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Superspace Groups without the Embedding: The Link between Superspace
and Fourier-Space Crystallography
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The symmetry classification of three-dimensional periodic or aperiodic crystals is given a coordinate
independent formulation which establishes the precise connection between Fourier-space and superspace
crystallography. Superspace groups emerge without having to embed an aperiodic crystal in a higher-
dimensional space.

PACS numbers: 61.44.Br, 61.44.Fw

Superspace crystallography classifies the symmetry dbr all n = 2. For periodic crystals this is equivalent to
aperiodic crystals by extending them to periodic crystalghe conventional definition, but in aperiodic crystals there
in a higher-dimensional space. Their symmetries can theare in general no rotations that leave the density invari-
be expressed in terms of the conventional point groupant to within a three-dimensional translation, even though
and space groups of higher-dimensional periodic crystalghere can be subgroups 6f(3) that leave all density au-
The key steps are embedding the aperiodic crystal in mor®correlation functions invariant. This new definition is
than three dimensions and applying the higher-dimensionappropriate because two densitigsand p’ that agree in
symmetry classification of periodic crystals [1]. all positionally averaged autocorrelation functions ire

Fourier-space crystallography treats aperiodic crystalgistinguishable Any finite subregion is as likely to have
the same way it treats ordinary three-dimensional periodibeen taken from one density as from the other [5]. This ex-
crystals, using a broader concept of three-dimensiongansion of the concept of point-group symmetry is essen-
point-group symmetry that applies equally well to bothtial for understanding the symmetry of aperiodic crystals
types. This generalization of real-space point-groupand for the compact coordinate-independent construction
symmetry has simple consequences in three-dimensionaf superspace groups that follows. It takes on a particu-
Fourier space. The key steps are redefining point-groufarly simple form when expressed in terms of the density
symmetry, and expressing space-group symmetry in ternfSourier coefficientp (k).

of sets of functions (calledjauge functionslinear on The setL of all integral linear combinations of those
the set of wave vectors at which the density has nonzerawave vectors at whiclp (k) # 0 is called the (reciprocal)
Fourier coefficients [2]. lattice or Fourier module A setS of vectorsgenerates

From the Fourier-space perspective the superspace ap-if every vector inL is an integral linear combination of
proach is underdetermined, since the embedding is naotectors inS. Therank D of L is the smallest number
unique. In this Letter we eliminate this arbitrariness byof wave vectors necessary to generate it. (Periodic three-
developing the superspace formalism in terms of the trangdimensional crystals have rank 3.) A set of wave vectors
formations induced on the space of its gauge functions bp), ..., b®) that generates. is a basis if the b®
the three-dimensional point group of a crystal. To do thighemselves are all ir.. A fundamental theorem of
we introduce coordinate-independent definitions of Braimodule theory [6] establishes thatcan always be given
vais class, arithmetic crystal class, and space-group type basis. Thepoint group G, of a lattice L is defined
from which follow both the informal geometric definitions in the conventional way as the subgroup @f3) that
of the Fourier-space approach and the coordinate-basgermutes its wave vectors. The point graipf a crystal
algebraic definitions of the superspace approach (as wal necessarily a subgroup of the point groGp of its
as the conventional approach to three-dimensional perlattice of wave vectors.
odic crystals [3]). This union of the Fourier-space and If we express the density(r) in terms of its Fourier
superspace approaches gives the complete symmetry clasefficientsp(k), then it easily follows that two densities
sification of aperiodic crystals without making any use ofare indistinguishable if and only if their density Fourier

higher-dimensional point groups. coefficients are related by
We first review the implications of the redefinition of
the point grougG of a crystal [4] with equilibrium density p'(k) = 2™X® 5 (k) @)

p(r) as the subgroup 0O (3) that leaves invariant the
positionally averageath order autocorrelation functions |, nare the gauge functiony is a real-valued linear

of p(r), function on L (which cannot, in general, be extended
i 1 J 1 to a function linear on all of three-dimensional Fourier
VALV rpry =) p(ry — 1), (1) space, whenD > 3). Density Fourier coefficients at
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wave vectors that differ by a point-group operatiprare is possible to choose the proper rotatiomand the lattice
related by a particular gauge functidn,: isomorphismf in (9) so that the point group§ and G’
p(gk) = 27%®) (k) 3) of the crystals are also conjugate under the conjugacy

between the point grou and G, of their lattices [8]:
The gauge functionsb, associated in this way with P groupis; L (8]

point-group operations are callgthase functions.Phase ;L 1
functions ®, and @, that characterize indistinguishable G =rGr. (10)
densitiesp’ andp are associated with the same symmetry Two crystals have the sanmspace-group typéf they
type. It follows from (2) and (3) that two such phaseare in the same arithmetic crystal class, and to within a

functions are related by transformation of the form (4) the mappingpreserves
the values of the phase functiods, and ®,, of the two
P, (k) = O, (k) + x(gk — k), (4)  crystals:

where ‘=" signifies equality to within an additive integer.
Sets of phase functions related by (4) are said tgdee

equivalent .
A relation between phase functions associated witﬁNhﬁ;efef‘ol\'/gfa;rgnmL' this framework the conventional

Sg];ﬁjri?igtn p?(;ﬂg\?vgoudﬂr:éiyi?ésrﬁ ti(go;ﬁ dC(:&pe;ggg?{y Fourier-space description of the space-group types, note
([gh]k) = p(s[hK]): that in calculating or displaying the space-group types for
piL8 pi& ' a given Bravais class and point groGy it suffices to use

D, (fk) = Dy(k) + x(gk — k), (1)

_ a single latticel. from the class. The lattice isomorphism
Dyn(k) = Dy (hk) + Py(k). ) f and rotationr in (11) then become lattice and point-
This completes our review of point-group symmetry. group automorphisms. The case in whi¢hand r are

The concepts of Bravais class, arithmetic crystal clas0th the identity establishes that each gauge-equivalence
and space-group type can now be defined directly in termslass Of phase functions dnis associated with the same
of the rankd lattice L of three-dimensional wave vectors, SPace-group type. The existence of nontrivfaland/
its point groupGy, the point groupG of the periodic or  ©f r_SatISfylng 9) permits the possible further grouping
aperiodic crystal, and the associated phase functions. of different gauge-equivalence classes of phase functions
Two lattices of wave vectord. and L' are in the ©n L into the same space-group type. This is called

sameBravais classf their point groupsG, and G, are the scale equivalencqf the gauge-eqqivalence classes_, a
conjugate subgroups @i (3) nomenclature reflecting the fact that just such a mapping,

with f a uniform rescaling and the identitye, played a

G =rGrr, ®)  role in the proper identification of the rank-6 icosahedral
for some proper [7] three-dimensional rotatien and  space groups [9].
there is an invertible linear map from L to L' that If the point-group automorphismis actuallyin G, and
commutes with their point groups; i.e., for &llin L, if fis justthe linear transformation induced bivy r, then
it is an elementary exercise to deduce from the group com-
f(gk) = g'f(k), g' = rgr t. (7)  patibility condition (5) that®d,,,- o f and®/ are gauge

. . _ _equivalent. Consequently, the scale equivalence of distinct
The existence of ensures that the lattices are isomorphicgauge-equivalence classes is only an issue when the lattice
as Abelian groups and therefore, in particular, that theyransformationf is not induced by a member of the point
have the same rank. That isomorphism is required byroup G. In aperiodic crystals such lattice transforma-
(7) to preserve the action of the point groups on theikjons often involve rescalings (sometimes combined with
lattices. (Itis this proviso that distinguishes, for example rotations), or more general linear transformations dfiat
the three rar.lk-3. cubic Bra_vais classes.) Since a Poinkannot be realized by any operationd@r3). They also
group operation induces a linear mapoywe can define  rise in the periodic case, a familiar example being permu-
a product of linear maps, tations of the three orthogonal twofold axes that character-
ize the point group of an orthorhombic crystal [10]. In this
fog (k) =f(gk), g of (k) =g[fk)], (8) case the distinct gauge-equivalence classes belonging to a
single space-group type are justsesttings
Within the framework described above we can also give
S 1 9 a coordinate independent definition of superspace and re-
rer fegef (®)  cover the conventional superspace formalisPuperspace
is the setV* of all real-valued linear function¥ on the
Two crystals are in the sanagithmetic crystal clasgf  lattice L of three-dimensional wave vectors [11]. Note
their latticesL andL’ are in the same Bravais class, and itthat V* is a D-dimensional vector space over the real

in terms of which condition (7) requires that
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numbers, for iftb®, i = 1...D, are a basis fol, then {g, W} o {h, W)} = {gh, ¥, o h + V,}. (18)
the set ofD linear functions¥?¥) on L defined by
o That the function paired withgh in (18) is indeed in
VOB = & (12)  L* + @, follows from the group compatibility condi-
tion (5).

The superspace groups are conventional space groups
in the D-dimensional spac&” of real-valued linear func-
tions on the lattice of wave vectodls. The associated
point group is just the three-dimensional point grakif
the crystal, through its action ovi* given by (16). The
and the?® are linearly independent over the reals, sincephase functiond, is, to within an additive vector of the
if superlatticeL*, the superspace translation that accompa-

o nies the point-group operatignin the pair{g, ¥,}.

Zx’\lf(’) =0 (14) We recover the algebraic description of space groups

i (whenD = 3) or of superspace groups (whé&n> 3) by
picking a particular basis oD three-dimensional wave
vectors b for the lattice of wave vectord.. The
transformation of these under the point gropdefines
a D-dimensional representation ¢f by matricesD of
integers:

are a basis fo*: The W) are complete since any
can be expanded as
V=) ¥b)wo, (13)

D
=

1

then applied tk = b)) (14) givesx/ = 0.

The superlatticeL* is the subset (& module) of V*
consisting of the integral-valued linear functions fn
Since phase functior®, need only be specified to within
an additive function fromL*, any vector¥, in the set
L* + &, can serve equally well as the phase func _ N

Note that we haveqcon{;tructed the psupersp‘atgnrm gh = > b DIi(g). (19)
superlatticeL* without going through the conventional J
procedure of choosing a basis fdr, adding D — 3
additional components to each basis vediit to get a
set of D wave vectorB) in D dimensions, constructing
a dual set ofb-dimensional vectord?) satisfying

The transformation (16) of the associated basis (12) for
the space/* of linear functions orl. becomes

Vi o g =72 Dii(g)¥!, (20)
AD Bl = 8ijs (15)

and defining superspace to be the set of real linear com- There is a similar expression for the transformation (17)
binations of theA. Our construction of superspace is On V" induced by the pair§g, ¥,}. Each phase function
just the usual coordinate-independent way of associating ¥¢ @ssociated witly has the expansion
dual space with a vector space, generalized taodules.
It makes no use of any basis [12] féror any additional W, = > al ¥ gl = w,(b"). (21)
components. By not extendirigto a lattice of wave vec-
tors in D dimensions, our definition of * makes explicit In terms of theD-dimensional matricesD (g) and the
the fact that all relevant features of superspace are inde-dimensional vectors:,, the superspace product (18)
pendent of any such extension. acquires the coordinate-dependent form

The only relevant point-group symmetries in super-
space are those induced by 'operatio!ws from .the threq@(g), a D (h), ap} = {D()D(h), a;D(h) + ay}.
dimensional group of symmetrig€s; of L: Any g in G
takes a linear functio” on L into ¥ o g, defined by (22)

¥ oo g (k) = V(gk). (16) The definition of space-group type given above reduces
to the conventional definition [3] when translated into the
language of these matrices.

This completes the unification of the superspace and
Fourier-space symmetry classifications. There is, how-
ever, an important nomenclatural difference that should be
noted. As originally developed for the treatment of modu-
lated crystals and as subsequently applied to intergrowth

Vol W)=Wog+V,. (17) compounds, the superspace concepts of Bravais class and
space group make finer discriminations by further restrict-
It follows from repeated application of (17) that the ing the linear mapg in (7) and (11). Various kinds of
group combination law must be the semidirect product restrictions specify variousquivalence relations.In the

Superspace groupare the familiar generalization of
such point-group transformations &f*, constructed out
of the set of pairdg, ¥,} with g in the point groupG
and ¥, in L* + ®,. The action of such a pair on a
linear functionV in V* is defined by
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case of modulated crystals these restrictions require the lat- generated by a set of three-dimensional wave vectors is

tice automorphisny in (7) to take an appropriate rank-3 precisely such a structure. o . .
sublattice ofL, thelattice of main reflectionsinto itself. [7] The exclusion of conjugacy via improper rotations is
In the case of intergrowth compoungisnight be required irrelevant in three dimensions, since proper and improper

to take two or more such subspaces into themselves. [n rotations differ by the inversion, which drops out of (6).
the case of icosahedral quasicrystals no such restrictions If the physical space of interest has an even number of

. . . dimensions, however, requiring conjugacy by a proper
are appropriate or possible. In the case of crystals with

- S rotation preserves the distinction between enantiomorphic
rank-6 tetrahedral lattices [13] such restrictions are pos- pairs of Bravais classes. This possibility arises, for

sible, but whether they are appropriate or not depends on  gxample, in the aperiodic two-dimensional case. See N. D.

whether one is using the space-group type to describe tetra-  Mermin, D. S. Rokhsar, and D. C. Wright, Phys. Rev. Lett.
hedrally modulated cubic crystals or tetrahedrally distorted 58 2099 (1987).

icosahedral quasicrystals. For these reasons we believe {8] An important but peripheral technical point that arises
is better to retain the nomenclature used in the periodic in the periodic case under the discussion Bfavais
case, characterizing any such restrictions as specifying dif- ~ flocks Two crystals are also assigned the same arithmetic
ferentsettingsof the Bravais class or space-group type. crystal class even if one of the lattices (say) has
We are grateful to Ron Lifshitz and Franz Géhler for a higher symmetry than the other, provided the two
their perceptive comments on an earlier draft. This work crystals continue to be related by (6)-(10), whéig is a

. . . . subgroupof the full point group ofL’. This is because the
ﬁoéug&g;ezdzgggghe National Science Foundation, Grant extra symmetry of.’ is, as a matter of physics, accidental

and irrelevant. Thus a crystal with a tetragonal point group
G whosec/a ratio drops from 1.01 to 0.99 as a function

[1] For a review, see T. Janssen, A. Janner, A. Looijenga-  Of temperature happens to have a lattice in a cubic Bravais
Vos, and P. M. de Wolff, innternational Tables for Crys- class at a single temperature. But even at that unique
tallography, edited by A.J. C. Wilson (Kluwer Academic, temperature the crystal is placed in a tetragonal arithmetic
Dordrecht, 1992), Vol. C, p. 797. cry;tal class., becguse the point group of. t_he crygtal is not

[2] For a review, see D.A. Rabson, N.D. Mermin, D.S. cubic. An arithmetic crystal class is identified by its point
Rokhsar, and D.C. Wright, Rev. Mod. Phy83, 699 groupG and the lowest symmetry Bravais class associated
(1991); N.D. Mermin, Rev. Mod. Phy$4, 3 (1992). with it in this extended sense. .

[3] For a summary, see H. Wondratschek, liternational [9] D.S. Rokhsar, D.C. Wright, and N.D. Mermin, Phys.
Tables for Crystallographyedited by T. Hahn (Kluwer Rev. B37, 8145 (1988)..

Academic, Dordrecht, 1995), Vol. A, p. 711. [10] A2Ie§s familiar example is the tetrahedral space-group type

[4] We use the term “crystal” to mean periodic aperiodic PZ3 (Pa3) which has two distinct gauge-equivalence
crystal, refining the term further only when we wish to classes related by the lattice transformatjomduced by
distinguish between periodic and aperiodic crystals, or to @ fourfold rotation.
emphasize that we have both types in mind. [11] The * used here and below is the conventional sign for a

[5] Two tilings have indistinguishable densities if they belong dual space; it is not the used to distinguish reciprocal
to the samelocal isomorphism classIndistinguishable space from real space.
densities that differ by more than a three-dimensionalll2] We introduced a basis to prove that* was a D-
translation are said to differ by ghason. dimensional vector space, but that basis played no role

[6] The theorem establishes that evefymodule has a basis. in the construction o¥/*.

See’ for examp|e, B. Harﬂey and T.O. HawkesﬁimgS, [13] J. Dréger, R. LlfShltZ, and N.D. Mermin, iﬁroceedings
Modules and Linear AlgebréChapman and Hall, London, of the 5th International Conference on Quasicrystals,
1970). A Z module is defined as a vector space except  edited by C. Janot and R. Mosseri (World Scientific,
that the scalars are restricted to be integers. The laktice Singapore, 1995), p. 72.
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