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Surface Critical Phenomena and Scaling in the Eight-Vertex Model
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We give a physical interpretation of the entries of the reflectibrmatrices of Baxter's eight-
vertex model in terms of an Ising interaction at an open boundary. Although the model still defies an
exact solution, we nevertheless obtain the exact surface free energy from a crossing-unitarity relation.
The singular part of the surface energy is described by the critical expongents2 — 7/2u and
a; =1 — 7/u, where u controls the strength of the four-spin interaction. These values reduce
to the known Ising exponents at the decoupling pqint= 77/2 and confirm the scaling relations
a, = ap, + vanda; = a, — 1.

PACS numbers: 05.50.+q, 05.70.Jk, 64.60.Cn, 64.60.Fr

Our understanding of phase transitions and critical phe- The relation between the bulk Boltzmann weighi®,
nomena has been greatly enhanced by the study of exacityd of the eight-vertex model and the Ising couplinkis
solved lattice models in statistical mechanics [1]. ChiefL, M is depicted in Fig. 1. These weights are given by [1]
among these models is Baxter’s eight-vertex model, which

exhibits continuously varying critical exponents [2]. Such a(u) = pobs(A)04(u)01(A — u),

exact results provide valuable insights into the key theo-

retical developments of universality, renormalization, and (u) = poBs(N)0;(u)04(A — u),

scaling. The eight-vertex model is equivalent (see Figs. 1

and 2) to two Ising models coupled together by four-spin () = po01(A)04(u)04(A — u),
interactions [3,4]. From [1-4] the singular part of the

bulk free energy, scales ag, ~ |¢|™/* ast — 0. Here du) = pe01(A)01 ()0 (A — u), @

t vanishes linearly with’ — T, whereT, is the critical
temperature. The variabje measures the strength of the
four-spin interactionV via exg2M) = tan(u/2). When

n = 7 /m, wherem is an even integer, the critical be-
havior is modified tof, ~ |¢|7/#log|¢|. This is the case

in the Ising limit, whereuw = 7 /2. The critical expo-
nent describing the divergence of the bulk specific heat,
Cy, ~ |t|7* ast — 0, is given bya;, = 2 — 7/ u, with

ap = 0 (log) for the Ising model.

A significant test of the scaling relations between criti-
cal exponents was given by Johnson, Krinsky, and McCoy
[5], who derived the correlation length exponent=
7 /2 u for the eight-vertex model. Together with Baxter’s
result for a; this confirmed the validity of the bulk
scaling law [1,6,7]a, = 2 — 2v. However, the situ-
ation is not so satisfactory for trearfacecritical behavior
[6,7], as the eight-vertex model has not been solved
for open boundary conditions as in Fig. 2. Whereas
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integrability in the bulk is governed by solutions of the rig = B e KetMi-M}

Yang-Baxter equation [2,8,9], integrability in the presence

of boundaries is governed by solutions of both the Yang- > _>+ oy = B e—Ks—Ml+M?
v ~ T =Dbe

Baxter and reflection equations [10,11]K matrices

satisfying the reflection equations have been found fog|G. 1. The bulk and surface vertex and Ising spin configura-
the eight-vertex model [12—15], but the diagonalization oftions and their corresponding Boltzmann weights. The nearest-
the transfer matrix remains a formidable problem. Hereneighbor bulk interaction& andL are in the vertical horizontal

we nevertheless derive two surface critical exponem%irections, respectively. The four-spin interactions is denoted

: : . y M and the general nearest-neighbor surface interactions by
of the eight-vertex model, allowing a direct test of K., M! andM? in the vertical, SW-NE, and SE-NW directions,

the proposed scaling relations between bulk and surfac@spectively. The constantsand B do not enter into the criti-
critical exponents [6,7,16]. cal properties.
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Herep, is a normalization factor and, n, = are arbitrary
parameters. In principle, these three parameters are related
to the surface couplings. We argue that the variaple
controls the strength of the Ising surface couplikig
Similar to the bulk case, we see from Fig. 1 that @)

is given by a ratio of the boundary weights, which in

) ) _ turn are related to th&-matrix elements [17],
FIG. 2. The geometric relation between the eight-vertex

model lattice (dotted lines) and the Ising model lattice (broken expdK,) = 2 K11 (u/2)K2(u/2) .8
and solid lines). The Ising lattice is divided into two sublattices y r12r21 Kio(u/2)K21(u/2)

(solid and open circles).

The particular choice = 0 and¢ = %I’ simplifies to
where p, is a normalization factor. Heré;(u) = H(u) 1 T 6a(u) P
andé,(u) = O (u) are the elliptic theta functions, of nome expl4Ky) = — — [ 01(14)} : (©)

nz
g = exp(—wI'/I), whereI and I’ are the half-period . _ o o
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0<A<TI'and0 < g < 1. Hereq — 1atecriticality. In  the further choice ofy? = —lleadstok = K;, i.e., equal
terms of the vertex weights, the bulk Ising couplings arePulk and surface couplings in the Ising spin formulation.
given by ) These particular values of and 7 can be chosen for
exp4K) = ac _ 04(ut) T ) all ¢, since the surface coupling; can be clearly set to
bd L6,(w)]° be independent ofy and =, which can be seen from the
ad T, — w) T productry;ry,.
exp4L) = — = 17} , (3) The surface free energy can be obtained by applying
be  L6a(A = u) the inversion relation method, which is known to give
AM) — ab _ [ 04(A) 2 4 the correct bulk free energy of the eight-vertex model
expl ed LoV ] (4) (see, e.g., Sec. 13.7 of Ref. [1]). By using the fusion

procedure, the transfer matrix of the eight-vertex model
with boundaries described b~ matrices has recently
been found to satisfy a group of functional relations
[18,19]. Ignoring the finite-size corrections, which are of
no relevance here, the relations give the desired crossing-
unitarity relation for the transfer matrix eigenvalues [20],

In the Ising limit,M = 0 whenA = %I’, with the spectral
variableu controlling the anisotropy of the Ising couplings
K andL.

For the lattice orientation of Fig. 2, the integrable
boundary vertex weights can be written down from
the entries of theK matrix. Now for the eight-vertex
model this reflection matrix i2 X 2, of the general form

K (u) = K(u; -, m—, 7—), with elements [15] AwA + 2) = o+Wo-(w)p* (). (10)
01(& — u) 61(£ + u
K = ps ﬁ ) Ky = ps ﬁ’ (®)  The factor
61(2u)
Ki» = p;m03(£) _ 01X — w6 (A + w)
04(2u) pu) = 9108, (11)
% {[03(u) + 07 (w)] — 07(w) + 63(u)} ) s & bulk contribut H " duet (Vo ()i
2 214 2 21/! ’ IS a bulk contrioution wnereas tnhe pro u)w-(u)ls
64(&)83(w) = B1(£)07(w) | asurface contribution, with [18,19]
ws+(u) = Kj(wb(—2u + VKhw + A) + K5wd(—2u + VK5w + A)
— Ky i(wa(—2u + VK5 + A) — Kh(u)e(—2u + VK5 + A), (12)
w_(u) = Ky;(u + M)dQu + VK5 () + Kyy(u + AMbQu + MK (u)
— Kj(u + NeQu + VKjj(u) — Kip(u + Nau + MKy, (u). (13)
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Here K" (u) is the transpose ok (—u + A) with £-  physically we do not anticipate any change in the critical

replaced by, etc. behavior arising from the off-diagonal terms [21]. Define
The bulk and surface free energies must both satisfy thd, = 7" and A, = «,, then the bulk and surface free

crossing-unitarity relation (10). The surface energy carenergies per site are defined y(u) = — In k() and

be separated from the bulk energy. As we are only pref,(u) = —In x,(«). From (10)—(13) we have

dominantly interested here in the surface critical behavior

rather than the precise form of the surface energy, we con- Ky kp(u + A) = p(u) (14)

sider only the diagonal elements of tRematrix. These
terms are sufficient to extract the critical exponents alndlor the bulk and

01(6- — wo (- + wo(Er — wo(£5 + u) 6,24 — 2u)0,;2A + 2u)
01(A) 07(20)

wsWks(u + A) = (15)

for the surface.

We obtain the solution of (15) fot,(«) by applying the inversion relation method [1]. Let us first recall the derivation
of x,(u) from (14). It is convenient to introduce the variables= exp(—7A/2I) andw = exp(—7u/I). To obtain
f»(w) the argument is to assume that(w) is analytic and nonzero in the annulus = w = 1, allowing the Laurent
expansion off, (w),

Ink,(w) = i caw™. (16)

Inserting this expansion into the logarithm of both sides of (14) and equating the coefficients of poweltseofgives

o

frw)= =

n=1

(x2n + q2nx—2n) (1 _ W”) (1 _ x2nw—n)
n(1+x2) (1 —¢*") ’

(17)

This is the desired result, from which the critical behavior in the lgnit 1 is extracted by use of the Poisson summation
formula [1]. Interms of the variablg = 7A/I', wherel’ — 7/2 asq — 1, it follows thatf, ~ p™/# asp — 0, with
f» ~ p™*Inp if w/u is an even integer. Here the conjugate nome= exp(—271/1') vanishes linearly with the
deviation from criticality variable [1].

We obtain the surface free energy by solving (15) undes#imeanalyticity assumptions as for the bulk case, together
with the further assumption that,(w) is analytic and nonzero in the annulus< y.- < 1, where we have defined
y+ = exp(—w &+ /2I). In this way we arrive at the result

%n + q2nyz2n + y%n + q2ny:2n)(wn + x2nW—n)
n(l + x2) (1 — ¢*)

flny) = 5 Y
n=1

*® (x4n + 2nx*4n)(1 _ WZ”) (1 _ x4nwf2n)
-y q : (18)
n=1

n(l + x*)(1 — g2)

Applying the Poisson summation formula leads to a sefieFhe related specific heats follow as
for f, in powers of the nome. de dey

The phenomenology of critical behavior at a surface is C;~— and C, ~ —. (22)
well developed [6,7,16]. In this case two surface critical Ip Ip

exponents can be obtained from the surface free energyhese definitions follow from [6,7,16] with the identifi-

one from the surface specific heat, ~ [1|”*, and the cationsp ~ ¢ and ¢+ ~ K,. From (18) we find that as
other from the “local” specific heat in the boundary layer, , —

Ci ~ |t]7*. Here the corresponding surface internal

— aT/2un—1 ~ 7/
energy is given by es(p) pTH and ei(p) pTH. (22)
afs(u, £+) As for the bulk case, a logarithmic factor appears jfu
es(p) ~ ap +ei(p), (19) s an even integer.
_ _ . In summary, we have derived the exact critical surface
wheree, (p) is the first layer internal energy, exponents
er(p) ~ sl x) (20) 4, =2— — and a1 =1- =  (23)
9+ 20 7
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