
VOLUME 76, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 19 FEBRUARY 1996

f light
ction
ations
mple

reshold
, and

1368
Probability of Reflection by a Random Laser
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A theory is presented (and supported by numerical simulations) for phase-coherent reflection o
by a disordered medium which either absorbs or amplifies radiation. The distribution of refle
eigenvalues is shown to be the Laguerre ensemble of random-matrix theory. The statistical fluctu
of the albedo (the ratio of reflected and incident power) are computed for arbitrary ratio of sa
thickness, mean free path, and absorption or amplification length. On approaching the laser th
all moments of the distribution of the albedo diverge. Its modal value remains finite, however
acquires an anomalous dependence on the illuminated surface area.

PACS numbers: 78.20.Ci, 05.40.+j, 42.25.Bs, 78.45.+h
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Recent experiments on turbid laser dyes [1–4] ha
drawn attention to the remarkable properties of disorde
media which are optically active. The basic issue
to understand the interplay of phase-coherent mult
scattering and amplification (or absorption) of radiatio
A quantity which measures this interplay is the albedoa,
which is the power reflected by the medium divided by t
incident power. A thick disordered slab which is optica
passive hasa ­ 1. Absorption leads toa , 1 and
amplification to a . 1. As the amplification increase
the laser threshold is reached, at which the aver
albedo becomes infinitely large [5]. Such a genera
was referred to by its inventor Letokhov as a “las
with incoherent feedback” [6], because the feedback
radiation is provided by random scattering and not
mirrors—as in a conventional laser.

The current renewed interest in random lasers ow
much to the appreciation that randomness is not the s
as incoherence. Early theoretical work on this probl
was based on the equation of radiative transfer
which ignores phase coherence. Zyuzin [8] and Feng
Zhang [9] considered interference effects on the aver
albedo a, averaged over different configurations of th
scattering centra. Their prediction of a sharpening
the backscattering peak in the angular distribution of
average reflected intensity has now been observed
The other basic interference effect is the appearanc
large, sample-specific fluctuations of the albedo aro
its average. These diverge faster than the average
approaching the laser threshold [10], so thata is no
longer characteristic for the albedo of a given sample.
the present Letter we show that while all moments
the distribution functionPsad of the albedo diverge at th
laser threshold, its modal valueamax remains finite. The
modal value is the value ofa at whichPsad is maximal,
and hence it is the most probable value measured
single experiment. The diagrammatic perturbation the
of Refs. [8–10] can give only the first few moments
a, and hence cannot determineamax. Here we develop
a nonperturbative random-matrix theory for the ent
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distribution of the reflection matrix, from whichPsad can
be computed directly.

We contrast the two cases of absorption and amplific
tion. In the case of absorption,Psad is a Gaussian with
a width da smaller than the averagea by a factor

p
N ,

where N . Syl2 ¿ 1 is the number of modes assoc
ated with an illuminated areaS and wavelengthl. In the
case of amplification, bothda anda increase strongly on
approaching the laser threshold—in a manner which
compute precisely. Below threshold, the mean and mo
value ofa coincide. Above threshold, the mean is infinit
while the modal value is found to be

amax ­ 1 1 0.8gN . (1)

Hereg denotes the amplification per mean free path, a
sumed to be in the rangeN22 ø g ø 1. The existence
of a finite amax is due to the finiteness of the number o
modesN in a surface areaS (ignored in radiative trans-
fer theory). Sinceamax scales withN and hence with
S, and the incident power scales withS, it follows that
the reflected power scalesquadratically rather thanlin-
early with the illuminated area. We suggest the nam
“superreflection” for this phenomenon. To measure t
albedo in the unstable regime above the laser thresh
we propose a time-resolved experiment, consisting of
lumination by a short intense pulse to pump the mediu
beyond threshold, rapidly followed by a weak pulse
measure the reflected intensity before spontaneous em
sion has caused substantial relaxation.

Our work on this problem was motivated by a rece
paper by Pradhan and Kumar [11] on the caseN ­ 1 of
a single-mode waveguide. We discovered the anomal
scaling with area in an attempt to incorporate the effe
of mode coupling into their approach.

We consider the reflection of a monochromatic pla
wave (frequencyv, wavelengthl) by a slab (thicknessL,
areaS) consisting of a disordered medium (mean free pa
l) which either amplifies or absorbs the radiation. W
denote bys the amplification per unit length, a negativ
© 1996 The American Physical Society
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value ofs indicating absorption. The parameterg ­ sl
is the amplification (or absorption) per mean free pa
We treat the case of a scalar wave amplitude, and le
polarization effects for future study. A discrete numb
N of scattering channels is defined by imbedding the s
in an optically passive waveguide without disorder (s
Fig. 1, inset). The numberN is the number of modes
which can propagate in the waveguide at frequencyv.
The N 3 N reflection matrixr contains the amplitude
rmn of waves reflected into modem from an incident
mode n. (The basis states ofr are normalized such
that each carries unit power.) The reflection eigenval
Rn sn ­ 1, 2, . . . , Nd are the eigenvalues of the matr
productrry. The matrixr is determined by theRn’s and
by a unitary matrixU,

rmn ­
X

k

UmkUnk

p
Rk . (2)

Note thatrmn ­ rnm because of time-reversal symmetr
From r one can compute the albedoa of the slab, which
is the ratio of the reflected and incidental power:

a ­
X
m

jrmnj2 ­
X

k

UnkUp
nkRk . (3)

For a statistical description we consider an ensem
of slabs with different configurations of scatterers. As
earlier work on optically passive media [12], we ma
the isotropy assumption thatU is uniformly distributed in
the unitary group. This assumption breaks down if t

FIG. 1. Comparison between theory and simulation of
average albedoa (upper curves, squares) and Vara (lower
curves, triangles) forLyl ­ 1.92 (dashed curves, open marker
and Lyl ­ 9.58 (solid curves, filled markers). Negativeg
corresponds to absorption, positiveg to amplification. The
curves are the theoretical result (7). The data points ar
numerical simulation of a two-dimensional lattice (L ­ 50d
and250d, W ­ 51d, N ­ 21), averaged over 100 realization
of the disorder. The inset shows schematically the sys
under consideration.
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transverse dimensionW of the slab is much greater tha
its thicknessL, but is expected to be reasonable ifW & L.
As a consequence of isotropy,a becomes statistically
independent of the indexn of the incident mode. We
further assume that the wavelengthl is much smaller than
both the mean free pathl and the amplification length
1ys. The evolution of the reflection eigenvalues wi
increasingL can then be described by a Brownian motio
process. To describe this evolution it is convenient to u
the parametrization

Rn ­ 1 1 m21
n , mn [ s2`, 21d < s0, `d . (4)

The L dependence of the distributionPsm1, m2, . . . , mN d
of them’s is governed by the Fokker-Planck equation

l
≠P
≠L

­
2

N 1 1

NX
i­1

≠

≠mi
mis1 1 mid

3

"
≠P
≠mi

1 P
X
jfii

1
mj 2 mi

1 gsN 1 1dP

#
,

(5)

with initial condition limL!0 P ­ N
Q

i dsmi 1 1d. In
the single-channel casesN ­ 1d, the term

P
jfii is absent

and Eq. (5) reduces to the differential equation stud
by Pradhan and Kumar [11,13]. The multichannel ca
is essentially different due to the coupling of the eige
values by the term

P
jfiismj 2 mid21. This term induces

a repulsionof closely separated eigenvalues. Equation
with g ­ 0 is known as the Dorokhov-Mello-Pereyra
Kumar (DMPK) equation [14,15], and has been studi
extensively in the context of electronic conduction [16
We have generalized it tog fi 0, by adapting the ap-
proach of Ref. [15] to a nonunitary scattering matrix.

The averagea ; kal and the variance Vara ; ksa 2

ad2l of the albedo (3) can be computed by first averag
U over the unitary group and then evaluating moments
the Rk ’s by means of Eq. (5) [17]. In the limitN ! `

we obtain the differential equations

l
d

dL
a ­ sa 2 1d2 1 2ga , (6a)

l
d

dL
Var a ­ 4sa 2 1 1 gdVar a 1 2N21asa 2 1d2.

(6b)

Corrections are smaller by a factorjgN2j21y2, which
we assume to beø1. Equation (6a) for the averag
albedo is an old result of radiative transfer theory [1
Equation (6b) for the variance is new. It describ
the sample-specific fluctuations of the albedo due
interference of multiply scattered waves. Integration
Eq. (6) yields
1369
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a ­ 1 2 g 1 s2g 2 g2d1y2 tant , (7a)

Var a ­ s8N cos4 td21h4gs1 2 2gdLyl 1 2gs1 1 gd 2 4g2 cos2t 1 2gs1 2 gd cos4t

1 s2 2 gd21s2g 2 g2d1y2f4gs1 2 gd sin2t 2 s1 2 4g 1 2g2d sin4tgj . (7b)
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We have abbreviated t ­ s2g 2 g2d1y2Lyl 2

arcsins1 2 gd.
Plots of Eq. (7) as a function ofg are shown in Fig. 1,

for two values ofLyl. (The data points are numerica
simulations, discussed later.) In the case of absorp
sg , 0d, the large-L limit

a` ­ 1 2 g 2 sg2 2 2gd1y2, (8a)

Var a` ­
1

2N
a`s1 2 a`d2

1 2 g 2 a`

, (8b)

can be obtained directly from Eq. (6) by equating t
right-hand side to zero. The limit (8) is reached wh
Lyl ¿ sg2 2 2gd21y2. In the case of amplificationsg .

0d, Eq. (7) holds forL smaller than the critical length

Lc ­ ls2g 2 g2d21y2 arccossg 2 1d (9)

at whicha and Vara diverge. This is the laser threshol
[5,18]. For g , 0 the large-L limit of the probability
distribution Psad of the albedo is well described by
Gaussian, with mean and variance given by Eq. (8). (T
tails are non-Gaussian, but carry negligible weight.) T
modal valueamax of the albedo equalsa. For g . 0
the large-L limit of Psad cannot be reconstructed from it
moments, but needs to be determined directly. We w
see that whilea diverges,amax remains finite.

The large-L limit P`sm1, m2, . . . , mNd of the distribu-
tion of them’s is obtained by equating to zero the expre
sion between square brackets in Eq. (5). The result is

P` ­ C
Y

i

expf2gsN 1 1dmig
Y
i,j

jmj 2 mij , (10)

with C a normalization constant. Equation (10) hol
for both positive and negativeg, but the support ofP`

depends on the sign ofg: All m’s have to be.0 for
g . 0 (amplification) and,21 for g , 0 (absorption).
In what follows we takeg . 0. The function (10) is
known in random-matrix theory as the distribution of th
Laguerre ensemble[19]. The densityrsmd ­ k

P
i dsm 2

midl of them’s is a series of Laguerre polynomials, hen
the name. ForgN2 ¿ 1 one has asymptotically

rsmd ­ sNypd s2gym 2 g2d1y2, 0 , m , 2yg .

(11)

The square-root singularity atm ­ 0 is cut off in the exact
density [20], such thatr ­ gN2 if m & 1ygN2. The
cumulative density is plotted in Fig. 2, together with th
numerical simulations (discussed below).
n

e
n

e
e

ill

-

We seek the probability distribution of the albedo

Psad ­

ø
d

µ
a 2 1 2

X
k

UnkUp
nkm21

k

∂¿
. (12)

The averagek· · ·l consists of the average ofU over the
unitary group followed by the average of themk ’s over
the Laguerre ensemble. The averages can be done
lytically for N22 ø g ø 1 (in the continuum approxi-
mation [21], i.e., by ignoring the discreteness of th
eigenvalues), and numerically for anyN , g (by Monte
Carlo integration, i.e., by randomly sampling the L
guerre ensemble).

The analytical result is an inverse Laplace transform

Psad ­
1

2gN

Z i`

2i`

ds
2pi

expf 1
2 ssa 2 1dygN 2 2fssdg

3 f1 1
1
4 fssdg2, (13a)

wheref is an implicit function of the Laplace variables:

ss 2
1
2 f 1

1
2

p
4f 1 f2 d21y2

1

2s f 2
p

4f 1 f2 d21
1 1 ­ 0 . (13b)

The continuum approximation (13) is plotted in the ins
of Fig. 3 (dashed curve). It is close to the exact numeri

FIG. 2. Comparison between theory and simulation of t
cumulative density of the variablesmn (related to the reflection
eigenvalues byRn ­ 1 1 m21

n ). Curves are computed from
the density (11) of the Laguerre ensemble; data points are fr
the simulation (L ­ 500d ­ 19.2l, W ­ 151d, N ­ 63), for
a single realization of the disorder.
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FIG. 3. Comparison between theory and simulation of t
cumulative probability distribution of the albedo (L ­ 500d ­
19.2l, g ­ 0.07). Solid curves are obtained by numericall
averaging over the Laguerre ensemble; data points are
results of the simulation, averaged over 100 realizations
the disorder. The three sets of data are forW ­ 25d,
N ­ 10 (plusses),W ­ 51d, N ­ 21 (triangles), andW ­
101d, N ­ 42 (diamonds). The inset compares the continuu
approximation (13) forPsad (dashed) with the exact large-N
limit of the Laguerre ensemble (solid).

large-N result (solid curve). The modal valueamax of the
albedo is given by Eq. (1). The distributionPsad drops
off ~ expf22gNysa 2 1dg for smallera and~ a25y3 for
largera, so that all moments diverge.

To test these predictions of random-matrix theo
on a model system, we have carried out numeric
simulations of the analogous electronic Anderson mod
with a complex scattering potential, using the recursi
Green’s function technique [22]. The disordered mediu
is modeled by a two-dimensional square lattice (latti
constantd, length L, width W). The relative dielectric
constant́ ­ ´1 1 i´2 (relative to the value outside the
disordered region) has a real part´1 which fluctuates from
site to site between1 6 d´, and a nonfluctuating imagi-
nary part´2. The multiple scattering of a scalar wav
c (wave numberk ­ 2pyl) is described by discretizing
the Helmholtz equations=2 1 k2´dC ­ 0. The mean
free pathl which enters in Eq. (5) is obtained from th
average albedoa ­ s1 1 lyLd21 without amplification
s´2 ­ 0d. We choosek2 ­ 1.5d22, d´ ­ 1, leading to
l ­ 26.1d. The parameters (and henceg ­ sl) is
obtained from the analytical solution of the discretize
Helmholtz equation in the absence of disordersd´ ­ 0d.
The complex longitudinal wave numberkn of transverse
moden then satisfies the dispersion relation

cosskndd 1 cossnpdyW d ­ 2 2
1
2 skdd2s1 1 i´2d ,

(14)

and leads tos ­ 22N21Im
P

n kn. The albedo (3) is
e

the
of

y
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el
e
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d

computed for normal incidence. Data points in Figs. 1–
are the numerical results. The agreement with the curv
from random-matrix theory is quite remarkable, given th
there areno adjustable parameters.
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