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Nucleation and Growth of the Normal Phase in Thin Superconducting Strips
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We investigated the kinetics of normal phase nucleation and flux line condensation in the type-lIl
superconductors by numerical study of the time-dependent Ginzburg-Landau equation. We have shown
that under a sufficient transport current the normal phase nucleates in superconducting strips in the
form of the macroscopic droplets having multiple topological charge. We discussed the stability and
dynamics of the droplets. We have found that pinning suppresses the droplet formation.

PACS numbers: 74.60.Ge, 05.60.+w, 68.10.—m

The study of magnetic flux penetration in type-ll compact normal zone immersed in a superconducting state
superconductors has attracted wide interest both in vieyl0], therefore the NS interface moves towards the normal
of important technological questions and as a prototyp@hase with the velocity going to infinity [11,12], and the
of a general class of problems of nonlinear dynamicsnormal droplet disappears. Atthe same time, the penetra-
Observations showed that the flux dynamics exhibitdion of the current into the normal phase makes it stable
features that are similar to the viscous-fingering growthwith respect to small fluctuations [13]; i.e., the transport
phenomenon in liquid-solid systems [1-5]. In particular,current drives the system intolastablestate. Since the
recent experiments revealed dendritic flux penetration anexpulsion of the current from the normal regions requires
the fingering of the remagnetization front [3—5]. Thea finite time, the current penetrates the moving normal
formation of vortex structure is traditionally viewed as droplet. The normal state develops and invades the super-
the sequential penetration of vortices through the Beanconducting region provided the currenhflowing through
Livingstone surface barrier [6]. It was found recently thatthe interface exceeds the stall currgh14,15]. Thus a
flux penetration may also occur via dynamic instabilities ofsufficient transport current stabilizes the moving nuclei of
the order parameter caused by the applied current and/éme normal state in type-ll superconductors.
magnetic field. Numerical simulations revealed the The process of flux penetration occurs via the sup-
invasion of extended macroscopic normal areas (dropletgression of the order parameter on the macroscopic scale
carrying flux into the superconducting sample [7,8]. and can be viewed as the nucleation of the extended

While the formation of normal areas looks natural fordroplets of the normal phase in the superconducting sam-
type-l superconductors with the positive surface energyle. An adequate description of such a process involving
of the normal-superconductor (NS) interface, it seemdast variations of the order parameter on the relevant spa-
surprising at first sight that such an interface, havingial scale is given by the time-dependent Ginzburg-Landau
in the static case aegative surface energy, persists equation (TDGLE) completed by the appropriate Maxwell
in type-ll superconductors. We see the explanation oéquations:
this pheno_menon in t_he .fact that the transport current W@, + i)® = (V- iAP® + (1 — [¥P)¥, (1)
or alternating magnetic field drives the superconductor

into a strongly nonequilibrium state, where th®ving j= (\p)z(v¢ —A) — (Vu + 9,A), (2)

interface becomes stable. The idea that free energy

considerations do not apply to nonstationary processes in V-j=, V-A=0, 3)

superconductors was put forward by Anderson [9] in the

context of the phase-slips phenomenon. AA = — jé(2), 4)
In this Letter we report on our investigation of the ki- Aetr

netics ofnormal phase nucleation and flux line condensa-where W is the (complex) order parametes, = argV,

tion in type-Il superconductors. We present the results oA and u are vector and scalar potentials, ajds the

a numerical study of the dynamics of the flux penetratiorcurrent density. The value of the dimensionless material
into strips with transverse dimensions less than the effeg@arametei: is obtained from the microscopic theory [13].
tive penetration length.;; = A%/h, whereh is the thick-  The unit of length is the coherence lengththe unit of
ness of the strip and is the London penetration depth. time isty = ¢2/Du, D = vrl/3 is the diffusion constant,
We propose that the existence of the macroscopic normdlis a mean free pathyr is a Fermi velocity, the field
regions is a direct consequence of their motion under thes measured in units of the upper critical fiel., =
transport current. A current cannot penetrateiti@obile @, /27 &%, and® is the flux quantum. The unit of current
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is jo = ohi/2ety, whereo is the normal conductivity. In play a crucial role in dissipative processes. In our
these units the depairing currefjf = 2/3+/3 =~ 0.3875.  simulations the topological charge of these droplets would
The conditionA.sr >> 1 enables us to neglect the magneticbecome as big as 5—7 and even greater. The droplets
field created by currents [16] and, therefore, drop Eqg. (4)possess long tails (due to the finite relaxation time of the
We choose the origin of the coordinate frame at theorder parameter at the superconducting areas swept by the
midpoint of the strip with thex axis lengthwise and the droplet). Our simulations show that new vortices appear
y axis in the lateral direction, so that the edges are locatedt the edge just at the tail and then get sucked into the
at (x, —d/2) and(x, d/2). The perpendicular to the strip droplet. This can easily be understood since the formation
magnetic fieldB is associated with the vector potential of new vortices is favored in the regions with suppressed
A = (By, 0, 0) (see Ref. [7] for details). order parameter. The normal phase areas can evolve in
We performed numerical simulations of TDGLE. We two different ways. First, the normal droplet emerges
took the homogeneous superconducting state as initigt the edge, passes through the sample, and vanishes at
condition W = 1, i.e., the state without magnetic field) the opposite edge of the strip. In the second scenario,
perturbed by a small amplitude noise. We used the nowhich occurs under elevated currents, the droplet traverses
flux boundary conditionsp, ¥ = 0 (i.e., the boundary a strip, leaving a channel (wake) of the normal phase
with the vacuum) in the transverse direction and thebehind.
NS boundary conditions in the longitudinal direction This scenario is shown in Fig. 1t = 260. This
(W(x, y) — 0forx — 0, L, whereL is the strip length  channel traversing the sample then breaks into a sequence
We apply the split-step method described in Refs. [7,17]pf vortices (vortex street), which then propagates across
the number of grid points wag56 X 256 and the time the strip and annihilates at the edge. The nucleation
step was0.05 — 0.1. Results of the simulations are and the propagation of the droplets and the vortices give
shown in Fig. 1. The simulations were performedfor  rise to nonperiodic (probably chaotic) voltage oscillations
0.25, B = 0.0175, where, as has been shown in Ref. [7],along the strip. The motion of the vortices and the
the pure superconducting state is unstable with respect tiroplets is also nonmonotonic and can be viewed as
vortex nucleation (note that our equations do not contairiturbulent” flow in contrast to the “laminar flow” of the
fluctuations). The integration domain wi&0 X 60. ordered vortex lattice observed just at the threshold of
In Fig. 1 the large dark droplets (for = 50, 80) instability [7].
represent the normal phase emerging at one side of The droplets possess a topological charggropor-
the strip and traversing toward the opposite edge. Thé&onal to the gain in the superconducting phase along the
droplets are long-lived objects and, as well as the vorticedpop enclosing the normal area. A relationship between
the characteristic siz& of the nucleus and: is then
determined from the condition that the supercurrent en-
" - |"1°’ circling the nucleug~n/R) becomes equal tg, giving
. R ~ n/j,. The size of the droplets in the strip can be es-
t=215
which is in qualitative agreement with the results of simu-
lations. We expect that the above consideration holds also
Shown in Fig. 1 is a sequence of snapshots demonstrat-
ing a remagnetization process (we reversed the direction

timated from the condition that the total transport current
at a distanceR from the edgej(R) = j — B(R — d/2)
t=50 ‘v
l II \ for the larged > A samples, where takes the role of
Lugs T the characteristic length. We observed that droplets move
much faster than single vortices. Simple analysis shows
I that the Magnus force exerted on the droplet grows line-

is equal toj,. It givesR =4d/2+ (j — j,)/B. For
the chosen parameters we obt&in= 20 andn = 6-7,
arly with n whereas the mobility saturates for largere-
sulting in this velocity increase.

t=200 - . E=360

- . . .
s & ‘ of the magnetic field at = 200). At the first stage of
o T remagnetization large normal phase areas develop at the
a P edge of the strip. These areas swallow vortices corre-

) _ _ sponding to the previous direction of the magnetic field.
FIG. 1. Dynamics of the normal phase. The current is appliedrhe normal areas assume more complicated form and then
along thex axis and the magnetic field is perpendicular to theb K int ler droplets. At lied i
strip. Gray-coded images shd® (x, y)| (|| = 0 is shown in reaxk up into smaller aropiets. Z€ro applied current,
black and|W| = 1 is shown in white). The field is reversed at the Abrikosov vortex lattice is formed in the external

t = 200. field. In contrast to the case with nonzero applied current,
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vortices penetrate from both edges of the strip. When thg renormalizes the normal velocity, of the interface
direction of the field is reversed, large normal areas deaccording to the Gibbs-Thomson condition= ¢y — y,
velop at both edges and swallow vortices correspondingvherecy is the velocity of the flat interface.

to the initial direction of the field. After awhile, the new  For the flat NS interface the velocig( j) is a function
Abrikosov lattice forms with vortices along the reversedof the transport current. The one-dimensional situation

direction of the field. had been considered in Ref. [15], where the existence of a
To include the Hall effect in our simulations we “stall” current;*, at which the interface velocity becomes
introduce the complex material parameter= 5.79 + i.  equal to zero has been established. kor 5.79 the

The imaginary correction ta describes the effect of the stall current was found to bg™ = 0.335, and ¢(j) =
transverse Hall force on the vortex drift [18]. This gives co(j,) = a(j* — j,), where a = 0.6 is a numerical
rise to the Hall voltage. Moreover, we observe the turnfactor. In two dimensions the topological charge of
of the droplet tail. We suggest that the rotation of thethe droplet induces a circular currept, tangential to
droplet’s tail in the experimental work [3] is caused by athe interface which modifies its velocity. To account
significant Hall contribution. for the effect of the tangential current, we take the
To summarize, we have found long-lived droplets oforder parameter close to the nearly flat interface in
the normal phase inside a superconducting phase, artde form (the interface is parallel tp axis, and we
observed that they may possess a topological charge thase a frame moving together with the interface along
can significantly exceed unity. Note that the dropletsthe x axis with velocityc) ¥ = F(x — cr)exdik,y +
must be distinguished from the Abrikosov vortices with ¢ (x — ct)], where k, = lim,—_. ¢, and j, = (1 —
multiple charge. The linear stability analysis shows that? — k2)k,, j, = (1 — k? — k?)k,. A simple scaling
under zero transport current, multicharged vortices aranalysis shows that the current renormalizes the interface
unstable with respect to splitting into singly chargedvelocity as
vortices. The characteristic time of the splitting is about
10—15 dimensionless units and, therefore, cannot explain c(jnsjz) = co(J)4/1 — k2, (7)
the existence of long-lived droplets (of the order of 100
and more dimensionless units of time). Note that thesavherej = j,/(v/1 — k2)*. If the curvature of the inter-
droplets may be viewed as the result of the “fusion” offace is small (i.e.,y = 1/R < 1), the interface itself is
the separate vortices. defined by the additional condition that at the (flat) inter-
The qualitative arguments describing the droplet dyface u = wo = kcco(ja,j-). After that the problem is
namics can be put on a more rigorous basis for theompletely defined.
droplets with size well in excess of the coherence length In the superconducting phase we have Eq. (6) com-
¢. In this case the boundary of the droplet can be conpleted by the boundary conditions fas on the strip
sidered locally as a slightly curved NS interface. Insideedges. Thus the problem under study is a generalization
the droplet the order paramet®r vanishes and the field of the well-known problem of the Laplacian growth (see,

is described entirely by the Laplace equation e.g., Ref. [19,20]). A new feature is that the functigns
a multivalued one and has branch cuts. This multivalued-
Ap =0. (5)  ness means that the obtained equations implicitly contain

Equation (5) has to be completed by the boundary Condi\_/ortex solutions: Vortices can appear and/or vanish via

tions at theinterface, deduced from the continuity equatiort1he formation of a singularity at the interface. The de-

. — : tailed consideration of these equations we leave for the
Vj = 0. This gives the relation between the component . . . )

. ) — (s uture; for now we would like to mention that linear sta-
of currents normal to the interfacg” = j*, where the

superscripts, n denote currents in the normal and Super_b|||ty analysis shows that the flat interface with the current

conducting regions, respectively. Using Eq. (2), we arriveﬂowmg through is stable With_respegt to small transversal
at the first boundary condition V. o — |‘I.’|2(V' _ perturbations. The above discussion and the results of
A,) — V,u® (here %” means ngr/rfwal projectiorqqi)f the OUr simulations lead us to conclude that the passage of the

gradient). The order parameter in the superconducting rec:_urrent suppresses the NS interface instabilities in thin su-

) . . SOk . uv:_perconducting films.
gt?gtigiap:;rhoe)(isrﬁgzgﬁfgg/\&(?ﬁ Iitirficsvlz(?lxez)lg the "adi To study the effects of pinning we carried out simula-

The phase of the superconducting order parameter totlons of TDGLE with randomly dllstr'lbuted pinning cen-
. ' . : ters. In the presence of weak pinning the newly formed
the leading order is described by the Laplace equation

droplets assume the “fractal” configuration since the nor-
Ap =0, (6) mal phase tries to settle at the pinning sites where the
order parameter is already suppressed (see Fig. 2). The

together with the equation for the normal velocity of moving droplets percolate along easy paths connecting the
the interface. The latter can be derived from Eg. (1)pinning sites, but the pinning centers impede the interface
for the slightly curved interface. The small curvaturemotion. As a result, the current that penetrates the normal

144



VOLUME 76, NUMBER 1 PHYSICAL REVIEW LETTERS 1 ANuARY 1996

109-ENG-38. The work of I.A. and B.S. was partly
supported by the Raschi Foundation and ISF. 1. A.
acknowledges the support of the NSF Office of the
Science and Technology Center under Contract No. DMR
91-20000 at Argonne National Laboratory. The visit of
V. V. to Israel was supported by the Rich Foundation via
the Israel Ministry of Science and Arts.

FIG. 2. Normal phase penetration at= 40, j = 0.25, and [1] H. Frahm, S. Ullah, and A. Dorsey, Phys. Rev. L&,

B = 0.018 in the presence of 180 randomly distributed pinning 3067 (1991); F. Liu, M. Mondello, and N. Goldenfeld,
centers. Other parameters are the same as in Fig. 1. Phys. Rev. Lett66, 3071 (1991); R. E. Goldstein, D. Jack-

son, and A.T. Dorsey, Report No. cond-n@411007,
1994 (to be published).
area gets smaller and can no longer support the existenc&] R.P. Huebeneragnetic Flux Structures in Superconduc-
of the droplet, and the droplets break up. For stronger _ tors(Springer-Verlag, New York, 1979).
pinning the droplets do not form at all, and single vortices [3] V-V. Vlasko-Viasovet al., Physica (Amsterdam22C

o . . 361 (1994).
enetrate the strip via jumps resembling the vortex motion . .
'E)hrough an arrayF())f Iini—zar Eefects [21].9 [4] C.A. Duran, P.L. Gammel, R. E. Miller, and D. J. Bishop,

. . . : Phys. Rev. B52, 75 (1995).
Finally we discuss briefly the time scale of the observed [5] M.i//. Indenbomet al(. Phy)s. Rev. B51, 15484 (1995).

effects. The characteristic time in dirty superconductors ] | - Burlachkovet al., Phys. Rev. B50, 16 770 (1994).

istg = 1/T.(1 — T/T.) = 10""*—10""" sec, depending [7] I. Aranson, M. Gitterman, and B.Ya. Shapiro, Phys.
on the temperature interval. This means that the consid-  Rev. B51, 3092 (1995).

ered phenomena develop on the nanosecond scale. How8] H. Kaperet al. (to be published).

ever the process of flux penetration can be considerably{9] P.W. Anderson, Rev. Mod. Phy88, 298 (1966).

slowed down by pinning. In this case the characteristid10] A.A. Abrikosov, Fundamentals of the Theory of Metals
time (for “dendritic” formations, for example) should in- (Elsevier, New York, 1988).

clude macroscopic characteristics, such as the size of tHéll !jlgfﬁgzllkéfg'(fg%]mor' Fiz59, 584 (1970) [Sov. Phys.
sample and the average pinning strength [22], and can ins o, 5", '\ iy, and N, B. Kopnin, Adv. Phys33, 47 (1984),
crease considerably.

. .. 13] L.P. Gor'kov and N. B. Kopnin, Usp. Fiz. Nauklg 413
In conclusion, we have shown that, under a sufﬁmen% | (1975). P P 8

transport current, the normal phase nucleates in the Sira) R.J. Watts-Tobin, Y. Krihenbiihl, and L. Kramer, J. Low
perconducting strips in the form of macroscopic droplets — Temp. Phys42, 459 (1981).

which tear off at the edges and further propagate acrogss] K. K. Likharev, Pisma Zh. Eksp. Teor. Fi20, 730 (1974)
the sample. These droplets possess a multiple topological [JETP Lett.20, 338 (1974)].

charge related to the magnetic flux they carry. Pinnind16] J. Pearl, Appl. Phys. Letg, 65 (1966).

suppresses the droplet formation converting the normdl7] I. Aranson, L. Kramer, and A. Weber, J. Low Temp. Phys.
area into multiconnected fractal formations which then 89,859 (1992).

split into separate vortices. We believe that the observet-l g‘t- ; [l)DohrjsleZCyES I;egééag,(fg;g)(lggz); A.G. Aronov
phenomena are not specific to thin strips, and tha_t thﬁ%g] D. Kessler J. Koplik. and H. Levine, Adv. Phya7, 225
same mechanism governs the normal phase formation

(1988).
large samples as well. [20] M. Mineev-Weinstein, Phys. Rev. &, R2241 (1993).
We are grateful to A. Koshelev, U. Welp, and [21] p.R. Nelson and V.M. Vinokur, Phys. Rev. Le@8, 2398
H. Levine for illuminating discussions. This work (1992).

was supported through the U.S. Department of Energy22] V.M. Vinokur, M.V. Feigelman, and V.B. Geshkenbein,
BES-Materials Sciences, under Contract No. W-31- Phys. Rev. Lett67, 915 (1991).

145



