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Large Local-Field Corrections in Optical Rotatory Power of Quartz and Selenium

Lars Jonssoh,Zachary H. Leving;?> and John W. Wilkins
'Department of Physics, Ohio State University, 174 West 18th Avenue, Columbus, Ohio 43210-1106
2Building 221/A253, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
(Received 22 March 1995

We show that local fields can increase the rotatory powef nonconductors by a factor of 10—in
contrast to the typical 10% effect in other properties. We present calculations for quartz and Se, and
a general method to estimate the size of local-field corrections. Notably, only scalar local fields are
needed despite the vector character of light. A self-energy-corrected local-density band structure yields
corrections tq of afactor of +7 in quartz and-4 in Se. These values are 30% above experiment for
quartz, and, for one sign choice, within the 50% error bars for Se.

PACS numbers: 78.20.Ek, 78.20.Bh

As linearly polarized light travels along the optic axis power are the first for which local-field corrections have
in a quartz crystal, the plane of polarization rotates bybeen calculated for a vector property of light. Further, the
an angle proportional to the propagated distance. Thiase of scalar local fields permits simple general estimates
optical rotation is due to a crystal structure in which of the size of local-field corrections.
the SiQ units are arranged in helices along tbeaxis The ab initio method of using local-density approxima-
(optic axis) of a hexagonal lattice [1]. Because oftion (LDA) excited states in a linear-response theory [10]
the helical structure, left and right circularly polarized of optical properties for semiconductors, implemented us-
light have different refractive indice¢n;, ng), which  ing pseudopotentials and plane waves, typically gives (5—
results in a rotation of polarization for linearly polarized 20)% agreement with experiment (in the long-wavelength
light. This phenomenon is described by the opticallimit; excluding excitonic effects). However, this accu-
rotatory powelp = w(ny — ng)/2c, wherew is the light  racy requires an explicit correction of the band gap [11],
angular frequency and is the speed of light in vacuum. since the gap is usually 1-2 eV too small in LDA [12].
Many different materials exhibit optical rotation, but The correction we use is a rigid shift of all the conduc-
among crystalline materials-quartz in the most carefully tion band energies relative to the valence band energies
studied. For a recent discussion of stress-induced optic§l3]. Zhonget al. [3] calculateds and y® for a-quartz
rotation in semiconductors see Ref. [2]. and Se withA = 1.8 eV for quartz andA = 1.1 eV for

Recently, Zhonget al. [3] calculated the optical rota- Se, obtained by fitting to the optical absorption edge in Se
tory power fora-quartz and selenium. Their results areand toe in a-quartz, where the edge is ill-defined. All
too small compared to experiment by a factor of Svin  their results were in good agreement with experiment, and
quartz [4] and two (in absolute value) in Se [5-7]. Inthe local-field corrections were of order 10%. TDLDA
this Letter we show that these differences are due to vergeems to work well for both materials.
large local-field corrections (caused by the microscopic The optical rotatory power is related to the optical
variation of the electric field), and we predict a change ofactivity tensorn, defined by
sign in Se (see Table I). The local-field correction is a = (w2 o SDA + iniiaiA
factor of +7 in a-quartz and—4 in Se, which is a factor dmdli = (@ /)lle; = Si)A; + inuqidy]. (1)
of 10-100 larger than typical local-field effects in other
properties, e.g., dielectric constastand second-order
susceptibilityy ).

Following Zhonget al., we use a self-energy-corrected,
time-dependent local-density approximation (TDLDA) . R L
[3], but extended to include local-field corrections. A 9'VE" Ey the t%nsor componens; (3 = optical axis:
crucial observation is that one can use a combined — @ 7231/2¢".
vector-scalar theory in which the macroscopic field iSTABLE I. Optical rotatory power p/(hw)? in
given by a vector potential and the local fields by a scaladeg[mm(eV)’] of a-quartz and selenium in the zero-
potential [8]. This approximation is of second order in frequency limit.
the ratio of the lattice parameter and the wavelength. a-quartz Selenium
This key simplification avoids the use of a vector based

where we describe the polarization in terms of the induced
current 8] and the total, macroscopic electric field by
the vector potentialA; ¢ is the dielectric matrix andj

is the wave vector. In the uniaxial crystalsquartz and
trigonal selenium (point group 32), the rotatory power is

density-functional theory, which would requirevactor o local fields 0.7 21
exchange-correction potential [9] rather than the familiar With local fields 56 3
' Experiment 4.6 £ 0.1 *56 = 30

and known, scalar potential. Our results for the rotatory
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To obtainn, we need the induced current to first order bottAimndqg. For independent electrons, linear-response
theory (TDLDA) yields

5] — Z v,k + qlA - Ji/c — edp(®)lc, k) {c,k|Jk|v, kK + q>’

v,ek,* €vk+q — €ck T w

where Jx is the current operator, and, k) and |c, k) correction is about a factor of 7. The remaining difference
are the periodic part of the valence- and conductionbetween theory and experiment can be attributed to the
band wave functions, with energies,, = 5" and inaccuracy of TDLDA. The local fields make up the
ecx = €’ + A, respectively. The microscopic scalar physics missing in the results of Zhorg al. This
potential ¢ is a sum of the Coulomb interaction and the conclusion should hold at finite frequencies too, since

LDA exchange-correlation potentialG(is a reciprocal local-field corrections generally show weak frequency

()

lattice vector): dispersion [11,17].
4mdng Sv The other independent component, of a-quartz has
b = 5 Z = dng-g'.  (38) also been measured [18,19]. The situation is similar to
lg + Gl G on le that for the rotatory power; the local-field correction is

10 times the value given by Zhongt al. At w = 0,
we obtain n3;; = 4.8 pm, while Zhonget al. obtained
el = 0.46 pm. The experimental values fall in the
range 3—4 pm at zero frequency.

For selenium, the theoretical and experimental values
[5-7] for the rotatory power are shown in Fig. 2. Here
the local-field correction is negative and larger than the
uncorrected response, so we predict a change of sign. The
experiments do not give the sign for Se, but if we use the
lJgegative sign for the experiments our valuevat= 0 falls
within the error bars of a zero-frequency extrapolation of
the data of Adams and Haas [5] and Henrion and Eckart
471. (The cause for the strong low-frequency dispersion in

slow variation withe. The dip at the lowest experimental (€ data of Day [6] and the kink in the data by Adams

frequency is probably due to an additional screening bynd Haas are unknown [3].) In the LD& = 0), we

- : . __obtain p/(hw)*> = —131 deg/[mm(eV)?], compared to
phonons [16], which we do not include. The theoretical® p 27 &
curve with no local-field corrections is due to Zhong —55 deg/[mm(eV)°] with A = 1.1 eV. Therefore, due

et al., while the arrow marks our zero-frequency value 0 the sensitivity ta\, the close agreement with experiment
5.6 deg/[mm(eV)?] (with A = 1.8 eV). With A =0
(LDA), we obtain p/(fiw)> = 6.8 deg/[mm(eV)?]. In
light of the usually moderate local-field corrections in

Here G # 0 since ¢ represents only local fields [14].
The induced charge densityn is again given by linear-
response theory. All fields and densities are assum
to vary as exfy - r — iwt) times a function with the
periodicity of the lattice. Note that, with our choice of
gauge,A and 8J are macroscopi¢G = 0), while ¢ and
Sdn are microscopic(G # 0). In our calculations we
expand to first order img and take the zero-frequency
limit.

Figure 1 shows the calculated and experimental resul
[4] for the rotatory power ofa-quartz. The data are
plotted asp/(fhw)? as a function of(iw)?, which in
accordance with the coupled-oscillator model [15] gives

(524
o

Selenium (A=1.1 eV)

other optical properties the effect here is remarkable. The N;f No local fields
~°Ei 0
8.0 T T T T é ° i N A A A A A R
_ Quartz (A=1.8 eV) S 0 e——ro { { s
= ko] With local
S 60 | With local fields , = fields ¢l =
2 — Experiment . o 5 -100 o s {& ]
E esee © o0 O b < Experiments: . i .
£ ¢ & 450 | A Adams & Haas 1
S 40 1 O Day 'S
% b ® Henrion & Eckart
= [
S 2000 05 1.0 15 2.0 25 3.0
2 20f ) ) . > 2 ) :
s No local fields ()" ([eVT)
0.0 . . . , FIG. 2. Optical rotatory powefp/(hw)?] for trigonal Se,
0.0 2.0 4.0 6.0 8.0 10.0 with notation as in Fig. 1. The experiments do not give the
(fio) ([eVD) sign of p, but we use negative values for comparison with our

calculation. The error bars for Henrion and Eckart [7] show
FIG. 1. Optical rotatory powelrp /(hiw)?*] for a-quartz. The the total variation due to sample thickness in both positive and
arrow indicates the zero-frequency value of the present worknegative crystals. Day [6] estimates an errorzaf deg/mm,
The curve without local-field corrections is from Zhoegal. while Adams and Haas [5] mentions a variation 080% at
(Ref. [3]). The experimental points (dots) are from Ref. [4]. /7w = 1.09 eV.
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is probably accidental. However, the calculation is good For the rotatory power, we need the first-order terms in
enough to determine the sign and the order of magnitudehe q expansion of Eq. (5):
An experimental verification of the sign would prove the

importance of the local fields in Se. SIM = YA A 4 T — (v O =1 (v )00 A
The large local-field corrections can be understood
by considering the order of magnitude of the relevant + MO — (V™ (v A

response functions. Generally, we can define linear
response functions that connect the charge and current + oy MOT(y )T — (v 0072 (v 0T A
densities with the scalar and vector potentials: @)

where the extra superscript represents the ordeq.in
(4)  The corresponding equation to zeroth order is given by

As in Egs. (2) and (3)A and 8 are macroscopiéG — the earlier Eq. (5) with superscript [0] on all response

. ) . functions.
0), while ¢ andén are microscopi€dG # 0). Therefore, . . . L .
aj superscript also indicates th& = 0, while an n The relative size of the local-field correction is the ratio

superscript indicates th@& # 0. The potentiak is given of the three last terms and the' first term in Eq. (8)'. If we
. . o S now form the ratiaR of therelative local-field corrections
by Eq. (3), which we write agp = V én. Eliminating ¢, :
; . to the first- and zeroth-order response, most of the factors
the effective current-current response is : . )
with superscript [0] cancel:
I =x" A+ "1 - VX"”)71V)(W -A. () R ij[()] Xjn[l] N (Van)[l] (V)(rm)[l]
The relative local-field correction is then the ratio of the XU xnl0 = (v yn )10l =1 — (v ynmm)lo]
second and first term. )
To estimate the size of the local-field correction, we
shall use only the Coulomb paftg = 47/|q + G|?
of the electron-electron interaction. The potenialis 3 ’
then equal to the electrical potential, and we can relate /1% /il = 01/ 00 — (¢ — 1) /47y (10)
all the response functions to the susceptibiljty defined . ) .
by Pc = > xco - Eg, whereP is the polarization Note that the valuewithout local-field correctionshould

density ancE is the electric field. The definition€s =  Pe used for andn. . _
0) 8Jo = dPy/0t, dng = —V - Pg, Eg = —dAe/cot, ~ Afirst-order expansion ig of /" in Eq. (6), gives the
and Eg = —V¢g, with V — i(q + G), yield the rela- first term in brackets in Eq. (9):

tions [20 . . — _
! [20] G 0 = (G 4 01/ 101G
xo0=(1/c)@*x00.  xge=—W@+G) xee' - (q+G), = M/ 4 4/G), (11)

6 _
nj in (/ ) where the averag§ is a typical reciprocal lattice vector
xco={/c)o(q+G) xco. xoc'=—wxoc " (@+G'). inthe Fourier expansion of the charge density. The length

There is one-to-one correspondence betwegnsaper- scale associated with the local fields is the size of the
script and aw factor and between an superscript and °0nds in the material, so we can also witie= 2 /b,
aq + G multiplication. Below we abandon the explicit Whereb is a typical bond length. _ o
vector notation (i.e.yge' — x), disregard angular fac- The product of Egs. (10) and (11) yields a c_ontrlbutlon
tors, and focus on orders of magnitude. toRof 1 + (¢ — 1)/Gn. The two other terms in Eq. (9)

A comparison with Eq. (1) shows that if we take— 0 &ré more complex due to the potentigland we skip the
in Eq. (5) we obtain the local-field correction to the details. All terms are either of order 1 & — 1)/G .
susceptibilitys — 1. With ¢ = 0in Eq. (6) we obtainthe N total, we obtain
ratio between the local-field correction to the macroscopic  p ~ 3 + 8(e — 1)/Gn =3+ ble — 1)/n. (12)

response _ _ _
in _ The values fom,3; ande (ordinary) without local-field
x"Vx 4 ) e — 1 .

i —vom = = — , (7) corrections are fog-quartzn,;; = 0.94 pm = 0.018 a.u.

X1 = Vxm) I+ dmy € ande = 2.4, and for Sen,3; = 28 pm = 0.53 a.u. and
which indicates that the local-field correction is negativee = 9.0 [3]. A bond length of one atomic unit yields
and smaller than the macroscopic response. This conclé{s — 1)/n = 78 for a-quartz and (s — 1)/n = 15for
sion is in reasonable agreement with the typiedl0%  Se. We infer from these values thBtis of order 10—
correction for the dielectric constant. A similar result can100. A local-field correction of 10% fog then yields a
be obtained for the second-harmonic coefficient. correction to the rotatory power of a factor of 1-10 [21].

Sn=x" A+ "¢, 8J=x" A+ x"o.

With the definitions e = 1 + 47y and ¢y =
47 M [Eq. (1)], the first factor in Eq. (9) is

nj
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