VOLUME 76, NUMBER 9 PHYSICAL REVIEW LETTERS 26 EBRUARY 1996

Passive Scalars, Random Flux, and Chiral Phase Fluids
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We study the two-dimensional localization problem for (i) a classical diffusing particle advected
by a quenched random mean-zero vorticity field, and (ii) a quantum particle in a quenched random
mean-zero magnetic field. Through a combination of numerical and analytical techniques we argue that
both systems have extended eigenstates at a special point in the spectrum invariant under particle-hole
symmetry, where a sublattice decomposition obtains. In a neighborhood of this point, the Lyapunov
exponents of the transfer matrices acquire ratios characteristic of conformal invariance allowing an
indirect determination of /r for the typical spatial decay of eigenstates.

PACS numbers: 46.10.+z, 05.40.+j, 05.45.+b

In this paper we study two simple models for passiveversal [7]. Writing the velocity in model (I) a&\ =
advection of a diffusing field: (1) a diffusing scalar Vy + V X ¢, we observe thajy, like V, is even un-
density n(x) advected by a quenched random velocityder time reversal, whereag, (the source of vorticity
field A(x) described by the Fokker-Planck equation [1]: o = V X A = —V?¢), like B, is odd. A further physi-

cal similarity between the two models is that one expects

din = Lyyn =DV’n =V - (An), 0 transport t())/ be dominated by the longest strean?lines
whereD is the diffusivity; and (Il) the random-flux model [1(b)] [8,9]; for the random-flux (passive scalar) model
[2] for a noninteracting quantum particle propagating inwith vanishing mean magnetic field (vorticity), these rare

a spatially random, zero-mean magnetic figld= V x  streamlines run along the interfaces of opposing magnetic
A =9,A, — 3,A,, where A now denotes the vector field (vorticity). The Laplacian enables fields to tun-

potential, described by the Schrodinger equation nel (diffuse) among distinct closed streamlines, and cre-
) _ 5 ates competition betweeadvectionby streamlines that
—idp = Ly ={p — A" + Vi, (n can transport the field over long distances without at-
Y being the (complex) quantum wave functiop,= tenuation, andliffusionthat leads to destructive interfer-
—iV the momentum operator, anif(x) the (scalar) €nce [10].
potential [3]. We study spatial decay of the eigenfunctions for lattice

Model (Il) has received much attention recently in the@pproximations tal, and L. Ly, is not self-adjoint,
context of the quantum Hall effect at filling facter= 5 ~ and wheng = 0 its eigenvalues occupy, in general, an
[2]. An unresolved question is whether the system ha&ré@ in the complex plane. For given we use well-
properties of a Fermi liquid, and, in particular extendedestablished numerical transfer-matrix methods and finite-

states. Previous work has addressed the energy depet#€ Scaling [11] to compute the localization length [12]
dence of the localization lengg(E) moving inward from  On @ long strip. , o _
the band edge, with authors arriving at opposite conclu- 1ne real scalar field: is discretized on a square lat-
sions. The most careful numerical study of model (1) tofice of width L, length m. Boundary conditions in the
date concludes that all states are localized [2(b)], whered&ansverse k) direction will be discussed latern and x
others find a centraband of extended states [2(a)]. An are defined on nodes\y on links, and¢ on the nodes
analytic calculation using a replicated nonlinear sigmePf the+dual lattice. We define lattice difference opera-
model with a topological term [4] also obtains a band ofl0rS A, #x = ¢xre, = dx ANd A by = ¢y = Py,
extended states. wheree,—,,, are orthogonal lattice basis vectors. The
Our purpose is twofold. First, we explore the conse-Velocity is then A = A™ X ¢ + A™ y, where A™ X
quences of particle-hole symmetry at the band center o‘? = (—A; ¢,A, ¢) represents the discrete curl. #DEfln-
these modelsk., and describe numerical and analyticalIng the current] = —DA"n + An, where [An]x =
evidence for a divergent localization length at this point.;Ax [nx + ny+e,] represents an average of the two ends
Previous studies [2(b),5] did not allow for this symme- of the link, the equation of motion i&n + A~ - J = 0.
try at the band center [6]. Second, we demonstrate that Similarly, to discretize the random-flux Hamiltonian we
the properties of random flux that have drawn so muchlefine the lattice covariant derivative:
attention are exhibited by a much larger class of models,
among them the passive scalar model (1). Dy
Magnetic field and vorticity are distinguished from prx
potential fields by their transformation under time re- L
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The vector potential has been defined on links in the where I; is the L X L unit matrix, Q =T79'T 1
same way as for the fluid; the scalar potentialvanishes T denotes transposition, an@d time reversal. This
unless otherwise stated. transformation inverts the sign of the antisymmetric parts

Values of the field can be computed recursively us-of L;,. The symmetry may be stated as follows: Al
ing the 2L X 2L transfer matriced¥, which yield val- is an eigenvector ofL;, with eigenvaluez, then A; =
ues ofy or n in lattice columnk + 1 andk given those 4 {* = (_n::t) is an eigenvector with eigenvalug =

in columnsk andk — 1. Lyapunov exponents are ex- 2. — ;*. The same symmetry applies to the random
tracted as logarithms of theL eigenvalues of the ma- iy gperator, wherd, = 4, z is real, andQt = 9.

trix (W(’"_)TW(’"))I/z_’” in the limit m — oo, wh(_ereW(’") = At z = E,. the two sublattices decouple, and the eigen-
[Ti= Wi; correlation lengths along the strip then corre-yectors of interest correspond to the zero eigenvalued of
spond to their inverses. We define the scaled localizatiogq 0. Furthermore, in the limitn — =, the Lyapunov
length by£(z) = 1/AL(z)L, whereA,(z) is the exponent  ayponents a, must occur in degenerate pairs; this de-
smallest in magnitude. A critical or extended phase OCyeneracy is obtained numerically and disappears for any
curs for those: where¢, (z) — &-(z) # 0 for largeL. z # E.. The decoupling is also the source of the striking
We first describe results for model (1) for incompress-gepression irg; at E. seen in Fig. 1 for both models.
ible A =A" X ¢, taking the ¢x to be independent  The depression and the degeneracy occur only for even
random variables distributed uniformly over an interval;  For oddr, periodic boundary conditions mix the two
_[—w,w]. When ¢ =0 the eigenvalues fill (uniformly, sublattices;¢; (E) reaches (at = —2.0 for the random
in d = 2) the real interva[-8D,0]. For nonzerop the  fiyx model; see inset to Fig. 1) a plateau of twice its
density of states broadens into a complex neighborhoogegenerate value as one moves in from the band edges,
of this interval. Figure 1 displays,(z) usingD = 1/4,  and maintains that value at the band center. For bdd
w =1, L = 32, and periodic boundary conditions. The andfree boundary conditions (as used in some numerical
peak_s at = 0,—8D arise because the (extended) eigen-y,dies [2(a)]).£L(E.) divergesasm — o for any finite
functions, corresponding, respectively,/tx) = no and 1 e obtain both degeneracy and divergence also for
to uniform antiferromagnetia(x), represent exact solu- the “g" models [2(a)], where the fluxes are restricted to
tions for any width. The structure is symmetric ab(_)ut thevalueszn-n/q with ¢, n integers. These properties have
line Re(z) = E. = —4D, a feature that originates in an ot peen identified before.

exactparticle-holesymmetry ofL;,. ForL evenwe di-  Nymerical evidence alone cannot distinguish an infinite
vide the lattice into its two equivalent antiferromagnetic|qcglization length from a large but finite one. We
sublattices, with.. andn._ the restriction of: to the tWo o offer analytic arguments in support of a divergent
sublattices, and = (). We can now expres£s, in correlation length ak, for the random-flux model with

block form operating on: free boundary conditions. Let, = (,” ) represent the
2L-component vector composed of the in columnsk
L, = <ECIL Q) ) and k — 1. With an appropriate choice of gauge, we
o\ Q EdL ) can write the transfer matrix in the forf, = (9* 7*),

where®; is Hermitian. Observe tha’t/,jJWk = J, where
J = (2 or); the set of matrices satisfying this identity
constitutes a group. It follows that the eigenvalues of
W, occur in inverse conjugate pairg, 1/u*, as do the
eigenvalues of any product &F,’s.

The sublattice decomposition enables us to re-
organize the components ofi; in the form
A = col{ni ,nj_i,ng,nr_;}. If L =21+ 1 is odd,
the number of components of; will alternate with k
between! and ! + 1. The transfer matrix now takes
the block form W, = (' 2 ), wherew, = (% /) and

Wi = (012 ’0’). This new form of the transfer matrix only
connects sites on the same sublattice, and@thare no
longer Hermitian nor (for odd.) necessarily square.
Because the ensemble of random matrices weigpts
FIG. 1. (a) Scaled localization lengtti,(z) for model (I),  and 6] equally, we expect that the eigenvalues of the
and contour plot. Parameters afe= 3, w =1, L =32, gypmatrix productgw ™1y (m)1/2m gnd (y(m1tym)1/2m

with periodic boundary conditions. The inset shogygz) for . . . Cib (m) — Tm
model (1), with L = 32 and fluxes chosen independently on are identical in the limitn — c, wherew™” = [T, wi

each plaquette and uniformly 66, 2] (filled circles). Empty ~and Wi = [T . It follows that the eigenvalues
circles display the ratio\} /A}. Statistical error ing,(z) is of the full transfer-matrix product occur in degenerate

= 5%. pairs; this degeneracy is observed numerically. Since
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the full transfer-matrix product is a group element, we T y T
deduce that fondd L there must be a pair of eigenvalues
with modulus unity, one from each of the two submatrix 12
products, yielding a divergest (E.).

For even L, an eigenvalue of modulus unity is not
expected for finiteL, and we instead argue that a pair
of eigenstates exists &, in the thermodynamic limit. 0.6 a
To make further progress we turn our attention from the
transfer matrixW to the operatorL, itself, and exploit 04
its off-diagonal block form (1) aE.. (For convenience, o2 b . PR |
we translate the) of energy toE,. in this discussion.) 10 100
For a lattice with an odd number of site§, @ is not L
square so that it has a nontrivial kernel afidis an  FIG. 2. Scaled localization lengthf; (z)/&16(z) plotted as
eigenvalue ofL,;. As a consequence of the singulara function of L for various z. +, X, square, * and
value decomposition, adding a new lattice site (reversin%lr?Ie represent, respectively,= —1.0, —1.0 + 0.25;,—1.0 +
the parity of N) can never increase the magnitude of thed-6/» ~1.25, =125 + 0.25i.  Error bars are displayed when

. they exceed the symbol width.
smallest nonzero eigenvalue. Because the randomness in
@ can be expected to remove any accidental exact or
near degeneracy, we anticipate rather that the magnitude _
of the smallest eigenvalue abote(and its particle-hole where A; denotes thejth largest positive Lyapunov
conjugate below0) diminishes asN — oo, yielding a exponent. This form obtains to both models (I) and
degenerate pair df eigenvalues. (I) even when continued to complex (this allows an

If there are indeed two independent eigenfunctions aapproximate interpolation between the two models), for
0 in the limit N — o through even values, they must random independemt, and also when th8, (fluxes) in
take the form(.",), u,v the left, right eigenvectors model (Il) are taken to be independent random variables.
of 9 so that 9tu = Qv = 0. Because(ulv) # 0, As explained elsewhere [14], the forR), = (n + x)/x
in general, we see that the arbitrary relative phase ofor the ratio of Lyapunov exponents suggests that the
u and v implies a continuousGL(1,C) symmetry at single-particle Green’s function is conformally invariant
E.. Such a continuous symmetry is known to play anfor a typical realization of the disorder, and typically
important role in some closely related random-matrixdecays asl/r7, where n = 2x. Evidently, for our
models. Wegner first observed the significance of thenodelsny = 1.
sublattice decomposition in a class of random-matrix So far we have discussed only divergence-fike
models for localization ind =2 [13]. It was later For model (I), the addition of a randony leads to
noticed that the sublattice decomposition allows a neva real nonzero diagonal component of the discretized
continuous symmetry, which contains in the= O replica model atE. (as does scalar potential disordeg for
limit a factor of U(1). For lattice models with spin, model (Il)—note thaty may always be removed by a
this continuous symmetry leads to a divergent density ofjauge transformation). The diagonal components of the
states (DOS) and localization length [13]. Our numericgdisorder invalidate exact particle-hole symmetry and the
indicate a finite DOS ak ., a result that is not, in general, sublattice decomposition. When the disorder amplitude
inconsistent with a divergent correlation length. We arefor the divergence-free field sufficiently exceeds that of
pursuing an analogous replicated field theory calculatiothe curl-free component, our numerics are consistent with
for our model; results so far are consistent with theextended states, and the form= 1/2 for the ratio
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existence of this symmetry [10]. survives. In the opposite case, for large enoughwe
We turn now to theneighborhoodof the band center. find that all states in the neighborhood&f are localized.
Assuming finite-size scaling, we expeéy(z) to be We have done further numerical computations in order

independent oL (though not ofz; see [14]) ad. — «in  to isolate the property of the operators;, and L,

the regime of extended states. In Fig. 2, we shigz)  responsible for the apparent band of extended states [10].
for several values of andL. Close toE., numerical Itis found that symmetric real random-matrix models with
values foré; (z) are more or less independentbfwhen  nearest-neighbor couplings and a sublattice decomposition
z is on the lines Imz) = 0 or Re(z) = E.. display atE. degenerate extended states ane- 1/2,

For E. and its neighborhood we have examined thebut away fromE. all states are unambiguously localized,
entire Lyapunov spectrum, and find that after appropriat@s is observed for theg = 2 model [2(a)], andR, has
scaling (see Fig. 3) the spectra for distinctcollapse no special form. The addition of a random, uncorrelated
onto a single curve. In addition, for small/L, ratios antisymmetric matrix (real or complex) produces, in the

of Lyapunov exponents take the form neighborhood ofE., a band of states for which the
Lyapunov ratios satisfy = 1/2 and£; has no detectable
ALJAL =2n — 1, (2) dependence ohh. Recalling that thesymplecticgroup
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