contributions

Gsx, y, td ~
Y

n­c,s
synt 1 x 2 yd2sKn1K21

n d2y8

3 synt 2 x 1 yd2sKn 2K21
n d2y8

3

√
j4xyj

fy2
nt2 2 sx 1 yd2g

!sK22
n 2K2

ndy8

. (8)

Here, x and y denote the distance from the bounda
(x ­ 0) and the time carries an implicit ultraviolet cuto
t 2 ie. We can see that in the limitxy ¿ jsx 2 yd2 2

y2
nt2j the last factor in Eq. (8) goes to unity and w

recover the known bulk correlation function [2] (as w
do in the noninteracting caseKc ­ Ks ­ 1).

To understand the physical implications of the boun
ary correlation function we study thelocal spectral density
Nsv, rd, which is given in terms of the Green’s functio
as

Nsv, rd ;
1

2p

Z `

2`

eivtkhCy
ssr, 0d, Cssr , tdjl dt , (9)

wherev is measured relative to the Fermi energy andr is
the distance from the boundary. Without the bounda
1506
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this integral can be done exactly [11] with the resu
that the spectral density scales at the Fermi surface
Nsvd ~ jvja, where the exponent in the bulk is given b

a ­ sK2
c 1 K22

c 1 K2
s 1 K22

s dy4 2 1 . (10)

However, the boundary clearly has an effect on th
exponent, and simple power counting shows that we e
pect a crossover to a boundary dominated regime forv ,

ynyr with a novel exponentaB ­ sK22
c 1 K22

s dy2 2 1.
Interestingly, the boundary exponentaB thereforealways
dominates for sufficiently smallv. Moreover, we no-
tice that the last two terms in Eq. (7) make a contributio
which oscillates at twice the Fermi wave vector and dro
off with the distance from the boundary proportional t
ei2kF rr2sK2

c 1K2
s dy2. This contribution is reminiscent of a

Friedel oscillation, although it can probably not be ob
served directly, since experimental measurements of
density of states (e.g., photoemission) will average ov
several lattice sites. We therefore ignore those “Fried
terms in the following calculations.

As an example, we consider the low-temperature Hu
bard model away from half filling, which is well under
stood in terms of the TL model [2]. In this case, th
SU(2) invariance forcesKs ­ 1, and it is known from
Bethe ansatz calculations thatK2

c °! 1y2 as U °! `

[12]. From these numbers, the well known resultNsvd ~

v1y8 for smallv follows immediately for the bulk regime
v ¿ ycyr . In the presence of the boundary, howeve
we cross over to the boundary exponentaB ­ 1y2 for
v , ycyr . After rescaling the variable of integration in
Eq. (9), we see that the spectral density is a function
the scaling variablerv only (up to an overall constant):
Nsr , vd ­ r21y8fsrvd. After a deformation of the in-
tegration contour, a numerical integration of Eq. (9)
straightforward (we subtract the divergent part). The r
sults in Fig. 1 clearly show the crossover from bounda
behavior forrvyyc , 1 with exponentaB ­ 1y2 to bulk
behavior forrvyyc . 1 with exponenta ­ 1y8 (the cor-
responding power laws are superimposed). The obser

FIG. 1. The spectral density as a function ofrv in arbitrary
units. The corresponding power laws fora ­ 1y8 and aB ­
1y2 are also shown.
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oscillations in Fig. 1 are an interesting secondary effe
which vanish asymptotically as sins2vryycdsvrd213y16

[but those arenot due to the “Friedel” terms in Eq. (7
which have been neglected].

Our results have direct relevance for photoemiss
experiments on quasi-1D metals. At low temperatu
the photoemission intensityIsvd is proportional to the
local spectral densityNsv, rd, integrated over the region
of escaping electrons and weighted by the Fermi-Di
distributionfFDsvd:

Isvd ~
Z

drfFDsvdNsv, rd . (11)

[We neglect the small thermal shift inNsv, rd at low
temperatures.]

In a boundary dominated region,Isvd is seen to be
dramatically reduced at the Fermi level compared to
“bulk region.” Moreover, the finite energy resolutionD of
the photon lines effectively introduces an averaging o
the “true” spectral density

Isvdobs ;
1

p
2pD

Z
e2sv2xd2y2D2

Isxddx . (12)

This averaging completely wipes out the power-law s
gularities in either the bulk or the boundary case as sho
in Fig. 2, where we plottedIsvdobs in arbitrary units at
T ­ 50 K for boundary (aB ­ 1y2) and bulk (a ­ 1y8)
regimes, respectively, assuming an experimental res
tion of D ­ 20 meV (experimental values according
[5]). The corresponding three-dimensional case (a ­ 0)
is also shown for comparison. In the neighborhood
the Fermi level the observed boundary dominated sp
tral density appears to be depleted with an exponen
one or larger (compared to the exponenta ­ 1y8 of the
bulk spectral function without temperature or averag
effects).

FIG. 2. The predicted intensityIobs in arbitrary units as
a function of v for boundary and bulk cases (i.e., fo
power laws withaB ­ 1y2 and a ­ 1y8, respectively). The
corresponding three-dimensional case (a ­ 0) is also shown.
Temperature (T ­ 50 K) and finite resolution (D ­ 20 meV)
effects have been taken into account according to Eqs. (11)
(12).
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In experiments the condition for boundary behavio
v , ycyr will be fulfilled over an energy rangev ,
EFy,, where, is the distance from the boundary in units o
the lattice spacing. This means that if the effective leng
, of the 1D chains is about one hundred lattice spacin
the boundary effects are observed over a region o
&100 meV around the Fermi energy (e.g., correspondi
to an “impurity” density of 1% close to the cleaved
surface). Turning to the photoemission data report
in [5], a combination of boundary effects and a finit
experimental resolution go a long way to account for th
observed suppression of spectral weight at the Fermi lev
The experiments indeed suggest a scalingIsvdobs ~ vaobs

with aobs . 1 extending, however, over a larger energ
interval, and some additional mechanism (e.g., long-ran
interactions [5,11] or electron-phonon coupling [13]) ma
have to be invoked to fully explain the data. Another wa
of directly examining the boundary region would be t
probe the single crystal face where the open ends of
chains are. Since the electrons have an escape dept
only a few lattice spacings, the boundary exponent sho
be observable over a much larger energy range.

As a second example of the effect of open boundari
we consider the momentum distribution of afinite system
with length L and open boundary conditions, which ca
be expressed in terms of the chiral Green’s function

nsk, Ld ;
1
L

Z L

0
dx dy cosksx 2 ydGsx, y, 0d , (13)

where k is measured relative to the Fermi wave vecto
kF [we also implicitly subtractns0, Ld to remove any di-
vergences]. The bulk behavior can be determined by ta
ing L °! ` and by simple power counting we see tha
nsk, `d ~ jkja , wherea is again given in Eq. (10). How-
ever, boundary effects will be present, and moreover w
have to consider that we are now dealing with afinite
system (i.e., open boundary conditions both atx ­ 0 and
x ­ L). One way of determining the correct correlatio
functions in this case is to assume conformal invarian
in the complex planez0 ­ x 1 iynt (which is justified
in the low-energy, long-wavelength limit and with decou
pled spin and charge sectors). We then simply perfo
a conformal transformation onto a cylinder with circum
ference2L: z0 °! eipzyL [after the analytic continuation
in Eq. (6)]. Since we know the chiral Green’s functio
in the plane (z0), we immediately obtain the result for the
finite case [14] (using the transformation rules for prima
fields)

Gsx, y, td ~ 2
Y

n­c,s

√
2L
p

sin
psynt 1 x 2 yd

2L

!2sKn1K21
n d2y8

3

√
2L
p

sin
psynt 2 x 2 yd

2L

!2sKn2K21
n d2y8

3

√
sinpx

L sinpy
L

sinpsyn t1x1yd
2L sinpsyn t2x2yd

2L

!sK22
n 2K2

nd2y8

.

(14)
1507
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FIG. 3. The apparent exponentaapp of the momentum
distribution for a finite system as a function ofkL according to
Eq. (13). AskL ! `, the bulk exponenta ­ 0.125 is slowly
approached.

We expect the critical behavior to be changed dram
ically by this transformation, but now the exponent ca
not be determined by simply counting the powers in t
finite Fourier transform. Again, the momentum distrib
tion is a function of a scaling variablekL only up to an
overall constantnsk, Ld ­ L2afskLd. We are mostly in-
terested in theapparentcritical exponentaapp near the
Fermi wave vectornsk, Ld ~ jkjaapp . This apparent ex-
ponent will change slowly depending on the scalekL at
which we probe the system, so it is useful to define a sc
dependent exponent in terms of the logarithmic derivat

aappskLd ;
k

nsk, Ld
≠n
≠k

sk, Ld . (15)

As our example we consider the case of the largeU
Hubbard model again. After calculatingaapp numerically
as shown in Fig. 3, we find that the crossover is extrem
slow. Even for huge values ofkL , 106 we are still
considerably far away from the accepted bulk expon
a ­ 0.125. Sincek is assumed to be small compared
kF , this means that even macroscopic samples of sev
centimeters will have a finite-size dominated momentu
distribution nearkF . A slow crossover is also observe
for a periodic (but finite) system, which is shown fo
comparison in Fig. 3. The observed behavior is theref
mostly a finite size effect, but systems with anopen
boundary condition show an even slower crossover.
1508
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In conclusion, we have shown that an open boundary
a pronounced influence on the observed critical expone
in quasi-one-dimensional metals. The spectral density
shown to bealwaysdominated by the boundary expone
for frequencies close to the Fermi energy, which h
direct consequences for the interpretation of photoemiss
experiments. The momentum distribution exhibits stro
finite size and also boundary effects close to the Fe
wave vector and the crossover to “bulk” behavior
extremely slow.
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