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Local Optimal Metrics and Nonlinear Modeling of Chaotic Time Series
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We consider the problem of prediction and nonlinear modeling for chaotic time series and examine
the effects of changing the local metric used to select nearest neighbors in the embedding space of delay
register vectors. Analyzing simulated numerical data and real data, it is shown that the fit achieved for
the case where the components of the metric tensor are constants over the whole attractor is improved
by a proper selection of the local metric. Our results also suggest how deviations from the Euclidean
case can be used as a tool to discriminate chaos from correlated noise.

PACS numbers: 05.45.+b

Among the reasons that deterministic nonlinear modelevolutionxyg)+ 1, Xn(g)+2; - - - » XN(g)++ Of & SE{XN(g); 1 =
ing techniques of complex data series (i.e., uncorrelated = k} of k vectors which are close enough to the
series with a flat Fourier spectrum) have received a greatector Xy.
deal of attention is that they can be used to forecast, at In order to compare the closeness of a pair of vectors,
least in the short term, the evolution of a chaotic systenthe standard Euclidean metric is often used. Nevertheless,
whose underlying dynamic is unknown [1-4]. In addi- as has been shown by Murray [10], there are no reasons
tion, from the cross-correlation function between observedo choose the Euclidean metric by default.
values and those predicted through these techniques, it For instance, let us assume that the metric arises from a
is possible to estimate the largest Lyapunov exponent ahetric tensor whose components are
the dynamics [5], even for sparse series (those containing vie
only of the order ofl0® data points). Also, when the fit gij = 6ije”", 2

achieved using nonlinear modeling is better than the ong . as. . is the Kronecker delta and j run from 1 tod
ij .

obtained using probabilistic models, it is reasonable to asy, Ref [10] it is shown that if the parameteris varied
sur(;qe thatja %ett;rm|n|st.|g.me_cha;]r_nsm governs the procegs minimize the root mean square error of forecasts, then
under study [6-9], providing in this way a tentative Crite- o6 js 4 single global minimum corresponding to a value

rion to discriminate between chaos and noise. of ¢ close to the most negative Lyapunov exponent of the

Most of these techniques can be grouped into two majo&ynamics

classes: global and local ones. In global methods, the Now, in Ref. [10] only uniform metrics through the

wholle'pastflnLormatlon IS us(,jed forgredlc(::;uon? abr?_ut ;heattractor are considered, and this is an assumption which
evolution of the system under study. Clearly, this hagg equivalent to supposing that metric properties do not

the disadvantage that if new information is taken intog ange from one point to another on the attractor. As an

account, all the parameters Of. the _model may chan_ge aNtension we shall assume that there exists a metric tensor
then a long parameter estimation time may be required. whose components;;(X) (1 < i,j = d) depend on the

The local methods overcome this drawback by utilizing,ition in the embedding space in such a way that the
only part of the history. In fact, the basic idea which sup-p, o5 rest NeighboKy( ) = (xu(p)s Xo( p)-1 Xo(p)—ds1)
v(p v(p) Av(p)—1ls---sAv(p)—

ports local techniques is that, if a deterministic mechanismy; o given pointX, = (x,,x, 1 X,_4.1) Optimizes
P prAp—lsecenAp—

governs the evolution of the data serieg xs, ..., xy, redictions (at zero order of approximation) one step into
then, for sufficiently high values d, any valuex, will b ( PP ) P

! the future:
be given by
xp = fOp—1,%p=2,- s Xp—a) = f(Xp—1), () dg(Xp, Xy (p)) = minimum
wheref is a continuous rule, and we have introduced the whenlx, | — xy(p+1l = minimum 3)

notationX; = (xi,x; — 1,....Xi—at1).
Therefore the future values of the data serigs.;, whered,(X,,X,(,)) is the distance fronX, to X,(,) in
XN+2,.-., XN+ Can be approximately predicted from the the metric defined by;;(X).
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Naturally, if we search for a vector which gives Xpr1 = 1 — 1.4x2 + 03x,-1, (5)
an absolute minimum for the prediction error one step

into the future, the prediction error far units of time and three different values &fwere considered.
ahead is not necessarily minimized wher> 1. In For that reason, hereafter we shall assume that the

other words, the fulfillment of the conditiofx,.; — metric satisfies Eq. (3) with this restriction. In other

Xu(p+1l = minimum does not imply the fulfillﬁnent of Words, in searching for the vector which minimizes the

x ir — Xu(pe:] = minimum fors > 1 prediction error forr = 1, we restrict ourselves to small
p vip '

In order to have a quantitative indication of this effect, "€ighborhoodgk << N). .
a number of numerical experiments were conducted op ' Such a case it makes sense to consider Eqg. (1) up to
several chaotic systems, yielding results with the sam&rst order
general characteristic: If for each vects, we search
for the vectorX,(,) that minimizes the errofx,,; —
Xu(p+1| and we restrict the search procedure to the where €,(,) = Xy(p) — X, and 'V, f is the gradient of
nearest neighbors ok, in the Euclidean metric, then f atX,. It then follows that the condition on the error
there exists a critical valué. such that the prediction |x,+1 — Xu(p)+1| = minimum can be approximated by
quality t units of time aheadr > 1) gets poorer for the condition|V,f - €,(,»)| = minimum.
k > k.. This can be seen in Fig. 1 where we show the Now, denoting byf,;, ande;,(,) (1 =i = d) theith
behavior of the centered correlation between the series gomponents of the vectors,f and e,(,), respectively,

Xp+1 = Xp(p)+1 = =V, f - €(p)» (6)

predicted values and the observed values the last condition can be rewritten as
- P
((xpr = pr))(xop — (Xop))) i=d ' 271 B
©" 4 Jip €y = minimum, 7
(G — G )W Gop — ey P Zlf P €u(p) (7)

as a function of. The simulated data were generated byyhich is then equivalent to
the Hénon map

i=d j=d _ ' 1/2
[Z Zgij(Xp)Ei;(p)E{,(p)] = minimum, (8)
i=1 j=1

whereg;;(X,) are the components of a symmetric tensor

8ii(Xp) = faip frjp - 9)

From Eq. (9) it is clear that, up to first order of approx-
imation, the left-hand side of Eq. (8) can be interpreted as
the distance between the vectors in the neighborhood, and
the nearest neighbor in the metric defined by Eq. (8) is pre-
cisely that which minimizes the prediction error.

An illustration of the performance of the local optimal
metric approximation is given in Fig. 2, where we com-
pare the behavior of the correlation coefficigntwhich
is obtained by using a global optimal metric Eq. (2) with
the corresponding one obtained by using the local optimal
metric Eq. (9). The componenf;, can be numerically
evaluated by rewriting Eq. (6) fo# + 1 neighbors and
solving the resulting linear system of equations.

Besides the practical interest of improving forecasting,
the deviation of the local optimal metric from the Eu-
clidean metric can be used as a tool to distinguish be-
tween chaos and correlated noise. By studying how the

0.2 . , correlationC depends on the embedding dimensihron
1 3 5 7 9 the prediction intervat, and on the number of points,
t it is possible to distinguish chaos from uncorrelated noise.
FIG. 1. Correlation functiorC as a function of the prediction Nevertheless, the problem of distinguishing chaos from
interval t for 500 data points from the Hénon map. In the correlated noise or combinations of determinism and ran-
figure, [ corresponds to the cage= 500, where the searching 4omness is a more difficult task [11].

procedure for each vectdf,(,) is made on the whole register, | der to distinquish betw lored : d
0 corresponds to the cage= 10, and < corresponds to the n order o distinguis etween coloreéd noise an
Euclidean casé& = 1. In all cases the embedding dimension chaos, let us consider the quantiB(k) operationally

is 2. defined as follows.
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FIG. 2. C vst for 500 data points from the Hénon map.
The embedding dimension is 2. The symbols correspond t
o, the Euclidean metric (EM% = 1; I, the global optimal
metric (GM); and<, the local optimal metric (LM) for the case

k = 10.

(1) For each vectok, we determine both the nearest
neighbor in the Euclidean metri&,,) and the best
predictorX,(,) among thek nearest Euclidean neighbors.

(2) Running over the whole register we count how

many timesyu(k), it happens thak, ,) = Xy(,).
(3) We defineP(k) = n(k)/(N — d + 1).

P(k) can be interpreted as the probability that the best
predictor be equal to the nearest Euclidean neighbor. In
other words, that the local optimal metric (foneighbors)

be the Euclidean metric.

Now, for signals which are of stochastic origin (cor-
related or not), there is n@a priori reason to select
any particular neighbor as the best predictor, and then
the probability p;(k) that the best predictor be th¢h
neighbor(l = i = k) must be independent af Since
pi(k) = P(k), it then follows thatP(k) = p;(k) = k.

than for the noisy data. In other word3(k) must scale as
k¢ with a < 1, at least for embedding dimensions equal
to or greater than the critical valug. which optimize
predictions. This can be seen in Fig. 3 where we show
the results for the Hénon map for the Lorenz system

x =16(y — x), y = —xz +4592x — v,
7 =xz — 4z (10)

for uncorrelated noise and for the autoregressive linear
process

x, =04x,-1 + 09x,_, — 04x,_3 — 03x,_4 + €,,
(11)

where thee,, are obtained from a Gaussian distribution of
width 1.

Relying on the results obtained from numerical simu-
lated data, we have applied the procedure sketched above
to the series of heartbeat intervalR-R intervals) from a
group of healthy subjects. It has been suggested by some
authors [12] that the normal heart rhythm shows features
of deterministic chaos. However, it has been shown in
Ref. [7] that a linear prediction method based on an au-
toregressive model yields better predictions than those ob-
tained when a particular nonlinear deterministic model is

&ised, which suggests that the series must by characterized

by colored noise.

Slope

G—OAR
Furthermore, this result does not depend on the embed- E—HlLorenz

ding dimensiord. Then, if we represent the slopesof 13| M °:e"°"
. +—+ Random
the curves lopP(k)] vs logk) as a function ofd, we ob-
tain a nearly constank = —1.
On the other hand, whenever the data are chaotic, the 15,5 30 5.0 20 50
k nearest neighbors are not equivalent. In fact, in order Toa '

to minimize the prediction error we just need to consider,
those neighbors that lie on the stable submanifold of eac
pointX,. Because this is a subset of tkeeighbors, then

IG. 3. The slope of Idg?(k)] vs logk) as a function ofd.
the figure, (o) corresponds to the AR modeglJ) to the x
component of the Lorenz systert®) to the Hénon map, and

as logk) is increased ldg?(k)] decreases more slowly (+) to uncorrelated noise. In all caséis= 1024.
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-0.60 ‘ T . . For instance, let us consider the Hénon map for
which all derivatives can be exactly evaluate, =
—2.8x,; f2p = 0.3, and let us denote hy, the predicted
value ofx,,.

070 | | In a local linear approximation we obtain

Xpa1 = fupxip—1) + Vof - €p)
= 1 — 14x5,) + 0.3x(,)-1
-0.80 | ] + (—2.8x,)(x, — xi(p))
Slope + 03(x,—1 — xXi(p)-1)» (12)

where(x;(p), xi(p)-1) is a neighbor ofx,, x,-1).

0.90 I Using the nearest neighbor in the Euclidean metric
[i.e., (xi(p)s X1(p)=1) = (Xe(p)s Xe(p)—1)], We Obtain for the
! predictions and observed values correlation funcipn=
0.973. Nevertheless, if at this order of approximation the
-1.00 } O0—60DF 1 nearest neighbor in the locally optimal metric defined by
B—8aR-R
- +—+TF
8ij(xp, xp1) = f181:81) + 2f1f281:82; + 3620
= 7.84x281;81; + 2(—0.84x,)81;82,
T 3.0 5.0 7.0 9.0 + 0.098,62; (13)

FIG. 4. The same as in Fig. 3 but fof = 4096 data points is used [i.e.,(xi(p), Xi(p)-1) = (Xu(p), Xu(p)-1)], We 0b-
from a dripping faucet (DF) in a chaotic reginie), N = 2048 tain Cy,, = 0.999 (the number of data points ¥ = 80,
R-R intervals (OJ), and N = 1024 from thermal fluctuations and the size of the neighborhood used is- 4).

(TF) (+) of the voltage across a resistor.

In order to examine the chaos evidence, electrocardio-
grams of 12 healthy adults were recorded for 30 minutes *Electronic address: pgarcia@dino.conicit.ve

in supine position, and the peaks of tRewaves were "Postal address: A.P. 52120aracasl050-A, Venezuela.
determined, yielding a series of 2048 consecuRvR in- ,Electronic address: jimenez@dino.conicit.ve
tervals which have an experimental error of abait003 Electronic address: aimarcan@dino.conicit.ve

seconds. For each subject, the corresponding series wad! \(]igs.;?l:)armer and J.J. Sidorowich, Phys. Rev. Lg%.845

analyz_ed by the method described preV|oust._ . . [2] D.M. Wolpert and R.C. Miall, Proc. R. Soc. London B
In Fig. 4 we show the results for one patient, which 242, 82 (1990).
are representative of the entire sample. We also show the] ;. jiménez, J.A. Moreno, and G. J. Ruggieri, Phys. Rev. A
results for the data from a dripping faucet in a chaotic 45, 3553 (1992).
regime and for experimental data corresponding to low-[4] M. Giona, F. Lentini, and V. Cimaglli, Phys. Rev. A4,
temperature thermal fluctuations of the voltage across a 3492 (1991).
resistor. Comparison of the curves in Fig. 4 with the [5] D.J. Wales, Nature (Londor§50, 485 (1991).
curves in Fig. 3 indicates th®&-R intervals behave the [6] G. Sugihara and R. May, Nature (LondoBp4, 734
same as chaotic data. (1990). _
Finally, we would like to mention that even restricting [”] "]: Ill_efe?zvr:e’ ;-2}-761055?95' M.V. Kamath, and E.L.
ourselves to zero order approximations (in the sense . F2ien, Chaos, 267 (1993). -
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that predictions are made by following the evolution of
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the nearest neighbor in the Euclidean, global, and also[g] D.l{/l. Rubin Chgao§ (525 ()1992)_

local optimal metrics), the extension to approximations of10] p. Murray, Physica (Amsterdan§8D, 318 (1993).
higher order can be easily implemented. An improvemen%ll] M. Casdagli, J. R. Stat. Soc. B, 303 (1992).

in the prediction quality can also be obtained by properly[12] J. E. Skinner, A.L. Goldberger, G. Mayer-Kress, and R. D.
using locally optimal metrics. Ideker, Bio. Tech8, 1018 (1990).
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