VOLUME 76, NUMBER 9 PHYSICAL REVIEW LETTERS 26 EBRUARY 1996

Stability of Quasiequilibrium Cracks under Uniaxial Loading
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We propose a linear stability analysis of a straight crack subjected to uniaxial loading. We argue that,
under quasistatic extension conditions, the crack propagation follows a straight path until the creation of
a “physical” shear stress at its tip. This instability leads to a deviation of the fracture from the direction
perpendicular to the applied loading. We compare our tip criterion instability with both experimental
results and previous theoretical models.

PACS numbers: 62.20.Mk, 46.30.Nz, 81.40.Np

Recently, crack propagation problems have attracted atnhomogeneities. Finally, we will apply our approach to
tention of the physics community. This renewal of in-two simple cases and a comparison with previous results,
terest was essentially caused by experimental realizatiorespecially those of Cotterell and Rice (CR) [8], will be
of both equilibrium [1] and dynamic fracture mechanicsdone.

[2]. From the theoretical side, the study of crack propaga- In a two-dimensional linear isotropic elastic model, the
tion can be subdivided in two classes. First, for the studytrain tensoE(x,y) is related to the stress tensbfx, y)

of dynamical fracture formation, a long-standing problempy 3 relation of the form [9]

exists. According to theory [3], cracks in brittle materi-

als are supposed to accelerate up to the Rayleigh wave _ 1

speed. InpSXperiments, however,pthe cracks Ys,elgom ex- Eij = 3{0Ui/ox; + aU;/dxi)

ceed half this speed [2]. Moreover, the mechanisms that

govern the dynamics of cracks are not well understood, = (1/2w) {2 — [k —2/2(k — D] 2 8ij}. (1)
and a theory of instability does not exist yet. The second

field of crack propagation concerns slow or quasiequilibHere the subscripts are two-dimensional coordinate in-
rium cracks. For this case, the work of Griffith [4] is often dices; repeated indices indicate summatiod. is the
seen as the beginning of equilibrium fracture mechanics adisplacement vector angd = 2(1 — »)/(1 — 2v») [k =

a quantitative science of material behavior. Recent ex2/(1 — »)] for a plane strain (plane stress) problem.is
periments [1] have shown that a crack traveling in a strighe Poisson ratio, and is the Lamé coefficient.

submitted to a nonuniform, but unidirectional, thermal dif- The problem of an equilibrium crack of unknown
fusion field undergoes numerous instabilities. It has beeshape in an elastic medium, which is opened by tractions
established that at well-defined critical values of the con—p(x), at the surface, consists of solving the equilibrium
trol parameters a moving straight crack becomes unstabkguations

after which a wavy crack path appears. In a recent theo-

retical work [5], in relation with that experiment, a linear 93;;/dx; = 0 and V23 =0 2
stability analysis of a straight crack based on a crack tip

propagation criterion was introduced. The criterion statesvith the boundary conditions on the crack faces

that the crack tip will extend out of the centered straight (Si + pidn; =0 3)
direction as soon as it is submitted to a “physical” shear i P ’

stress. In this paper, we will show that the treatment inwhere 2 is the unit vector normal to the crack edges.
troduced in [5], which accounts for the appearance of wavyrhis load configuration can be either the present one
crack patterns, is not specific to this thermoelastic problenor that necessary to superimpose on the stress field
Moreover, we generalize this criterion to the study of thefor an uncracked body to remove the stresses from the
stability of a straight crack subject to any uniaxial loadingboundary of the crack. At this stage, we do not need to
in two dimensions. Although the notion of stability is sys- specify the conditions on the boundaries of the medium.
tematically used for hydrodynamic systems [6], it has notUnder equilibrium conditions, the crack shape depends
been performed yet for the study of fracture problems. essentially on the applied stresses. The mathematical

As an introduction, the quasiequilibrium crack problemformulation of this problem is as follows: Given the
will be posed in its general form. Then, admitting the boundary conditions (3) for a crack whose shapeais
Griffith theory [4] and the so-called principle of local priori unknown, the solution of the whole problem will
symmetry [7,8], we will perform a linear stability analysis determine the correct shape of the crack [9]. Formally,
of equilibrium cracks subjected to unidirectional loading.there might exist more than one solution to the global
This defines a stability criterion for the straight crack problem, and one has to select the crack shape which also
in the presence of intrinsic perturbations due to materiaatisfies two stability criteria.
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First, the solution must satisfy a condition related to thebe slightly perturbed [7,8]. Such a deviation, due to an
energy criterion introduced by Griffith [4]. Defining the instability of the straight crack, will create a shear loading
energy release rate as the reduction in the total potential which may cause the crack tip to follow a path which is
energy, which is the sum of the stored elastic energyamplified compared to the initial perturbation. Therefore,
We1 and the potential energy ¢ of the external forces, we investigated the problem in a different manner than
associated with a small virtual crack advanbe Griffith  in [8]: we do not analyze it at the levé{;; = 0, but we
states that the crack is at @itical value of incipient examine when a tiny perturbation of the path is amplified.
growthif G is equal to the fracture enerdy To perform the linear stability analysis let us introduce
P 9G a small smooth perturbation, with a given wavy shape:
=—-—— (W — ¢)=T,with — =0. (4)

9s 9s y(x) = Af(x) + 0(4%), (7)

I'isa _materlal constant independent of the crack Shap\(/evhereA is a constant small amplitude. The crack is
and of its dynamics.

On the other hand, thectiterion of local symmetry arranged so that the unperturbed shape is located at

L y = 0. By small deviations from a straight crack, it must
[7,8] states that the path(x) taken by a crack in brittle be understood thaty(x)| < 1 and|y'(x)| < 1, because

homogeneou_s isotropic_m_aterial is the one for which thefhe length difference between the two paths must also
local stress field at the tip is of mode I type. Let us recallbe small. In addition to the straight crack perturbation

that the mode | loading causes an opening of the fracture iven by Eq. (7), we introduce a supplementary condition:
while the mode |l loading causes a shearing off. The local yEg. (1), PP Y :

analysis in the neighborhood of a crack tip shows that thg(o) —oat the crack_ tp (supposed to bexat_=_ 0). This
= condition is not restrictive, since the instability occurs for

asymptotic stress tensor field, in the polar coordinate 5 siraight crack. It is therefore sufficient to compare these
system (,0), takes the universal form [3] two configurations at the same location of the crack tip.
Ki Ki .p The perturbation method we use does not differ too
2(r,0) = \/2—fij(0) + N (@), (3  much from the one followed in Ref. [8] for the study
r mr of slightly curved cracks. We develop the stress and

where f1:(6) and f1!(6) are universal functions common displacement fields in:

to all configurations and loading conditions. The influ-

ence of configuration and loading are included in the S = oy + Asi; + 0(A%),
asymptotic description of stress only through the scalar U = u + Av: + O(A2
multipliers K1 and K1, which are the elastic stress inten- P vi (4%,
Z%Ifact%se %friigtreiorrqogfel(lcaarrds nr]norgit:l I?eaaﬂﬂ%z’ tr:;peifénd solve first for the straight crack and then for the first
a shyéar loading exists at the grack tigﬂ % 0 and thé order perturbation in the amplitudé. Because of the

crack will move by changing abruptly the orientation of symmetryA — —A, one notes that the even perturbation
the path y ging pty orders are of pure mode | type, while the odd ones are

Now consider a straight crack subjected to mode Imc pure mode Il type. Expanding Egs. (2) and (3) around

; . . A = 0, one has to solve the equilibrium equations (2) for
!oadlng and take a coordlnat_e system Sf thattrexis 5(x, y), with the following conditions on the crack faces:
is parallel to the crack. Nominally;;j(x) = p(x)8;,8j,
and K = 0, so the criterion of local symmetry is d
automatically satisfied. Therefore the extension condition $»(¥:0) =0, sy(x,0) = ax [/(&)ox(x,0]. (10)
of the straight crack and its stability are given by Egs. (4)
only. Moreover, in this case there is a correspondence Using the tangential U,(x,y(x)) and normal
relation between the energy release rate and the Stregs (x,y(x)) displacements to the crack faces, one
intensity factor [10], sinceG = Ki. In the quasistatic can calculatek!® and K'Y, the stress intensity factors of

(8)

K1 = K., with aKI/aX =0. (6) . 2 B
K}Ot =« XII_(T(-)[ __)C {Un[X,er(X)] - Un[x’y (x)]},
Note that only positiveK; are permitted. 1K} < 0, the (11)

crack reseals and the analysis above using vanishing trac-
tion conditions on the crack faces will not be applicable. tot __ . 2 + B _

The question at rest is: if the conditions (6) are satisfied, ki = a len(?f \ —x Wlx, y" @] = Uil y~ (O},
does the crack always grow in the direction for any (12)
mode | loading? In fact, due to the imperfections in the
system, the stress intensity factor of mode Il loading willwhere the superscripté+, —) design the upward and
differ slightly from zero. So, the crack alignment will downward limits anda = u(x — 1)/2k is a material
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constant. To leading order i, we obtain tip, which remains once the square-root singularity has
been subtracted out. But, in our approach, we represented
K = Ky + 0(A%), (13) from the beginning the inhomogeneities of the material

by a perturbation of the straight crack given by a fully
K19/y'(0) = K7 /y'(0) + %KI + 0(A?), (14) wavy path. We analyzed when the shear effect leads to
an amplification of the intrinsic deviations of the crack
which shows thatk{* is still given by Kj, the stress alignment. In fact, our stability analysis performs the
intensity factor of the straight crack. The stress intensityapproach followed in the study of a large variety of
factor K1; is the shear effect introduced by the first orderphysical systems [6].
perturbation of the loading. It is given by the resolution Equation (14) shows thak(t'/y’(0) is the sum of two
of a pure mode Il problem for a straight crack terms: The first oneky;/y’(0), is due to the variation

of the stress fieldY with @. The second term of

Ki = aA lim /2_77{vx(x’0+) — v.(x,00)}.  (15) Eq. (1_4),_1(1/2, is a geo_metri_cal stabilizing effect. This
x—0~ \ —x quantity is always positive in the range of parameters
for which a straight crack can exist, so it tends to favor

At this stage, two remarks have to be made. First, thehe straight configuration by damping the perturbation
crack will not propagate if the Griffith energy criterion given by Eq. (7). It is foreseeable that the instability
is not satisfied. The stress intensity facf* must still  of the straight crack occurs when the perturbation of the
satisfy Egs. (6). Second, the linear stability analysis willstress field shows a destabilizing effect. That is, when
not contradict the criterion of local symmetry. On the g}, /y/(0) < 0, which tends to amplify the instability of
contrary, it is based on an observation which followsthe straight crack. The transition will then occur when
from this principle. When a crack is submitted to a sheathe two effects cancel exactly. This condition gives the
loading, its extension will deviate from the pre-existing critical values of the control parameters for which a smalll
path by an angle whose sign is opposite to the one of thgeviation from the straight crack begins to introduce a
stress intensity factor of the mode Il loading. From thisphysical shear loading at the crack tip. At this threshold,
observation, the stability condition for the straight crackif it exists, the straight crack becomes unstable and a
stated hereafter follows immediately. curved crack path appears.

Our linear stability analysis is then based on the The condition for instability for the experiment de-
following physical arguments. Ifif'/y'(0) is found  scribed in [1] as well as the selected wavelength have been
positive, this means that the stress intensity fackdf,,  deduced quantitatively in [5]; the agreement with experi-
and the orientation of the crack tip/(0), are of the ments was shown to be favorable. On the other hand, re-
same sign. Therefore, according to the criterion of locatent attempts [11] to apply the CR criterion to the same
symmetry, the crack tip tends to follow a path for which experiment has given stability thresholds significantly dif-
| y'(0)] decreases and, consequently, the amplitude of thesrent from the experimental results. However, in order to
perturbation will decrease. On the other hand, wherexamine the generality of our linear stability analysis, we
K11 /y'(0) <0, the slope|y’(0)| will increase in order il consider below two classical crack configurations in a
to restore a pure mode | local stress field at the tipywo-bidimensional body of infinite extent which is opened
So, under a small perturbation of its shape, the straighy a normal mechanical traction at the surface. This
crack will be stable ifkii'/y'(0) is positive and unstable configuration is chosen for its simplicity; it can be treated
elsewhere. The crack path will thus deviate from aysing Muskhelishvili's [12] method for straight cuts.
straight propagation onckii'/y’(0) < 0 is satisfied. In Let us take as a first example a semi-infinite crack with
fact, our scheme consists of searching for condition%(x) = TO(x + I), whered() is the Heaviside function
where a small perturbation of the linear crack can creatgnd the crack tip is located at = 0. The body is
a shear loading which amplifies the intrinsic instabilities.a|so assumed to be loaded at infinity by a str&§s
Of course, once this threshold is reached, the extendingara||e| to the crack. In this case [1§; = 27+/21/x
crack will choose a curved path which satisfie§' = 0. and o, = [R — 6(x + I)]T on the crack surface. As

Although our perturbation method iS Close to the one Ofa S|mp|e Smooth dev|at|on Of the Crack Shape that may
CR [8], the two stability analyses are completely different.exhibit the stability properties we seek, we assume that the

This difference is not due to the approximation of anperturbationf(x) can bef(x) = sinwx. Then Eq. (14)
infinite medium assumed in [8]. More precisely, dai}' gives

of Eq. (14) corresponds to the;; of Eq. (42) in [8].
However, CR considered a straight crack which bifurcates Kif' _ K 1 - R 4 fl coslwt d (16)
under the effect ok;;. They assumed that independently  y/(0) 2 V2w 0 Jt '

of the value ofky; the pre-existing crack can be treated

as a straight one, an assumption that we think arguabléndependently of the perturbation wavelength, the quan-
They found that the stability condition is related to thetity in brackets is always positive onéeis negative. So
sign of the stress in the transverse direction near than this case, the quasistatic propagation of the straight
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crack is stable folR = 0. One notes that CR analysis to the criterion of local symmetry for a crack that is
would give a stability threshol@& = 1. moving at velocities of the order of the Rayleigh wave
The second problem is related to an experiment [13kpeed. Attempts to find a criterion for the deviation of the
on centrally cracked PMMA sheets loaded by a stfBss dynamical straight crack tip are all related to branching
normal to the crack and a streR¥ parallel to it. For this instabilities [14,15]. This consists of a local analysis of
case, one ha&; = T\/ma ando,, = (R — 1)T, where the stresses near the crack tip. At this stage, criteria
2a is the crack length. Using again Muskhelishvili's [12] related to maximum stresses [14,15] in the presence (or
method one finds that Eq. (14) satisfies absence) of dissipation or that of the maximum velocity
allowed by the equation of motion [3] (which is an
Kit' _ K 1 — E(R ~ U fliat) |1+ it extension of the Griffith theory [4]) cannot be excluded.
y'(a) 2 T -1 fila) V1 —1t ’ But since experiments often show other instabilities [2]
before attaining the velocities predicted by these theories,
(17) other phenomena have to be taken into account, such

Here the middle of the crack is chosen to berat 0. 25 _thg roughness of t'he crack surfaces, or the acoustic
emission of the crack tip.

The problem is now to determine the perturbation of the
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