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Self-Energy Correction to the Hyperfine Structure Splitting of Hydrogenlike Atoms
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A first testing ground for QED in the combined presence of a strong Coulomb field and a
strong magnetic field is provided by the precise measurement of the hyperfine structure splitting of
hydrogenlike209Bi. We present a complete calculation of the one-loop self-energy correction to the
first-order hyperfine interaction for various nuclear charges. In the low-Z regime we almost perfectly
agree with theZa expansion, but for medium and highZ there is a substantial deviation.

PACS numbers: 31.30.Gs, 31.15.Ar, 31.30.Jv
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Very recently it was reported that for the first tim
the hyperfine structure splitting of a hydrogenlike high–Z
atom was observed with a high relative accuracy
about1024 at the ESR at GSI, Darmstadt. The transitio
energy of the ground state hyperfine structure splitt
of 209Bi821 was measured to beDE ­ 5.0840s8d eV
[1]. This has challenged theory to perform calculatio
with comparable accuracy, including also one-loop QE
corrections. The new experimental situation opens u
possibility to perform a novel test of QED in a combine
strong magnetic field and a strong Coulomb field.

The leading QED effects are of two types: vacuum p
larization and self-energy corrections. The vacuum po
ization correction is relatively straightforward to comput
using an Uehling-like approximation. This contributio
was calculated to beDEVP ­ 10.035 eV quite recently
[2]. The remaining Wichmann-Kroll contribution is ver
small. The one-loop self-energy correction, on the oth
hand, is more difficult to elaborate, and earlier calcu
tions using anZa expansion of the Coulomb field ar
correct only up to orderasZad2mc2 [3–7]. For heavy
elements such an expansion is not reliable. Therefor
is necessary to calculate the self-energy contribution to
orders inZa. In this Letter we present the first comple
calculation of this type for different nuclear charges ran
ing from Z ­ 1 to Z ­ 92 using similar techniques a
published earlier in Refs. [8–12].

First we give a brief outline of the computation of th
self-energy correction and later we discuss the numer
results. A more detailed analysis of the calculation
QED corrections to the hyperfine interaction will b
presented in a forthcoming paper [13].

In a previous paper it was shown that the unrenorm
ized self-energy correction for a bound electron state
0031-9007y96y76(9)y1433(4)$06.00
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be written in Feynman gauge as [9]

Ebousad ­ 2
a

p

X̀
l­0

s2l 1 1d
Z

dk k
X
m,q

s2dq

3
kajamjlskr2dCflg

q jml kmjjlskr1dCflg
2qamjal

Ea 2 Em 2 sgnsEmdk
,

(1)

whereamam ­ s1 2 $a ? $ad, C
flg
q is theq component of

the spherical angular tensor of orderl, jlskrd denotes the
spherical Bessel function of orderl, and jal represents
the reference state. There is also a corresponding m
counter term.

To calculate the self-energy corrections to the hyperfi
structure we treat the magnetic potential$As$r d as a
perturbation of the system. This perturbation will affe
the binding energy of the bound electron, the wa
function, and the bound propagator as already sketc
out in Ref. [14]

Ea ! Ea 1 kaje $a ? $As$r djal 1 · · · , (2)

jal ! jal 1
X
nfia

knje $a ? $As$r djal
Ea 2 En

jnl 1 · · · ,

(3)

SFs $x2, $x1; zd ! SFs $x2, $x1; zd

1
Z

d3x3 SFs $x2, $x3; zde $a ? $As$x3d

3 SFs $x3, $x1; zd 1 · · · . (4)
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Following the diagrammatic depiction of theS-matrix

formulation, the unrenormalized wave function modifica
tion is the nondegenerate part of the diagrams in Figs. 1
and 1(b). The binding energy correction is obtained fro
the degenerate part after subtracting the corresponding
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linked product of first-orderS-matrix elements [15,16].
The modification of the propagator corresponds to the v
tex correction diagram in Fig. 1(c).

The wave-function modification term will take the form
Ewfsad ­ 2
a

p

X̀
l­0

s2l 1 1d
Z

dk k
X
q

s2dq

3
X

EmfiEa

X
n

kaje $a ? $As $x3djml kmjamjlskr2dCflg
q jnl knjjlskr1dCflg

2qamjal
sEa 2 Emd fEa 2 En 2 sgnsEndkg

, (5)

where the sum explicitly excludesEm ­ Ea. There is also a corresponding mass counterpart.
The vertex correction leads to the following expression:

Evcsad ­ 2
a

p

X̀
l­0

s2l 1 1d
Z

dk k
X
q

s2dq

3
X
m,n

kajamjlskr3dCflg
q jml kmje $a ? $As$x2djnl knjjlskr1dCflg

2qamjal
fEa 2 Em 2 sgnsEmdkg fEa 2 En 2 sgnsEndkg

F , (6)
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where we have introduced the functionF defined by

F ­ 1 1 fsgnsEmd 2 sgnsEndg
k

Em 2 En
. (7)

For the binding energy modification term the formu
reads as follows:

Ebesad ­
a

p

X̀
l­0

s2l 1 1d
Z

dk k
X
q

s2dqkaje $a ? $As $xdjal

3
X
m

kajamjlskr2dCflg
q jml kmjjlskr1dCflg

2qamjal
fEa 2 Em 2 sgnsEmdkg2

.

(8)

In order to isolate the ultraviolet divergencies we ha
used the dimensional regularization and generalized
procedure of [17] for an external magnetic interacti
The infrared divergencies can explicitly be shown
cancel. The numerical evaluation of the finite parts
made along the same lines as in [12,18,19].

FIG. 1. Graphical representation self-energy correction
grams. The wave-function modification is shown in (a), (
and the vertex correction to the magnetic interaction in
Double lines indicate wave functions and electron propaga
in the Coulomb field. The cross denotes the interaction w
the external magnetic field.
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To compare our results with theZa expansion we
introduce the functioñF defined by

DEQED ­
a

p
DE1.ord. F̃ . (9)

Here, DE1.ord. denotes the full relativistic first-order
energy splitting. Thus the leading relativistic correctio
is provided by the first-order value and not byF̃. Earlier
results for theZa expansion [3–7] can be summarized a

FsZad ­
1
2 2 f 13

4 2 lns2dgpsZad

1 sZad2
h
15.10s29d 1 f 37

72 2
8
3 lns2dg lnsZad

2
8
3 ln2sZad

i
. (10)

It should be noted that the expansion is based on a no
relativistic point nucleus treatment andFsZad is defined
as Eq. (9) but with the corresponding nonrelativisti
point-nucleus first-order value. The constant term in th
expansion is the Schwinger correction of the magnet
moment of the electron.

The values ofF̃ and FsZad for nuclear chargesZ,
ranging from Z ­ 1 to Z ­ 92, are given in Table I
and are displayed in Fig. 2. For lowZ the agreement
is perfect, while for higherZ the two results differ
substantially. In the numerical calculation a point nucleu
charge distribution was used for lowZ, but for Z . 18
we have included the effect of a finite nuclear charg
distribution both in the self-energy and in the first-orde
computation.

For the two experimentally interesting cases209Bi821

and207Pb811 we present the theoretical results in Table II
For the209Bi821 case the self-energy calculation yields
DESE ­ 20.06144s1d eV. Combined with the vacuum
polarization result ofDEVP ­ 0.0346 eV the total QED
correction amounts toDEQED ­ 20.0268 eV. In order
to compare to the experimental results one has to a
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TABLE I. The self-energy contribution displayed as̃F for
various nuclear chargesZ. The numerical results are compare
with the values ofFsZad.

Z rms F̃ FsZad
1 · · · 0.4379 0.43805
3 · · · 0.3070 0.30783
5 · · · 0.1730 0.17634
7 · · · 0.0365 0.04681

10 · · · 20.1627 20.14026
18 · · · 20.6884 20.57762
32 4.07 21.562 21.0716
54 4.78 22.943 21.0656
66 5.21 23.759 20.64854
74 5.37 24.356 20.20921
82 5.497 25.012 0.35762
83 5.519 25.098 0.43736
92 5.860 25.916 1.2430

the first-order hyperfine interaction. The major nucle
effect on this first-order calculation is the extended n
clear charge which can be handled using realistic cha
distributions (Fermi and Fermi-Gauss distributions) [2
The uncertainty between the different nuclear charge d
tributions is about 0.02% of the first-order hyperfine i
teraction. A more limiting uncertainty is given by th
extended nuclear magnetization distribution, the Bo
Weisskopf effect [22], which has received considera
interest lately [23–26]. We will here use the most elab
rated calculation by Tomaselliet al. [25]. This yields
a contribution of DE1.ord. ­ 5.085s8d eV for the first-
order hyperfine interaction and a total theoretical va
of DE1.ord. ­ 5.058s8d eV. Uncertainties due to miss
ing contributions, like the Wichmann-Kroll magnetic loo
correction, are estimated to be rather small.

The magnetic dipole moment of the Bi nucleus
currently given asmBi ­ 4.1106mB [27–29]. This is
based on an old NMR measurement in a liquid solutio
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FIG. 2. Graphical comparison of our new numerical valu
F̃ (full line with circles) and the earlierZa-expansion results.
We plotted the Schwinger result (full line), the expansion u
to terms proportional tosZad (long dashed line), and the
expansion up to terms proportional tosZad2 (short dashed line).

This value includes the diamagnetic correction for a fr
ion, but not the shift due to the chemical environmen
The latter effect is hard to estimate, but it is typical
of the order of a few tenths of a percent and in extrem
cases it can be even larger [30]. The chemical shift cau
presently the largest uncertainty of the theoretical value
the hyperfine interaction. A more precise measurem
of the magnetic dipole moment would therefore be high
desirable.

In summary, we have accomplished a complete cal
lation of the one-loop self-energy correction to the firs
order hyperfine interaction valid for the wholeZ range.
As required, the agreement with theZa expansion is al-
most perfect for lowZ. For medium and highZ there
is a substantial difference resulting from our inclusion
higher-order terms inZa. Also relativistic corrections
and finite size effects beyond the first-order value com
article

TABLE II. Different contributions to the hyperfine structure splitting of the two experimentally interesting cases207Pb811 and
209Bi821. All values are given in eV. The Bohr–Weisskopf modification in the lead case is only estimated in the single p
approach. The error due to the chemical shift on the magnetic moment is not included.

207Pb811 209Bi821

rms value 5.497 fm 5.519 fm
Magnetic moment m ­ 0.592583mB m ­ 4.1106mB

First order 1.2752(2) 5.1917(10)
Bohr-Weisskopf 20.034 20.107s7d [25]
Vacuum polarization (VP)

Uehling-like loop correction 0.0022 0.0093
Uehling correction of wave function 0.0062 0.0260
Wichmann-Kroll correction of wave function 20.0001 20.0007

Self-energy (SE) 20.0148 20.0614
Sum of QED corrections 20.0065 20.0268
Total 1.2347 5.058(8)
Experiment 5.0840(8) [1]
1435
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in. For the special case of the very accurate measurem
of bismuth the theoretical and the experimental values
in fair agreement, keeping in mind the large chemical s
uncertainty.
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