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Self-Energy Correction to the Hyperfine Structure Splitting of Hydrogenlike Atoms
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A first testing ground for QED in the combined presence of a strong Coulomb field and a
strong magnetic field is provided by the precise measurement of the hyperfine structure splitting of
hydrogenlike?”Bi. We present a complete calculation of the one-loop self-energy correction to the
first-order hyperfine interaction for various nuclear charges. In thedawgime we almost perfectly
agree with theZa expansion, but for medium and highthere is a substantial deviation.

PACS numbers: 31.30.Gs, 31.15.Ar, 31.30.Jv

Very recently it was reported that for the first time be written in Feynman gauge as [9]
the hyperfine structure splitting of a hydrogenlike high— o
atom was observed with a high relative accuracy ofg,  (a) = — @ 2(21 + 1)] dka(_)q
about10™* at the ESR at GSI, Darmstadt. The transition T 120
energy of the ground state hyperfine structure splitting . [ . M,
of 2Bi%2* was measured to b&\E = 5.0840(8) eV % (alay ji(kr)Cq lm) (m|ji(kr))C=qa |a>’
[1]. This has challenged theory to perform calculations Es — En — sQrEn)k
with comparable accuracy, including also one-loop QED (1)
corrections. The new experimental situation opens up a
possibility to perform a novel test of QED in a combinedwhereaﬂau =(1-a-a), ng] is theg component of

strong magnetic field and a strong Coulomb field. the spherical angular tensor of orderj,(kr) denotes the
The leading QED effects are of two types: vacuum pospherical Bessel function of ordér and |a) represents

larization and self-energy corrections. The vacuum polarthe reference state. There is also a corresponding mass

ization correction is relatively straightforward to compute, counter term.

using an Uehling-like approximation. This contribution g calculate the self-energy corrections to the hyperfine

was calculated to b&E™ = +0.035 eV quite recently  gyrycrure we treat the magnetic potentidli) as a

[2]. The remaining Wichmann-Kroll contribution is very neryyrhation of the system. This perturbation will affect

small. The one-loop self-energy correction, on the othefyq binding energy of the bound electron, the wave

hand, is more difficult to elaborate, and earlier Ca|CUIaTunction and the bound propagator as already sketched
tions using anZa expansion of the Coulomb field are g ;i R’ef. [14]

correct only up to ordew(Za)*mc? [3=7]. For heavy )
elements such an expansion is not reliable. Therefore it E,— E, + {(alea - A(F)|a) + ---, 2
is necessary to calculate the self-energy contribution to all
orders inZa. In this Letter we present the first complete

calculation of this type for different nuclear charges rang-

m,q

(nled - A(7)la)

ing from Z = 1 to Z = 92 using similar techniques as la) — lay + > £ E ln) +---,
published earlier in Refs. [8-12]. n#a “ "

First we give a brief outline of the computation of the ©)
self-energy correction and later we discuss the numerical
results. A more detailed analysis of the calculation of Sg(xX,X1;z) — Sp(X2, X1;2)
QED corrections to the hyperfine interaction will be R
presented in a forthcoming paper [13]. + f d’x3 Sp (%2, X35 2)ed - A(X3)

In a previous paper it was shown that the unrenormal-
ized self-energy correction for a bound electron state can X Sp(X3,X152) + - . 4
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Following the diagrammatic depiction of ti&matrix  linked product of first-ordeiS-matrix elements [15,16].
formulation, the unrenormalized wave function modifica-The modification of the propagator corresponds to the ver-
tion is the nondegenerate part of the diagrams in Figs. 1(agx correction diagram in Fig. 1(c).
and 1(b). The binding energy correction is obtained from The wave-function modification term will take the form
the degenerate part after subtracting the corresponding un-

|
EY(a) = - i(zz + 1)[ dk kY (=)
[ q

@
T 1=0
x 2

(aled - AGs)lm) (mla, ji(kr2)Cy |n) nlji(kr)CLy a#|a)

, 5
E,+E, (Ea - Em) [Ea —E, — Sgr(En)k] ( )
where the sum explicitly excludds, = E,. There is also a corresponding mass counterpart.
The vertex correction leads to the following expression:
E*(a) = — — Y (@I + 1)[ dk k> (—)
T =0 q R
.S (ala, ji(krs)Cy'lm) (mled - AGiy)In) (nljr(kr)Cya|a) ©
m,n [Ea - Em - Sgr(Em)k] [Ea - En - Sgr(En)k] ’
where we have introduced the functibhdefined by I To compare our results with thZ« expansion we
k introduce the functiorF” defined by
F =1+ [sgnE,) — sgnkE,)] I —E (7) N
. Lo " AEQED = —Agtod- | (9)
For the binding energy modification term the formula T

reads as follows: L
Here, AE'- denotes the full relativistic first-order

E»(a)=2 i(zl + 1)[ dka(—)q<a|e& - A®)|a) energy splitting. Thus the leading relativistic correction
(o is provided by the first-order value and not by Earlier

q
5 (davji(kr)Cy m) (il jy(kr)Chalay - results for theZa expansion [3-7] can be summarized as
p [E« — Enm — SQNE, )k " F(Za) =3 - [2 - In@]7(Za)
(8) + (Za)?[15.1029) + [ — §In@)]In(Za)
In order to isolate the ultraviolet divergencies we have - %Inz(Za)]. (20)

used the dimensional regularization and generalized th

rocedure of [17] for an external magnetic interaction. O . ) .
'rl)'he infrared ([:IiV(]ergencies can explic?tly be shown torelatlwstlc point nucleus treatment atiZ«) is defined

cancel. The numerical evaluation of the finite parts i3S, Eq. (9) buf[ with the corresponding nonrelatlylstlc
made along the same lines as in [12,18,19]. point-nucleus first-order value. The constant term in the

expansion is the Schwinger correction of the magnetic
moment of the electron.
The values ofF and F(Za) for nuclear chargeg,
(@) (b) ranging fromZ =1 to Z = 92, are given in Table |
m m and are displayed in Fig. 2. For lo® the agreement
i i is perfect, while for higherZ the two results differ

ft should be noted that the expansion is based on a non-

substantially. In the numerical calculation a point nucleus
charge distribution was used for loi#, but for Z > 18
© we have included the effect of a finite nuclear charge
distribution both in the self-energy and in the first-order
computation.
For the two experimentally interesting cas&iBid>*
and?PB!* we present the theoretical results in Table II.
FIG. 1. Graphical representation self-energy correction diator the?Bi®?* case the self-energy calculation yields
grams. The wave-function modification is shown in (a), (b), A gSE — —0.06144(1) eV. Combined with the vacuum

and the vertex correction to the magnetic interaction in (c). N VP
Double lines indicate wave functions and electron propagatorf;)OI"’mZ"’ltlon result oAE™" = 0.0346 eV the total QED

in the Coulomb field. The cross denotes the interaction withcorrection amounts ta E?®P = —0.0268 eV. In order
the external magnetic field. to compare to the experimental results one has to add
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TABLE I. The self-energy contribution displayed & for 3 e Tt e —T—T
various nuclear chargeés. The numerical results are compared o[ 1
with the values ofF (Za). [ P
~ 1 B /’/ N

Z rms F F(Za) 0 —<

1 0.4379 0.43805 3.1 [ Sl h

3 0.3070 030783 & T ]

5 0.1730 0.17634 = -2 B 5

7 0.0365 0.04681 3+ i

10 —0.1627 —0.14026 4| — sorwmger ]

18 cee —0.6884 —0.57762 —--- linear e)fpansion )
32 4.07 —1.562 —1.0716 -5 o - q“ad’?“ae"‘;a“"’“ ~
54 4.78 —2.943 —1.0656 bl e NI S
66 5.21 —3.759 —0.64854 10 20 30 40 50 60 70 80 90 100
74 5.37 —4.356 —0.20921 y/
82 5.497 —5.012 0.35762 ) . .
83 5519 —5.098 0.43736 FIG. 2. Graphical comparison of our new numerical values
92 5.860 ~5916 1.2430 F (full line with circles) and the earlieZ a-expansion results.

We plotted the Schwinger result (full line), the expansion up
to terms proportional to(Za) (long dashed line), and the
expansion up to terms proportional (6« )* (short dashed line).

the first-order hyperfine interaction. The major nuclear
effect on this first-order calculation is the extended nu-
clear charge which can be handled using realistic charg&his value includes the diamagnetic correction for a free
distributions (Fermi and Fermi-Gauss distributions) [21].ion, but not the shift due to the chemical environment.
The uncertainty between the different nuclear charge disthe latter effect is hard to estimate, but it is typically
tributions is about 0.02% of the first-order hyperfine in-of the order of a few tenths of a percent and in extreme
teraction. A more limiting uncertainty is given by the cases it can be even larger [30]. The chemical shift causes
extended nuclear magnetization distribution, the Bohrpresently the largest uncertainty of the theoretical value of
Weisskopf effect [22], which has received considerablehe hyperfine interaction. A more precise measurement
interest lately [23—26]. We will here use the most elabo-of the magnetic dipole moment would therefore be highly
rated calculation by Tomaselit al.[25]. This yields desirable.
a contribution of AE'°- = 5085(8) eV for the first- In summary, we have accomplished a complete calcu-
order hyperfine interaction and a total theoretical valudation of the one-loop self-energy correction to the first-
of AE'°M = 5058(8) eV. Uncertainties due to miss- order hyperfine interaction valid for the whole range.
ing contributions, like the Wichmann-Kroll magnetic loop As required, the agreement with tller expansion is al-
correction, are estimated to be rather small. most perfect for lowZ. For medium and higlZ there
The magnetic dipole moment of the Bi nucleus isis a substantial difference resulting from our inclusion of
currently given asup; = 4.1106 g [27—29]. This is  higher-order terms irZ«. Also relativistic corrections
based on an old NMR measurement in a liquid solutionand finite size effects beyond the first-order value comes

TABLE Il. Different contributions to the hyperfine structure splitting of the two experimentally interesting ¢A&#'* and
29Bi82*+  All values are given in eV. The Bohr—Weisskopf modification in the lead case is only estimated in the single particle
approach. The error due to the chemical shift on the magnetic moment is not included.

207Pb81+ 209Bi82+

rms value 5.497 fm 5.519 fm
Magnetic moment u = 0.592583 up m=41106up
First order 1.2752(2) 5.1917(10)
Bohr-Weisskopf —0.034 —0.107(7) [25]
Vacuum polarization (VP)

Uehling-like loop correction 0.0022 0.0093

Uehling correction of wave function 0.0062 0.0260

Wichmann-Kroll correction of wave function —0.0001 —0.0007
Self-energy (SE) —0.0148 —0.0614
Sum of QED corrections —0.0065 —0.0268
Total 1.2347 5.058(8)
Experiment 5.0840(8) [1]
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in. For the special case of the very accurate measuremeftl] 1. Lindgren, H. Persson, S. Salomonson, and L. Lab-
of bismuth the theoretical and the experimental values are zowsky, Phys. Rev. A1, 1167 (1995_).
in fair agreement, keeping in mind the large chemical shiff12] A. Mitrushenkov, L. Labzowsky, I. Lindgren, H. Persson,

uncertainty. and S. Salomonson, Phys. Lett.280, 51 (1995).
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