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Local Optimal Metrics and Nonlinear Modeling of Chaotic Time Series
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We consider the problem of prediction and nonlinear modeling for chaotic time series and examine
the effects of changing the local metric used to select nearest neighbors in the embedding space of delay
register vectors. Analyzing simulated numerical data and real data, it is shown that the fit achieved for
the case where the components of the metric tensor are constants over the whole attractor is improved
by a proper selection of the local metric. Our results also suggest how deviations from the Euclidean
case can be used as a tool to discriminate chaos from correlated noise.
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Among the reasons that deterministic nonlinear mod
ing techniques of complex data series (i.e., uncorrela
series with a flat Fourier spectrum) have received a g
deal of attention is that they can be used to forecast
least in the short term, the evolution of a chaotic syst
whose underlying dynamic is unknown [1–4]. In add
tion, from the cross-correlation function between obser
values and those predicted through these technique
is possible to estimate the largest Lyapunov exponen
the dynamics [5], even for sparse series (those contai
only of the order of103 data points). Also, when the fi
achieved using nonlinear modeling is better than the
obtained using probabilistic models, it is reasonable to
sume that a deterministic mechanism governs the pro
under study [6–9], providing in this way a tentative crit
rion to discriminate between chaos and noise.

Most of these techniques can be grouped into two ma
classes: global and local ones. In global methods,
whole past information is used for predictions about
evolution of the system under study. Clearly, this h
the disadvantage that if new information is taken in
account, all the parameters of the model may change
then a long parameter estimation time may be required

The local methods overcome this drawback by utilizi
only part of the history. In fact, the basic idea which su
ports local techniques is that, if a deterministic mechan
governs the evolution of the data seriesx1, x2, . . . , xN ,
then, for sufficiently high values ofd, any valuexp will
be given by

xp ­ fsxp21, xp22, . . . , xp2dd ­ fsXp21d , (1)
wheref is a continuous rule, and we have introduced
notationXi ­ sxi , xi 2 1, . . . , xi2d11d.

Therefore the future values of the data seriesxN11,
xN12, . . . , xN1t can be approximately predicted from th
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evolutionxNsqd11, xNsqd12, . . . , xNsqd1t of a sethXNsqd; 1 #

q # kj of k vectors which are close enough to th
vectorXN .

In order to compare the closeness of a pair of vecto
the standard Euclidean metric is often used. Neverthele
as has been shown by Murray [10], there are no reas
to choose the Euclidean metric by default.

For instance, let us assume that the metric arises from
metric tensor whose components are

gij ­ dije2ic , (2)

wheredij is the Kronecker delta andi, j run from 1 tod.
In Ref. [10] it is shown that if the parameterc is varied
to minimize the root mean square error of forecasts, th
there is a single global minimum corresponding to a val
of c close to the most negative Lyapunov exponent of t
dynamics.

Now, in Ref. [10] only uniform metrics through the
attractor are considered, and this is an assumption wh
is equivalent to supposing that metric properties do n
change from one point to another on the attractor. As
extension we shall assume that there exists a metric ten
whose componentsgijsXd s1 # i, j # dd depend on the
position in the embedding space in such a way that
nearest neighborXys pd ­ sxys pd, xys pd21, . . . , xys pd2d11d
of a given pointXp ­ sxp , xp21, . . . , xp2d11d optimizes
predictions (at zero order of approximation) one step in
the future:

dgsXp, Xys pdd ­ minimum

when jxp11 2 xys pd11j ­ minimum, (3)

wheredgsXp, Xys pdd is the distance fromXp to Xys pd in
the metric defined bygijsXd.
© 1996 The American Physical Society 1449
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Naturally, if we search for a vector which give
an absolute minimum for the prediction error one st
into the future, the prediction error fort units of time
ahead is not necessarily minimized whent . 1. In
other words, the fulfillment of the conditionjxp11 2

xys pd11j ­ minimum does not imply the fulfillment of
jxp1t 2 xys pd1tj ­ minimum for t . 1.

In order to have a quantitative indication of this effec
a number of numerical experiments were conducted
several chaotic systems, yielding results with the sa
general characteristic: If for each vectorXp we search
for the vectorXys pd that minimizes the errorjxp11 2

xys pd11j and we restrict the search procedure to thek
nearest neighbors ofXp in the Euclidean metric, then
there exists a critical valuekc such that the prediction
quality t units of time aheadst . 1d gets poorer for
k . kc. This can be seen in Fig. 1 where we show th
behavior of the centered correlation between the series
predicted values and the observed values

C ­
kkksxpr 2 kxpr ldsxob 2 kxobldlll

fkkksxpr 2
≠
xpr

Æ
d2lll kkksxob 2 kxobld2lllg1y2 (4)

as a function oft. The simulated data were generated b
the Hénon map

FIG. 1. Correlation functionC as a function of the prediction
interval t for 500 data points from the Hénon map. In th
figure,h corresponds to the casek ­ 500, where the searching
procedure for each vectorXys pd is made on the whole register
o corresponds to the casek ­ 10, and } corresponds to the
Euclidean casek ­ 1. In all cases the embedding dimensio
is 2.
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xn11 ­ 1 2 1.4x2
n 1 0.3xn21 , (5)

and three different values ofk were considered.
For that reason, hereafter we shall assume that

metric satisfies Eq. (3) with this restriction. In othe
words, in searching for the vector which minimizes th
prediction error fort ­ 1, we restrict ourselves to smal
neighborhoodssk ø Nd.

In such a case it makes sense to consider Eq. (1) up
first order

xp11 2 xyspd11 > 2=pf ? eys pd , (6)

where eys pd ; Xys pd 2 Xp and =pf is the gradient of
f at Xp . It then follows that the condition on the erro
jxp11 2 xys pd11j ­ minimum can be approximated by
the conditionj=pf ? eys pdj ­ minimum.

Now, denoting byf,ip and eiys pd s1 # i # dd the ith
components of the vectors=pf and eys pd, respectively,
the last condition can be rewritten as("

i­dX
i­1

f,ip e
i
ys pd

#2)1y2

­ minimum, (7)

which is then equivalent to(
i­dX
i­1

j­dX
j­1

gijsXpdei
ys pde

j
ys pd

)1y2

­ minimum, (8)

wheregijsXpd are the components of a symmetric tenso

gijsXpd ; f,ip f,jp . (9)

From Eq. (9) it is clear that, up to first order of approx
imation, the left-hand side of Eq. (8) can be interpreted
the distance between the vectors in the neighborhood,
the nearest neighbor in the metric defined by Eq. (8) is p
cisely that which minimizes the prediction error.

An illustration of the performance of the local optima
metric approximation is given in Fig. 2, where we com
pare the behavior of the correlation coefficientC which
is obtained by using a global optimal metric Eq. (2) wit
the corresponding one obtained by using the local optim
metric Eq. (9). The componentsf,ip can be numerically
evaluated by rewriting Eq. (6) ford 1 1 neighbors and
solving the resulting linear system of equations.

Besides the practical interest of improving forecastin
the deviation of the local optimal metric from the Eu
clidean metric can be used as a tool to distinguish b
tween chaos and correlated noise. By studying how
correlationC depends on the embedding dimensiond, on
the prediction intervalt, and on the number of pointsN,
it is possible to distinguish chaos from uncorrelated nois
Nevertheless, the problem of distinguishing chaos fro
correlated noise or combinations of determinism and ra
domness is a more difficult task [11].

In order to distinguish between colored noise an
chaos, let us consider the quantityPskd operationally
defined as follows.
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FIG. 2. C vs t for 500 data points from the Hénon map
The embedding dimension is 2. The symbols correspond
±, the Euclidean metric (EM)k ­ 1; h, the global optimal
metric (GM); and}, the local optimal metric (LM) for the case
k ­ 10.

(1) For each vectorXp we determine both the neare
neighbor in the Euclidean metricXes pd and the best
predictorXys pd among thek nearest Euclidean neighbors

(2) Running over the whole register we count ho
many times,nskd, it happens thatXes pd ­ Xys pd.

(3) We definePskd ; nskdysN 2 d 1 1d.
Pskd can be interpreted as the probability that the b

predictor be equal to the nearest Euclidean neighbor.
other words, that the local optimal metric (fork neighbors)
be the Euclidean metric.

Now, for signals which are of stochastic origin (co
related or not), there is noa priori reason to select
any particular neighbor as the best predictor, and th
the probability piskd that the best predictor be theith
neighbors1 # i # kd must be independent ofi. Since
p1skd ­ Pskd, it then follows thatPskd ­ piskd ­ k21.
Furthermore, this result does not depend on the emb
ding dimensiond. Then, if we represent the slopesm of
the curves logfPskdg vs logskd as a function ofd, we ob-
tain a nearly constantm ø 21.

On the other hand, whenever the data are chaotic,
k nearest neighbors are not equivalent. In fact, in or
to minimize the prediction error we just need to consid
those neighbors that lie on the stable submanifold of e
point Xp . Because this is a subset of thek neighbors, then
as logskd is increased logfPskdg decreases more slowly
to
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than for the noisy data. In other words,Pskd must scale as
k2a with a , 1, at least for embedding dimensions equ
to or greater than the critical valuedc which optimize
predictions. This can be seen in Fig. 3 where we sho
the results for the Hénon map for the Lorenz system

Ùx ­ 16s y 2 xd, Ùy ­ 2xz 1 45.92x 2 y,

Ùz ­ xz 2 4z (10)

for uncorrelated noise and for the autoregressive line
process

xn ­ 0.4xn21 1 0.9xn22 2 0.4xn23 2 0.3xn24 1 en ,

(11)

where theen are obtained from a Gaussian distribution o
width 1.

Relying on the results obtained from numerical simu
lated data, we have applied the procedure sketched ab
to the series of heartbeat intervals (R-R intervals) from a
group of healthy subjects. It has been suggested by so
authors [12] that the normal heart rhythm shows featur
of deterministic chaos. However, it has been shown
Ref. [7] that a linear prediction method based on an a
toregressive model yields better predictions than those
tained when a particular nonlinear deterministic model
used, which suggests that the series must by character
by colored noise.

FIG. 3. The slope of logfPskdg vs logskd as a function ofd.
In the figure,s±d corresponds to the AR model,shd to the x
component of the Lorenz system,s}d to the Hénon map, and
s1d to uncorrelated noise. In all casesN ­ 1024.
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FIG. 4. The same as in Fig. 3 but forN ­ 4096 data points
from a dripping faucet (DF) in a chaotic regimes±d, N ­ 2048
R-R intervals shd, and N ­ 1024 from thermal fluctuations
(TF) s1d of the voltage across a resistor.

In order to examine the chaos evidence, electrocard
grams of 12 healthy adults were recorded for 30 minut
in supine position, and the peaks of theR waves were
determined, yielding a series of 2048 consecutiveR-R in-
tervals which have an experimental error of about60.003
seconds. For each subject, the corresponding series
analyzed by the method described previously.

In Fig. 4 we show the results for one patient, whic
are representative of the entire sample. We also show
results for the data from a dripping faucet in a chaot
regime and for experimental data corresponding to lo
temperature thermal fluctuations of the voltage across
resistor. Comparison of the curves in Fig. 4 with th
curves in Fig. 3 indicates thatR-R intervals behave the
same as chaotic data.

Finally, we would like to mention that even restricting
ourselves to zero order approximations (in the sen
that predictions are made by following the evolution o
the nearest neighbor in the Euclidean, global, and a
local optimal metrics), the extension to approximations
higher order can be easily implemented. An improveme
in the prediction quality can also be obtained by proper
using locally optimal metrics.
1452
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For instance, let us consider the Hénon map f
which all derivatives can be exactly evaluated,f1p ­
22.8xp; f2p ­ 0.3, and let us denote byxp

p the predicted
value ofxp .

In a local linear approximation we obtain

xp
p11 ­ fsxls pd, xls pd21d 1 =pf ? els pd

­ 1 2 1.4x2
lspd 1 0.3xls pd21

1 s22.8xpdsxp 2 xls pdd

1 0.3sxp21 2 xls pd21d , (12)

wheresxls pd, xls pd21d is a neighbor ofsxp , xp21d.
Using the nearest neighbor in the Euclidean metr

[i.e., sxls pd, xls pd21d ­ sxes pd, xes pd21d], we obtain for the
predictions and observed values correlation functionCe ­
0.973. Nevertheless, if at this order of approximation th
nearest neighbor in the locally optimal metric defined by

gijsxp , xp21d ­ f2
,1d1id1j 1 2f,1f,2d1id2j 1 f2

,2d2id2j

­ 7.84x2
pd1id1j 1 2s20.84xpdd1id2j

1 0.09d2id2j (13)

is used [i.e.,sxls pd, xls pd21d ­ sxys pd, xys pd21d], we ob-
tain Clm ­ 0.999 (the number of data points isN ­ 80,
and the size of the neighborhood used isk ­ 4).
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