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Large Local-Field Corrections in Optical Rotatory Power of Quartz and Selenium
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We show that local fields can increase the rotatory powerr of nonconductors by a factor of 10—in
contrast to the typical 10% effect in other properties. We present calculations for quartz and Se, a
a general method to estimate the size of local-field corrections. Notably, only scalar local fields ar
needed despite the vector character of light. A self-energy-corrected local-density band structure yiel
corrections tor of a factor of 17 in quartz and24 in Se. These values are 30% above experiment for
quartz, and, for one sign choice, within the 50% error bars for Se.

PACS numbers: 78.20.Ek, 78.20.Bh
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As linearly polarized light travels along the optic ax
in a quartz crystal, the plane of polarization rotates
an angle proportional to the propagated distance. T
optical rotation is due to a crystal structure in whic
the SiO2 units are arranged in helices along thec axis
(optic axis) of a hexagonal lattice [1]. Because
the helical structure, left and right circularly polarize
light have different refractive indicessnL, nRd, which
results in a rotation of polarization for linearly polarize
light. This phenomenon is described by the optic
rotatory powerr ­ vsnL 2 nRdy2c, wherev is the light
angular frequency andc is the speed of light in vacuum
Many different materials exhibit optical rotation, bu
among crystalline materialsa-quartz in the most carefully
studied. For a recent discussion of stress-induced op
rotation in semiconductors see Ref. [2].

Recently, Zhonget al. [3] calculated the optical rota-
tory power fora-quartz and selenium. Their results a
too small compared to experiment by a factor of 5 ina-
quartz [4] and two (in absolute value) in Se [5–7].
this Letter we show that these differences are due to v
large local-field corrections (caused by the microsco
variation of the electric field), and we predict a change
sign in Se (see Table I). The local-field correction is
factor of 17 in a-quartz and24 in Se, which is a factor
of 10–100 larger than typical local-field effects in oth
properties, e.g., dielectric constant´ and second-order
susceptibilityx s2d.

Following Zhonget al.,we use a self-energy-correcte
time-dependent local-density approximation (TDLDA
[3], but extended to include local-field corrections.
crucial observation is that one can use a combin
vector-scalar theory in which the macroscopic field
given by a vector potential and the local fields by a sca
potential [8]. This approximation is of second order
the ratio of the lattice parameter and the waveleng
This key simplification avoids the use of a vector bas
density-functional theory, which would require avector
exchange-correction potential [9] rather than the famili
and known, scalar potential. Our results for the rotato
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power are the first for which local-field corrections hav
been calculated for a vector property of light. Further, th
use of scalar local fields permits simple general estima
of the size of local-field corrections.

Theab initio method of using local-density approxima
tion (LDA) excited states in a linear-response theory [1
of optical properties for semiconductors, implemented u
ing pseudopotentials and plane waves, typically gives (
20)% agreement with experiment (in the long-waveleng
limit; excluding excitonic effects). However, this accu
racy requires an explicit correction of the band gap [11
since the gap is usually 1–2 eV too small in LDA [12]
The correction we use is a rigid shiftD of all the conduc-
tion band energies relative to the valence band energ
[13]. Zhonget al. [3] calculated´ andx s2d for a-quartz
and Se withD ­ 1.8 eV for quartz andD ­ 1.1 eV for
Se, obtained by fitting to the optical absorption edge in
and to´ in a-quartz, where the edge is ill-defined. Al
their results were in good agreement with experiment, a
the local-field corrections were of order 10%. TDLDA
seems to work well for both materials.

The optical rotatory power is related to the optica
activity tensorh, defined by

4pdJi ­ sv2ycd fs´ij 2 dijdAj 1 ihiljqlAjg , (1)

where we describe the polarization in terms of the induc
current dJ and the total, macroscopic electric field b
the vector potentialA; ´ is the dielectric matrix andq
is the wave vector. In the uniaxial crystalsa-quartz and
trigonal selenium (point group 32), the rotatory power
given by the tensor componenth231 s3 ­ optical axisd:
r ­ v2h231y2c2.

TABLE I. Optical rotatory power rysh̄vd2 in
degyfmmseVd2g of a-quartz and selenium in the zero
frequency limit.

a-quartz Selenium

No local fields 0.7 21
With local fields 5.6 255
Experiment 4.6 6 0.1 656 6 30
© 1996 The American Physical Society
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se
To obtainh, we need the induced current to first order both inA andq. For independent electrons, linear-respon
theory (TDLDA) yields

dJ ­
X

y,c,k,6

ky, k 1 qjA ? Jkyc 2 efsrdjc, kl kc, kjJkjy, k 1 ql
ey,k1q 2 ec,k 6 v

, (2)
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where Jk is the current operator, andjy, kl and jc, kl
are the periodic part of the valence- and conducti
band wave functions, with energiesey,k ­ e

LDA
y,k and

ec,k ­ e
LDA
c,k 1 D, respectively. The microscopic scal

potentialf is a sum of the Coulomb interaction and t
LDA exchange-correlation potential (G is a reciprocal
lattice vector):

fG ­
4pdnG

jq 1 Gj2
1

X
G0

dyxc

dn

Ç
G0

dnG-G0 . (3)

Here G fi 0 since f represents only local fields [14
The induced charge densitydn is again given by linear
response theory. All fields and densities are assu
to vary as expsq ? r 2 ivtd times a function with the
periodicity of the lattice. Note that, with our choice
gauge,A anddJ are macroscopicsG ­ 0d, while f and
dn are microscopicsG fi 0d. In our calculations we
expand to first order inq and take the zero-frequenc
limit.

Figure 1 shows the calculated and experimental res
[4] for the rotatory power ofa-quartz. The data ar
plotted asrysh̄vd2 as a function ofsh̄vd2, which in
accordance with the coupled-oscillator model [15] give
slow variation withv. The dip at the lowest experiment
frequency is probably due to an additional screening
phonons [16], which we do not include. The theoreti
curve with no local-field corrections is due to Zho
et al., while the arrow marks our zero-frequency val
5.6 degyfmmseVd2g (with D ­ 1.8 eV). With D ­ 0
(LDA), we obtain rysh̄vd2 ­ 6.8 degyfmmseVd2g. In
light of the usually moderate local-field corrections
other optical properties the effect here is remarkable.

FIG. 1. Optical rotatory powerfrysh̄vd2g for a-quartz. The
arrow indicates the zero-frequency value of the present w
The curve without local-field corrections is from Zhonget al.
(Ref. [3]). The experimental points (dots) are from Ref. [4].
n-

ed

lts

a

y
l

e

he

k.

correction is about a factor of 7. The remaining differen
between theory and experiment can be attributed to
inaccuracy of TDLDA. The local fields make up th
physics missing in the results of Zhonget al. This
conclusion should hold at finite frequencies too, sin
local-field corrections generally show weak frequen
dispersion [11,17].

The other independent componenth321 of a-quartz has
also been measured [18,19]. The situation is similar
that for the rotatory power; the local-field correction
10 times the value given by Zhonget al. At v ­ 0,
we obtain h321 ­ 4.8 pm, while Zhonget al. obtained
h321 ­ 0.46 pm. The experimental values fall in th
range 3–4 pm at zero frequency.

For selenium, the theoretical and experimental valu
[5–7] for the rotatory power are shown in Fig. 2. He
the local-field correction is negative and larger than t
uncorrected response, so we predict a change of sign.
experiments do not give the sign for Se, but if we use
negative sign for the experiments our value atv ­ 0 falls
within the error bars of a zero-frequency extrapolation
the data of Adams and Haas [5] and Henrion and Eck
[7]. (The cause for the strong low-frequency dispersion
the data of Day [6] and the kink in the data by Adam
and Haas are unknown [3].) In the LDAsD ­ 0d, we
obtain rysh̄vd2 ­ 2131 degyfmmseVd2g, compared to
255 degyfmmseVd2g with D ­ 1.1 eV. Therefore, due
to the sensitivity toD, the close agreement with experime

FIG. 2. Optical rotatory powerfrysh̄vd2g for trigonal Se,
with notation as in Fig. 1. The experiments do not give t
sign of r, but we use negative values for comparison with o
calculation. The error bars for Henrion and Eckart [7] sho
the total variation due to sample thickness in both positive a
negative crystals. Day [6] estimates an error of65 degymm,
while Adams and Haas [5] mentions a variation of630% at
h̄v ­ 1.09 eV.
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is probably accidental. However, the calculation is go
enough to determine the sign and the order of magnitu
An experimental verification of the sign would prove th
importance of the local fields in Se.

The large local-field corrections can be understo
by considering the order of magnitude of the releva
response functions. Generally, we can define lin
response functions that connect the charge and cur
densities with the scalar and vector potentials:

dn ­ xnj ? A 1 xnnf, dJ ­ xjj ? A 1 xjnf .

(4)

As in Eqs. (2) and (3),A anddJ are macroscopicsG ­
0d, while f anddn are microscopicsG fi 0d. Therefore,
a j superscript also indicates thatG ­ 0, while an n
superscript indicates thatG fi 0. The potentialf is given
by Eq. (3), which we write asf ­ Vdn. Eliminating f,
the effective current-current response is

dJ ­ xjj ? A 1 xjns1 2 Vxnnd21Vxnj ? A . (5)

The relative local-field correction is then the ratio of t
second and first term.

To estimate the size of the local-field correction, w
shall use only the Coulomb partVG ­ 4pyjq 1 Gj2

of the electron-electron interaction. The potentialf is
then equal to the electrical potential, and we can re
all the response functions to the susceptibilityx, defined
by PG ­

P
G0 xGG0 ? EG0 , where P is the polarization

density andE is the electric field. The definitionssG fi

0d dJ0 ­ ≠P0y≠t, dnG ­ 2=== ? PG, E0 ­ 2≠A0yc≠t,
and EG ­ 2=fG, with = ! isq 1 Gd, yield the rela-
tions [20]

x
jj
00 ­ s1ycdv2x00, x

nn
GG0 ­ 2sq 1 Gd ? xGG0 ? sq 1 G0d ,

x
nj
G0 ­ s1ycdvsq 1 Gd ? xG0, x

jn
0G0 ­ 2vx0G0 ? sq 1 G0d .

(6)

There is one-to-one correspondence between aj super-
script and av factor and between ann superscript and
a q 1 G multiplication. Below we abandon the explic
vector notation (i.e.,xGG0 ! x), disregard angular fac
tors, and focus on orders of magnitude.

A comparison with Eq. (1) shows that if we takeq ­ 0
in Eq. (5) we obtain the local-field correction to th
susceptibilitý 2 1. With q ­ 0 in Eq. (6) we obtain the
ratio between the local-field correction to the macrosco
response

xjnV xnj

x jjs1 2 Vxnnd
. 2

4px

1 1 4px
; 2

´ 2 1
´

, (7)

which indicates that the local-field correction is negat
and smaller than the macroscopic response. This con
sion is in reasonable agreement with the typical210%
correction for the dielectric constant. A similar result c
be obtained for the second-harmonic coefficient.
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For the rotatory power, we need the first-order terms
theq expansion of Eq. (5):

dJf1g ­ x jjf1g ? A 1 xjnf1g f1 2 sVxnndf0gg21 sVxnjdf0g ? A

1 x jnf0g f1 2 sVxnndf0gg21 sVxnjdf1g ? A

1 x jnf0g sVxnndf1g f1 2 sVxnndf0gg22 sVxnjdf0g ? A ,

(8)

where the extra superscript represents the order inq.
The corresponding equation to zeroth order is given
the earlier Eq. (5) with superscript [0] on all respon
functions.

The relative size of the local-field correction is the rat
of the three last terms and the first term in Eq. (8). If w
now form the ratioR of therelative local-field corrections
to the first- and zeroth-order response, most of the fac
with superscript [0] cancel:

R ­
xjjf0g

xjjf1g

"
xjnf1g

xjnf0g 1
sVxnjdf1g

sVxnjdf10g 1
sVxnndf1g

1 2 sVxnndf0g

#
.

(9)
With the definitions ´ ; 1 1 4px f0g and qh ;

4px f1g [Eq. (1)], the first factor in Eq. (9) is

xjjf0gyxjjf1g ­ x f0gyx f1g ­ s´ 2 1dyqh . (10)

Note that the valueswithout local-field correctionsshould
be used foŕ andh.

A first-order expansion inq of xjn in Eq. (6), gives the
first term in brackets in Eq. (9):

x jnf1gyxjnf0g ­ sx f1gG 1 x f0gqdyx f0gG

­ sx f1gyx f0g 1 qyGd , (11)

where the averageG is a typical reciprocal lattice vecto
in the Fourier expansion of the charge density. The len
scale associated with the local fields is the size of
bonds in the material, so we can also writeG ­ 2pyb,
whereb is a typical bond length.

The product of Eqs. (10) and (11) yields a contributi
to R of 1 1 s´ 2 1dyGh. The two other terms in Eq. (9
are more complex due to the potentialV, and we skip the
details. All terms are either of order 1 ors´ 2 1dyGh.
In total, we obtain

R . 3 1 8s´ 2 1dyGh . 3 1 bs´ 2 1dyh . (12)

The values forh231 and´ (ordinary) without local-field
corrections are fora-quartzh231 ­ 0.94 pm ­ 0.018 a.u.
and ´ ­ 2.4, and for Seh231 ­ 28 pm ­ 0.53 a.u. and
´ ­ 9.0 [3]. A bond length of one atomic unit yields
bs´ 2 1dyh ­ 78 for a-quartz andbs´ 2 1dyh ­ 15 for
Se. We infer from these values thatR is of order 10–
100. A local-field correction of 10% foŕ then yields a
correction to the rotatory power of a factor of 1–10 [21
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This estimate agrees very well with the corrections of
factor of 7 and 4 fora-quartz and Se (Table I).

In conclusion, we have shown both by calculation
for a-quartz and selenium and by general estimates t
the local-field correction to the optical rotatory power
very large compared to the typical correction in oth
optical properties. These calculations are the first
which local-field corrections have been calculated for
vector property of light. Since only scalar local field
are important [8], TDLDA can be used also for vecto
properties of light. Ina-quartz, the local fields increase
the rotatory power by a factor 7, and in selenium th
rotatory power changes sign due to a correction of
factor of 24. We have also shown that it is possible
by general estimates of the size of the different line
response functions, to obtain order of magnitude estima
of the size of local-field corrections.
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