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Polydispersity and Ordered Phases in Solutions of Rodlike Macromolecules
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We apply density functional theory to study the influence of polydispersity on the stability of
columnar, smectic, and solid ordering in the solutions of rodlike macromolecules. For sufficiently large
length polydispersity (standard deviatien> 0.25) a direct first-order nematic-columnar transition is
found, while for smallero there is a continuous nematic-smectic and first-order smectic-columnar
transition. The length distribution of macromolecules changes neither at the nematic-smectic nor at the
nematic-columnar transition. In the binary mixtures the nematic-smectic transition is also continuous.
Demixing in the smectic phase is preempted by transitions to solid or columnar phases.

PACS numbers: 87.15.Da, 61.30.Cz, 64.70.Md

It has been known for some time that concentrated soluaature of the nematic-smectic phase transition [12]? Are
tions of DNA [1], polypeptides [2,3], polysaccharides [3], there any smectic phases in which rods of different lengths
and hairy rod polymers [4] form columnar phases. It alscare demixed (completely demixed, or ordered in layers
has been observed that DNA in bacteriophages and spemwith varying widths)?
nuclei of sepia, trout, and salmon exhibit columnar order- We consider a polydisperse system of hard, parallel
ing [1]. The activity of DNA (renaturation, transcription, cylinders of diameterD interacting via the hard core
or replication) can be enhanced in the condensed phase [Spulsion potential. The free energy of the system as
Also the condensed form of DNA can be used by nature t@ functional of the number densify,(r, L), for a given
store genetic material in small volume and use it at the molength LI (L is dimensionless), is given by the following
ment of cell cycle. Despite the accumulating body of ex-formula (the free energy is ik T units):
perimental data, very little is known about the influence of
various factors, such as attractive forces or polydispersity, F[p] = ] dL] dr po(r, L) IN[Apo(r,L)] — 1
on the stability of columnar ordering in macromolecular
solutions. Itis known that columnar ordering is preempted
by smectic ordering in hard monodisperse rod systems [6], + f dL[ dr po(r,L)V(vopo(r,L)), (1)
but can be stabilized in binary mixtures of rods of different ' . .
length [7]. However, since in actual solutions the s stemérhe.fIrSt term in Eq. (1) is exact'and represents the

gth [7] : y

configurational entropy of the polydisperse system. The

are characterized by the continuous distribution of molec- : :
second term is the excess free energy determined by

ular length, true mqnodisperse or bidisperse systems e interparticle interactions. Hen¥ is the excess free
rare. Here we fill this apparent gap and study, within den- '

i . . ; " ‘energy density of the homogeneous system agla, L)
sity functional theo_ry [8,9], the influence of polydispersity is the weighted density, defined by
on columnar ordering.

A polydisperse system with continuous distribution of , , , , .
molecular masses (or length as is the case here) can beo(r, L) = f dL ]dr w(r =, L + L)po(r, L),
regarded as a mixture of infinitely many components. )
Thus, phase equilibria between two phases requires the
equality of chemical potentials for molecules of all lengths,where the weight functiom(r — r/,L + L') is normal-
making the total number of equilibrium conditions infinite. ized according to
Previous studies of polydisperse systems have employed
bifurcation analysis [10] or expansion in the distribution ] drw(r —r',L+L)=1. (3)
function width [11] (valid for sharp distributions only), but,
to date, no general approach is known. Here we establishhe weighted density [Eq. (2)] represents the influence
the equilibrium conditions by a novel technique that doesf the total density of particles on the density of rods of
not involve expansion or assumption of the sharpness déngth L at pointr. The normalized length distribution
the molecular length distribution. of the cylinders is given by (L) = N~! [dr py(r, L),

We pose the following questions: What is the minimalwhereN is the number of particles in the system.
degree of polydispersity necessary to stabilize the colum- Now we make the following approximations. First,
nar phase? At what polydispersity is the smectic phaséor the weight function we choose the normalized Mayer
destabilized? Does polydispersity change the continuousinction, i.e.,
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OL + LNI/2 -1z —7Z) OMD — Ir. — L))
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= filL + L' Iz = Zf2(D, Iry — 1)), 4)

wr —r' L+ L=

where O is the Heaviside step function. This Weigllut columnar, and solid phases. Fer= 0.25 there is a direct
function implies that the free energy of a system withfirst-order phase transition to the columnar phase. The
columnar ordering does not depend on the degree of polychemical potential as a function &f for the nematic and
dispersity. Second, we employ a decoupling approximaeolumnar phases can be written in the form

tion, i.e., po(r,L) = p(r)g(L). The density distribution

p(r) is approximated by a Gaussian function centered w(L) = In[g(L)] + wo, (5)

at the sites of the Bravais lattice characteristic for the

given phase [8,13-17]. We assume tgdl) is given It is central to our approach that for at least one of the

by the Gaussian distribution, characterized by the mean, - o in equilibriu (L) may be calculated as a function
value L, and the standard deviatian. It turns out that P q & y

the mean lengtiL, scales out. Finally, the excess free of 'LILS(L)IV;S] Ilos the case for Eq. (5). In the nematic phase
energy density for the homogeneous system is approxi‘L—L0 9 y

mated by the Carnaham-Starling equation as in Ref. [6],

i.e., ¥(n) =n4 — 3n)/(1 — n)?, wheren = pvg, p pee™ = In(A%p"*™) + W(vgp"™)
is the average number density, amgd= (1/4)mD?*IL, is emars em
the mean volume of the cylinders. + vop" " W (vop™ ™) (6)

The phase diagram obtained from the above outline is
shown in Fig. 1. It encompasses the nematic, smeﬁticand in the columnar phase by

col _ Jdry p(r ) In[A°pc'(r))]
#o Jdrypel(r))
N Jdr [p® (r )¥(vop ' (r1)) + vopr)p < r )W (vop ' (ry))]
Jdr, pel(r)) '

The equilibrium density distribution in the columnar phageof the transition. This result is in agreement with com-
pl(r,) is a sum of Gaussian functions centered at theputer simulations by Stroobants [7], who found a contin-
sites of a hexagonal lattice. The lattice constant and theous nematic-smectic transition for a binary mixture of
width of the Gaussian peaks are obtained from minimizatong and short spherocylinders. This result is not at all
tion of the functional [Eq. (1)] with respect to these vari- obvious. In principle one might expect that the nematic-
ables. It can be seen directly that the distribution functiorsmectic transition could be accompanied by the separa-
does not change at the nematic-columnar coexistence. Thien of rods, similar to the isotropic-nematic transition.
densities at coexistence, normalized by the density at cloda the latter case the longer rods are more abundant in
packing(n.p, = /233 ~ 0.907), are determined as fol- the nematic than in the isotropic phase [10,11,18,19]. By
lows: n"™/n., = 0.36 and n*°'/n., = 0.43, indepen- analogy, we could expect the length distribution to nar-
dent of the polydispersity of the system. row at the nematic-smectic transition and consequently to
For standard deviations < 0.25 we find a continu- change the continuous nature of the transition. The transi-
ous transition from the nematic to the smectic phase. Th#on has been studied as follows. First we have calculated
length distribution does not change the continuous naﬁurEhe chemical potential of the smectic phase. It reads

(7)

L) = Infgm(p)] + LEp @M@ | Jdz p™ @)W (op” ™z, L)

[ dz ps™(2) [dz ps™(2)
L JdzJdZ [l fi(L + L, lz = 2'Dp™ ()wop™ (2)g™ (L)W' (vop " (', L)) @)
[dz p™(2) ’
where f, is defined in Eq. (4). Then we have equatéd g"™(L) = exdpu™(L) — oM. (10)

nematic and smectic chemical potentials: o o _
The second equilibrium condition, i.e., the equality of

u (L) = pu™(L). (9)  pressure, combined with the normalization condition
It follows immediately that for the known distribution [dL g™™(L) = 1 determines the coexisting densities.
function g"™(L) the distribution functiong™™(L) is  We have found further that for all degrees of polydisper-
trivially determined at coexistence by Eq. (5), i.e., sity o the nematic-smectic phase transition is continuous.
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0.8 ‘ ' and (8)] we could determine the distribution function in
the columnar phase at coexistence with the smectic. This
06k transition is first order, so the average volume fraction
S T -+ 7 jumps at the transition. The distribution function in the
I smectic is again assumed to be Gaussian. We characterize
& 04 smectic the distribution function in the columnar by its mean
L value and standard deviation in order to compare it to the
ozh 1 distribution function in the smectic. It turns our that the
L nematic ] change in the mean length is negligible. The standard
I deviation of the distributions is larger in the columnar
0.0 . . * : than in the smectic This is the expected result, since the
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- lamellar ordering in the smectic favors a sharp distribution

whereas the columnar structure does not. For example, as

FIG. 1. Phase diagram for a polydisperse system of parallelgep iy Fig. 1, a smectic phase with a polydispersity of
rods interacting via hard core repulsive forces. The polydisper= """ T Kina f . _ L
sity of the rod lengths is modeled by a Gaussian distribution? ~— 0.15 at a packing fraction Of'ﬂ/ncp =045 1s In

of standard deviatios. Squares denote coexistence of phases€quilibrium with a columnar structure of a polydispersity
triangles a second-order phase transition, and crosses represefito = 0.17 at a packing fraction ofy/n., = 0.50.

instabilities. The dashed lines shown in Fig. 1 represent the insta-
bility of the smectic and columnar phases with respect
The same procedure has been applied to the columnate perturbations to a hexagonal solid. The phase charac-
smectic phase transition. In this case we have assumeerized by the density distributiop’(r) is unstable with
a given length distribution function in the smectic phaserespect to the perturbatiop"-")(r) of the symmetry of
and from the equality of chemical potentials [Eq. (5), (7),thef phase if the following condition holds:

|
. . 8F
fdrj dr'6p(”f)(r)5p(”f)(r’)% =0. (11)
p)Ep() | i

We have assumed that the perturbations can be expre'smi well as the instabilities to solid ordering as before.
in the factorized form:8p/)(r) = pi(r)8p/(r), where Figure 2 shows the results for different ratios of the
8p/(r) describes the onset of the ordering specificlengths of the rods. The phase diagram is calculated at
for phasef and absent in phase For analysis of the the equivalence point, where the partial volume fractions
columnar solid bifurcation we takeép/(r) = cogkz) of the two components are the same. Although the results
while for the smectic solid bifurcation we assumeare not completely comparable to those of Stroobants
Spl(r) = Zf,zlcos(knrl), where &, = (1, 1//3)k, [7], who studied spherocylinders rather than cylinders,
ky = (—1,1/3/3)k, and ks = (0,2/+/3)k are the vectors qualitative agreement can still be seen easily. As in the
spanning the first shell in the reciprocal space for thestudy of Stroobants, we observe the destabilization of the
regular hexagonal lattice. smectic order compared to the nematic, and stabilization
For large polydispersity the columnar phase is moreof the columnar order with an increasing length ratio of
stable than the solid phase. We expect this, sincéhe two components.
in the system of rods with continuous distribution of
length, the particles do not fit well into the 3D structure

involving ordering along the long axis of rods. This 0.8 ’ ' ‘

transition is expected to be first order, with the distribution i colid = * ]

function more strongly peaked in the solid. The smectic 06kF. P ]

phase becomes slightly destabilized with respect to solid SRR S + columnar 1

ordering if the polydispersity is increases. This can be , , G\Q\S\B\ﬂ_(

understood as an indication that order in #hdirection is £ 04  Smecti ]

least favored, so that even three-dimensional ordering is

preferred. 0zl ]
The functional given by Eq. (1) for the general case of — nematic

a polydisperse system reduces to the binary mixture case I

for 0'01.0 1?2 1.14 1?6 1.8

p(r,L) = pi(r)érr, + p2(r)éry,, (12) L./L.

Wher_e 6"’1’. is.the' Kronecker delta function. Using this FIG. 2. Phase diagram for a two component system of length
density distribution, we are able to calculate the freeatio L,/L,. Note the remarkable qualitative similarity to

energy of the nematic, smectic, and columnar phaseBig. 1.
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