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The symmetry classification of three-dimensional periodic or aperiodic crystals is given a coord
independent formulation which establishes the precise connection between Fourier-space and sup
crystallography. Superspace groups emerge without having to embed an aperiodic crystal in a
dimensional space.
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Superspace crystallography classifies the symmetry
aperiodic crystals by extending them to periodic cryst
in a higher-dimensional space. Their symmetries can t
be expressed in terms of the conventional point grou
and space groups of higher-dimensional periodic cryst
The key steps are embedding the aperiodic crystal in m
than three dimensions and applying the higher-dimensio
symmetry classification of periodic crystals [1].

Fourier-space crystallography treats aperiodic crys
the same way it treats ordinary three-dimensional perio
crystals, using a broader concept of three-dimensio
point-group symmetry that applies equally well to bo
types. This generalization of real-space point-gro
symmetry has simple consequences in three-dimensi
Fourier space. The key steps are redefining point-gr
symmetry, and expressing space-group symmetry in te
of sets of functions (calledgauge functions) linear on
the set of wave vectors at which the density has nonz
Fourier coefficients [2].

From the Fourier-space perspective the superspace
proach is underdetermined, since the embedding is
unique. In this Letter we eliminate this arbitrariness
developing the superspace formalism in terms of the tra
formations induced on the space of its gauge functions
the three-dimensional point group of a crystal. To do t
we introduce coordinate-independent definitions of B
vais class, arithmetic crystal class, and space-group t
from which follow both the informal geometric definition
of the Fourier-space approach and the coordinate-ba
algebraic definitions of the superspace approach (as
as the conventional approach to three-dimensional p
odic crystals [3]). This union of the Fourier-space a
superspace approaches gives the complete symmetry
sification of aperiodic crystals without making any use
higher-dimensional point groups.

We first review the implications of the redefinition o
the point groupG of a crystal [4] with equilibrium density
rsrd as the subgroup ofOs3d that leaves invariant the
positionally averagednth order autocorrelation function
of rsrd,

lim
V!`

1
V
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drrsr1 2 rd · · · rsrn 2 rd , (1)
0031-9007y96y76(9)y1489(4)$06.00
of
ls
en
ps
ls.
re
al

ls
ic
al

h
p
nal
up
ms

ro

ap-
ot
y
s-

by
is
-
pe

ed
ell
ri-
d
las-
f

for all n $ 2. For periodic crystals this is equivalent to
the conventional definition, but in aperiodic crystals the
are in general no rotations that leave the density inva
ant to within a three-dimensional translation, even thou
there can be subgroups ofOs3d that leave all density au-
tocorrelation functions invariant. This new definition i
appropriate because two densitiesr and r0 that agree in
all positionally averaged autocorrelation functions arein-
distinguishable: Any finite subregion is as likely to have
been taken from one density as from the other [5]. This e
pansion of the concept of point-group symmetry is esse
tial for understanding the symmetry of aperiodic crysta
and for the compact coordinate-independent construct
of superspace groups that follows. It takes on a partic
larly simple form when expressed in terms of the dens
Fourier coefficientsrskd.

The setL of all integral linear combinations of those
wave vectors at whichrskd fi 0 is called the (reciprocal)
lattice or Fourier module. A set S of vectorsgenerates
L if every vector inL is an integral linear combination of
vectors inS. The rank D of L is the smallest number
of wave vectors necessary to generate it. (Periodic thr
dimensional crystals have rank 3.) A set of wave vecto
bs1d, . . . , bsDd that generatesL is a basis if the bsid

themselves are all inL. A fundamental theorem of
module theory [6] establishes thatL can always be given
a basis. Thepoint group GL of a lattice L is defined
in the conventional way as the subgroup ofOs3d that
permutes its wave vectors. The point groupG of a crystal
is necessarily a subgroup of the point groupGL of its
lattice of wave vectors.

If we express the densityrsrd in terms of its Fourier
coefficientsrskd, then it easily follows that two densities
are indistinguishable if and only if their density Fourie
coefficients are related by

r0skd ­ e2pixskdrskd , (2)

where the gauge functionx is a real-valued linear
function on L (which cannot, in general, be extende
to a function linear on all of three-dimensional Fourie
space, whenD . 3). Density Fourier coefficients at
© 1996 The American Physical Society 1489
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wave vectors that differ by a point-group operationg are
related by a particular gauge functionFg:

rsgkd ­ e2piFgskdrskd . (3)

The gauge functionsFg associated in this way with
point-group operations are calledphase functions.Phase
functions F0

g and Fg that characterize indistinguishable
densitiesr0 andr are associated with the same symmet
type. It follows from (2) and (3) that two such phas
functions are related by

F0
gskd ; Fgskd 1 xsgk 2 kd , (4)

where “;” signifies equality to within an additive integer
Sets of phase functions related by (4) are said to begauge
equivalent.

A relation between phase functions associated w
different point-group elements, thegroup compatibility
condition, follows directly from (3) and the identity
rsfghgkd ­ rsgfhkgd:

Fghskd ; Fgshkd 1 Fhskd . (5)

This completes our review of point-group symmetry.
The concepts of Bravais class, arithmetic crystal cla

and space-group type can now be defined directly in ter
of the rank-D latticeL of three-dimensional wave vectors
its point groupGL, the point groupG of the periodic or
aperiodic crystal, and the associated phase functions.

Two lattices of wave vectorsL and L0 are in the
sameBravais classif their point groupsGL and GL0 are
conjugate subgroups ofOs3d,

GL0 ­ r GL r21, (6)

for some proper [7] three-dimensional rotationr, and
there is an invertible linear mapf from L to L0 that
commutes with their point groups; i.e., for allk in L,

fsgkd ­ g0fskd, g0 ­ rgr21. (7)

The existence off ensures that the lattices are isomorph
as Abelian groups and therefore, in particular, that th
have the same rank. That isomorphism is required
(7) to preserve the action of the point groups on the
lattices. (It is this proviso that distinguishes, for exampl
the three rank-3 cubic Bravais classes.) Since a poi
group operation induces a linear map onL, we can define
a product of linear maps,

f ± g skd ­ fsgkd , g0 ± f skd ­ g0f fskdg , (8)

in terms of which condition (7) requires that

rgr21 ­ f ± g ± f21. (9)

Two crystals are in the samearithmetic crystal classif
their latticesL andL0 are in the same Bravais class, and
1490
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is possible to choose the proper rotationr and the lattice
isomorphismf in (9) so that the point groupsG and G0

of the crystals are also conjugate under the conjuga
between the point groupsGL andGL0 of their lattices [8]:

G0 ­ rGr21. (10)

Two crystals have the samespace-group typeif they
are in the same arithmetic crystal class, and to within
transformation of the form (4) the mappingf preserves
the values of the phase functionsFg andF

0
g0 of the two

crystals:

F
0
rgr21 s fkd ; Fgskd 1 xsgk 2 kd , (11)

wherex is linear onL.
To recover from this framework the conventiona

Fourier-space description of the space-group types, n
that in calculating or displaying the space-group types
a given Bravais class and point groupG, it suffices to use
a single latticeL from the class. The lattice isomorphism
f and rotationr in (11) then become lattice and point
group automorphisms. The case in whichf and r are
both the identity establishes that each gauge-equivale
class of phase functions onL is associated with the same
space-group type. The existence of nontrivialf and/
or r satisfying (9) permits the possible further groupin
of different gauge-equivalence classes of phase functi
on L into the same space-group type. This is calle
the scale equivalenceof the gauge-equivalence classes,
nomenclature reflecting the fact that just such a mappi
with f a uniform rescaling andr the identitye, played a
role in the proper identification of the rank-6 icosahedr
space groups [9].

If the point-group automorphismr is actuallyin G, and
if f is just the linear transformation induced onL by r , then
it is an elementary exercise to deduce from the group co
patibility condition (5) thatF0

rgr21 ± f andF0
g are gauge

equivalent. Consequently, the scale equivalence of disti
gauge-equivalence classes is only an issue when the la
transformationf is not induced by a member of the poin
group G. In aperiodic crystals such lattice transforma
tions often involve rescalings (sometimes combined w
rotations), or more general linear transformations ofL that
cannot be realized by any operation inOs3d. They also
arise in the periodic case, a familiar example being perm
tations of the three orthogonal twofold axes that charact
ize the point group of an orthorhombic crystal [10]. In th
case the distinct gauge-equivalence classes belonging
single space-group type are just itssettings.

Within the framework described above we can also gi
a coordinate independent definition of superspace and
cover the conventional superspace formalism.Superspace
is the setV p of all real-valued linear functionsC on the
lattice L of three-dimensional wave vectors [11]. Not
that V p is a D-dimensional vector space over the re
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numbers, for ifbsid, i ­ 1 . . . D, are a basis forL, then
the set ofD linear functionsCsid on L defined by

Csidsbs jdd ­ dij (12)

are a basis forV p: The Csid are complete since anyC
can be expanded as

C ­
DX

i­1

CsbsiddCsid, (13)

and theCsid are linearly independent over the reals, sinc
if X

i

xiCsid ­ 0 (14)

then applied tok ­ bs jd (14) givesxj ­ 0.
The superlatticeLp is the subset (aZ module) ofV p

consisting of the integral-valued linear functions onL.
Since phase functionsFg need only be specified to within
an additive function fromLp, any vectorCg in the set
Lp 1 Fg can serve equally well as the phase functionFg.

Note that we have constructed the superspaceV p and
superlatticeLp without going through the conventiona
procedure of choosing a basis forL, adding D 2 3
additional components to each basis vectorbsid to get a
set ofD wave vectorsBsid in D dimensions, constructing
a dual set ofD-dimensional vectorsAsid satisfying

Asid ? Bs jd ­ dij , (15)

and defining superspace to be the set of real linear co
binations of theAsid. Our construction of superspace i
just the usual coordinate-independent way of associatin
dual space with a vector space, generalized toZ modules.
It makes no use of any basis [12] forL or any additional
components. By not extendingL to a lattice of wave vec-
tors in D dimensions, our definition ofV p makes explicit
the fact that all relevant features of superspace are in
pendent of any such extension.

The only relevant point-group symmetries in supe
space are those induced by operations from the thr
dimensional group of symmetriesGL of L: Any g in GL

takes a linear functionC on L into C ± g, defined by

C ± g skd ­ Csgkd . (16)

Superspace groupsare the familiar generalization of
such point-group transformations ofV p, constructed out
of the set of pairshg, Cgj with g in the point groupG
and Cg in Lp 1 Fg. The action of such a pair on a
linear functionC in V p is defined by

C ± hg, Cgj ­ C ± g 1 Cg . (17)

It follows from repeated application of (17) that the
group combination law must be the semidirect produc
e

m-

a

e-

-
e-

hg, Cgj ± hh, Chj ­ hgh, Cg ± h 1 Chj . (18)

That the function paired withgh in (18) is indeed in
Lp 1 Fgh follows from the group compatibility condi-
tion (5).

The superspace groups are conventional space gro
in theD-dimensional spaceV p of real-valued linear func-
tions on the lattice of wave vectorsL. The associated
point group is just the three-dimensional point groupG of
the crystal, through its action onV p given by (16). The
phase functionFg is, to within an additive vector of the
superlatticeLp, the superspace translation that accomp
nies the point-group operationg in the pairhg, Cgj.

We recover the algebraic description of space grou
(whenD ­ 3) or of superspace groups (whenD . 3) by
picking a particular basis ofD three-dimensional wave
vectors bsid for the lattice of wave vectorsL. The
transformation of these under the point groupG defines
a D-dimensional representation ofG by matricesD of
integers:

gbsid ­
X

j

bs jdD jisgd . (19)

The transformation (16) of the associated basis (12)
the spaceV p of linear functions onL becomes

Csid ± g ­
X

D ijsgdCs jd. (20)

There is a similar expression for the transformation (1
on V p induced by the pairshg, Cgj. Each phase function
Cg associated withg has the expansion

Cg ­
X

ai
gCsid, ai

g ­ Cgsbsidd . (21)

In terms of theD-dimensional matricesD sgd and the
D-dimensional vectorsag, the superspace product (18
acquires the coordinate-dependent form

hD sgd, agj hD shd, ahj ­ hD sgdD shd, agD shd 1 ahj .

(22)

The definition of space-group type given above reduc
to the conventional definition [3] when translated into th
language of these matrices.

This completes the unification of the superspace a
Fourier-space symmetry classifications. There is, ho
ever, an important nomenclatural difference that should
noted. As originally developed for the treatment of mod
lated crystals and as subsequently applied to intergrow
compounds, the superspace concepts of Bravais class
space group make finer discriminations by further restric
ing the linear mapsf in (7) and (11). Various kinds of
restrictions specify variousequivalence relations.In the
1491
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case of modulated crystals these restrictions require the
tice automorphismf in (7) to take an appropriate rank-3
sublattice ofL, the lattice of main reflections, into itself.
In the case of intergrowth compoundsf might be required
to take two or more such subspaces into themselves.
the case of icosahedral quasicrystals no such restricti
are appropriate or possible. In the case of crystals w
rank-6 tetrahedral lattices [13] such restrictions are po
sible, but whether they are appropriate or not depends
whether one is using the space-group type to describe te
hedrally modulated cubic crystals or tetrahedrally distort
icosahedral quasicrystals. For these reasons we believ
is better to retain the nomenclature used in the period
case, characterizing any such restrictions as specifying
ferentsettingsof the Bravais class or space-group type.

We are grateful to Ron Lifshitz and Franz Gähler fo
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is supported by the National Science Foundation, Gra
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