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Fluctuation Effects in Low-Dimensional Spin-Peierls Systems: Theory and Experiment
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The influence of one-dimensional spin-Peierls fluctuations on the temperature dependent magnetic
susceptibility of an antiferromagnetic chain is calculated using the renormalization group and the
functional-integral methods. The results are shown to give an accurate description of fluctuation effects
found in recently synthesized organic spin-Peierls compounds.
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A distinctive feature of a large variety of phase trans
tions in quasi-one-dimensional compounds is their bro
regime of 1D fluctuations precursor to the true critica
point. Peierls or charge-density-wave systems stand
classical examples for which 1D lattice softening foun
by either x-ray or neutron scattering experiments h
a marked influence on electronic spin degrees of fre
dom well above the transition [1]. Surprisingly, it is
only very recently that similar effects were observe
in insulating quasi-1D spin-Peierls (SP) systems. T
organic series [2]sBCPTTFd2X (BCPTTF stands as
benzocyclopentyltetrathiafulvalene,X ­ AsF6, PF6) and
the cuprate compound [3] CuGeO3, for example, can
be considered among the first few spin-Peierls syste
for which 1D fluctuations effects are clearly visible in
x-ray diffraction and magnetic susceptibility measure
ments. Correspondingly, despite an apparent similar
existing between the Peierls and spin-Peierls instabiliti
there is so far no theoretical description of coupled latti
and spin fluctuations in the spin-Peierls case [4]. In th
Letter, we propose a microscopic treatment for such flu
tuation effects combining the renormalization group (RG
and functional-integral methods. In the Jordan-Wign
(JW) fermion representation of spins, we first show th
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a one-loop approximation including lattice and therm
RG transients allows a precise determination of the te
perature dependent spin susceptibilityxsT d, which is
comparable to recent joined together Bethe ansatz
conformal field theory calculations for the Heisenbe
model [5]. The RG method is subsequently used to ge
erate an effective field theory for the adiabatic coupling
JW fermions with soft lattice degrees of freedom. Flu
tuation effects are then treated by the standard function
integral method, and the results forxsT d are shown to
give a controlled description of precursor effects in the S
organic compound (BCPTTF)2AsF6. The formalism ap-
plies equally well to the Peierls instability in which cas
the results reduce to those of Leeet al. [6] in the absence
of electron-electron correlations, setting in turn these p
vious results within a more formal framework.

Let us consider a 1D array ofN spins decribed by the
1D Heisenberg-Ising HamiltonianH ­

P
i,j JijsSx

i Sx
j 1

S
y
i S

y
j d 1 Jz,ijSz

i Sz
j , where the transverse (longitudinal

exchangeJszd,ij . Jszd 1 J 0
szdsfi 2 fjd between spins

is modulated by the longitudinal lattice displaceme
f. Using the JW fermion representation for spins an
considering a linear fermion-lattice coupling, the partitio
function can then be expressed as a functional integral
Z ­
Z Z

D cpD cD feSe
0 fcp,cg1S0ffg1Slfcp,c ,fg1Se

I fcp,cg

­
Z Z

D cpD cD f exp

(X
k̃

fG0sk̃dg21cpsk̃dcsk̃d 1
X
q̃

fD0sq̃dg21jfsq̃dj2

2 sTyNd1y2
X
k̃,q̃

lsk, qdcpsk̃ 2 q̃dcsk̃dfsq̃d

2 TyN
X
hpq̃j

gsqdcpsk̃1 1 q̃dcpsk̃2 2 q̃dcsk̃2dcsk̃1d

)
(1)
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over Grassmansc-numberd csfd variables. For the free
fermion sSe

0 d and latticesS0ffgd parts of the total action
S, G0sk̃d ­ fivn 2 eskdg21 andD0sq̃d ­ 2My2fv2

m 1

v2sqdg21 are the bare fermion and the lattice field pro
agators withk̃ ­ sssk, vn ­ s2n 1 1dpT ddd, q̃ ­ sq, vm ­
2pmT d. Their spectrums are given byeskd ­ 22J cosk
and vsqd ­ v0j sinsqy2dj, respectively,v0 ­ 2

p
KyM

being the frequency of the lattice mode at2kF ­ p,
with K and M the elastic constant and the ionic mas
In the interacting term,Sl describes the linear cou
pling between fermions and the lattice field vialsk, qd ­
4iJ 0 cossk 1 qy2d sinsqy2d. Finally, in SI , fermions on
nearest-neighbor lattice sites interact throughgsqd ­
2Jz cosq.
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The problem of low-energy spin degrees of freedo
then reduces to the study of interacting lattice JW ferm
ons coupled to the fluctuating fieldf. Extending a pre-
vious RG approach [7], this can be achieved by fi
integrating high momentum fermion degrees of freedo
retaining transients due to fermions on a lattice. W
write c spd ! c spd 1 c

spd where thec
spd’s describe de-

grees of freedom to be integrated over in the outer m
mentum shell of thickness12 k0s,dd, on both sides of
the Fermi level atkF ­ 6py2 and for all vn. Here
k0s,d ­ k0e2, is the momentum cutoff at the step,
and k0 ­ py2. Keeping thef’s fixed, this is formally
written as
Z ~
Z Z

,

D cpD cD feSfcp,c ,fg,1bF ffg,

Z Z
o.s.

D c
p
D ceSe

0 fc
p

cg
≥
eSlfc

p
,c ,cp,c ,fg1SI fc

p
,c ,cp,cg

¥
­

Z Z
,

D cpD cD feSfcp,c ,fg,1bF ffg, exp

√X
n

1
n!

ksSl 1 SIdnlo.s.

!
~

Z Z
,

D cpD cD feSfcp,c ,fg,1d,1bF ffg,1d, , (2)
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where F ffg, is a free energy functional of the lattic
field to be discussed later. At the one-loop level,
outer shell averages12 kS2

I lo.s. and kSlSIlo.s. are per-
formed with respect to the free fermion outer shell p
in the infrared singular2kF electron-hole and Coope
channels. They will lead to the renormalization of t
forward g̃f ­ gf spyd21 and umklapp scattering̃gu ­
guspyd21 for SI and the 2kF fermion-lattice vertex
part zls6kF , 72kFd, with y ­ 2J being the Fermi
velocity. If one rescales the momentumk ! ked,, the
energy, the fields, and the coupling constants transf
according tose, vnd ! z sd,d se, vnd, c ! z 21y2sd,dc ,
gf ! z sd,dgfe2d,, and gu ! z sd,dgue23d,, re-
spectively. Owing to the curvature of the band t
rescaling becomes dependent of,, namely, z sd,d ­
1 1 cotsk0e2,dk0e2,d,. At the one-loop level the RG
flow is then governed by

dg̃f

d,
­ 2g̃f f1 2 as,dg 1 4g̃2

uKs,d ,

dg̃u

d,
­ 2g̃uf3 2 as,dg 1 2g̃f g̃uKs,d ,

d lnz
d,

­
1
2

sg̃f 2 g̃udKs,d ,

dy

d,
­ 4Jzp21 tanhfbJs,dg sinsk0e2,dk0e2,,

(3)

where as,d ­ cotsk0e2,dk0e2,, Ks,d ­ tanhfbJs,d 3

sinsk0e2,dg f1 2 sin2sk0e2,dg21y2 with the initial con-
ditions gf ­ 22gu ­ 4Jz at , ­ 0. When , ¿ 1,
thermal and lattice transients become negligible and
flow equations forg̃f and g̃u reduce to those obtaine
by Black and Emery for the Heisenberg-Ising part of
e
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model in the continuum limit [8]. For the antiferromag
netic case withJzyJ # 1, the model predicts thatgus,d
scales to a nonuniversal value. In one loop the se
energy contributionkSI lo.s. introduces a renormalization
of the Fermi velocityys,d ­ 2Js,d. In the low tempera-
ture limit sb ! `d, this reduces to the Hartree-Foc
resultyp ­ 2J 1 4Jzyp when, ! `, which is close in
leading order to theT ­ 0 Heisenberg-Ising exact resul
[9]. At this point, it is important to establish the accurac
of the above RG procedure from a calculation ofxsT d
for the antiferromagnetic chain. Since a magnetic fie
h along thez direction acts as a chemical potential, th
evaluation ofxsT d amounts to the calculation of com-
pressibility of JW fermions, namely,xsT d ­ dkNlydh.
At a given temperatureT , the partial RG integration is
then conducted down to,T ­ lnf1y arcsinsTy2Jdg so that
the remaining degrees of freedom to be integrated out
those located inside a thermal width2T around the Fermi
level. These give the essential contribution toxsT d
and, as incoherent states in the nonsingular particle-h
channel, they can be treated by perturbation theory. Th
treatingSI at ,T in RPA, one readily finds

xsTd ­
x0sT d

1 1
1
2 gf sTdx0sT d

, (4)

where gfsT d is given by the solution of (3) at,T

and x0sT d ­
RT

0 de Dse, Td f2T cosh2sey2T dg21 is
the bare compressibility withDse, T d ­ f2pysT d 3p

1 2 e2y4J2sTd g21 as the effective tight-binding
density of states. The resulting temperature profi
for xsT d is portrayed in Fig. 1(a) for the isotropic
case J ­ Jz . From the figure, the above one-loop
RG result reproduces the position of the maximum
1361
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FIG. 1. Magnetic susceptibility vs temperature. (a) Compa
son of our results (continuous line and diamond) with tho
of Ref. [5] (dashed line and crosses) for the AF chain; (
comparison of our results in the presence (continuous line) a
absence (dashed line) of SP fluctuations with experimental d
for (BCPTTF)2AsF6 (crosses).

xsTmd ø 0.72yJ at Tm . 1.22J, the infinite slope ap-
proach to the xsT ­ 0d ­ s2pyp 1 gp

f y2d21 value
[due to gu-induced transients ongfsT d] and the overall
temperature dependence ofxsT d with a very good accu-
racy compared to the combination of the thermodynam
Bethe ansatz [5] and the Bonner-Fisher [10] numeric
results at high temperature and conformal field theo
at low temperature [5]. The discrepancy with respe
to the Bethe ansatz and Bonner-Fisher calculations
T . 1.2J has been reduced by the inclusion of one-loo
mode-mode coupling effects. The latters result from t
curvature of the band and gain in importance only in th
high temperature domain.

In order to see how lattice fluctuations modify th
above picture, one can first look at the closed fermio
loops kSn

llo.s.yn! in n $ 2 powers of thef’s and which
are generated by the partial integration (2). This w
not only give rise to corrections forS0ffg, at n ­ 2,
but when combined to then . 2 terms it yields and
infinite series in powers off which is nothing but the
quantum Landau-Ginzburg free energy expansionF ffg,

of the lattice fieldf at , [7]. By rescaling the field
f ! lf in the adiabatic limit, one can construct u
to the quartic mode-mode coupling term, the followin
Landau-Ginzburg functional near2kF :

F ffg, ­
X
q

fas,d 1 cs,d sq 2 2kFd2gjfsqdj2

1 N21bs,d
X
hqj

fsq1d · · · fsq4ddSqi ­64kF
, (5)

where the low-lying collective character of the fluctua
tions has allowed us to take the static limit. This is
generic form of the free energy for the transfer matr
1362
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analysis of fluctuations for a one-component order para
eter in 1D [11]. As a rule the flow of the SP Ginzburg
Landau parametersas,d, bs,d, andcs,d is conducted down
to the neighborhood of a characteristic (mean-field) te
perature scaleT0 sss,T0 ­ lnf1y arcsinsT0y2Jdgddd marking
the onset of strong SP fluctuations. Explicitly, assumi
a power law formzs,d ø fE0s,dyE0g2gpy2 for the vertex
part at large, wheregp ­ g̃p

f 2 g̃p
u . 0.72 is the expo-

nent taken at the fixed point, one finds

asTd . a0sTyT0 2 1d ,

csT0d . a07z s3dypy16p2T2
0 ,

bsT0d . 7z s3dys32p2yp2d f2pyps2 1 2gpdg21

3 s2ypyT0d212gp

(6)

for 2J ¿ T0 where a0 ­ z2sT0d s2pypd21 and
z s3d ­ 1.20 . . . . Here, the power law expression fo
the mean-field temperatureT0 . ypfg̃lysgp 1 g̃ldg1ygp

with g̃l ­ jls2kFdj2s4pKypd21 agrees to leading order
with previous mean-field results [12]. According t
(2), our effective low-energy theory then describes t
coupling of the remaining thermal fermion states arou
the Fermi level to the static fluctuations of the SP fie
governed by (5). This can be seen as the SP ana
of the analysis made by Leeet al. [6] for the Peierls
instability in the absence of electronic correlation effec
In the present approach, however, fermion degrees
freedom being not entirely integrated out, the interpla
between lattice fluctuations and fermions at,T can be
formally incorporated. The contribution of SP fluctu
ations to the fermion self-energyS of the propagator
G ­ sfG0g21 2 Sd21 at ,T being essentially static, one
has in leading order

Ssk̃, hfjd ­ 2 TN21z2sT0d

3
X
q

G0sk 6 2kF 2 q, ivndxfs2kF 1 qd ,

(7)

where xfs2kF 1 qd ­ 2jsT d kjFj2l f1 1 j2sTdq2g21 is
the Fourier transform of the correlation function of the S
field with kjFj2l ­ z2sT0d kjfs2kFdj2l. Herekjfs2kFdj2l
and jsT d are the amplitude of mean-square fluctuatio
and the correlation length, respectively. Both can
calculated exactly from the functional integration ove
the f’s described by (5) [11]. AsT0 is approached
from above, fluctuations become large andjsTd increases
rapidly and marks the formation of a pseudogap in t
fermion density of states. Actually, it follows that a
self-consistent use of the dressed propagatorG below T0
will considerably slow down the RG flow of parameter
given in (3) as well as the closed fermion loops o
F ffg [consistently with the sharp cutoff procedure use
in (6)]. The pseudogap also affects the particle-ho
compressibility bubblex0sT d. Following Leeet al. [6],
one substitutes in leading order the dressedG for one of
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the propagators entering in the formal expression forx0,
namely,TN21

P
k̃ GG0, and one readily finds

x0sTd ­
Z T

0
de Dse, T d f2T cosh2sey2Tdg21, (8)

where

Dse, T d ­ Dse, T d
af2s y 1 xdg1y2

f2s y 1 xd 2 a2gy
(9)

is the density of states in the presence of a pseudo
Following Ref. [6], we havea ­ ypj21sT d kjFj2l1y2,
x ­ 1 1

1
4 a2 2 e2, andy ­ sx2 1 e2a2d1y2, with e ­

eykjFj2l1y2. Sincex0sT d goes essentially likej21sTd at
low temperature, the results of the transfer matrix meth
show that the fluctuation-induced depression ofxsT d
evolves towards a thermally activated behavior of t
form x0sT d , e2rT0yT belowTp . T0y3 with r . 0.92
using the above Ginzburg-Landau parameters [11]. I
worth pointing out here thatTp marks the temperature
scale for true long range order when a small but fin
interchain coupling is taken into account.

We are in a position to apply the above results
experimental findings for the organic SP compou
(BCPTTF)2AsF6 previously investigated [2]. The
thermal dependence of the spin susceptibility has b
obtained from ESR measurements [crosses, Fig. 1(
xsT d behaves as predicted for an antiferromagnetic ch
(Fig. 1) above 120 K or so. X-ray measurements co
bining photographic and diffractometric methods reve
the presence of superlattice reflections at the redu
wave vectorqSP ­ s1y2, 1y2, 1y2d below TSP ­ 32.5 K.
The chain dimerizations“2kF” ­ 1y2d occurs at the
same temperature at which an anomaly is observed in
drop of xsTd. Above TSP quite anisotropic structura
fluctuations are detected. They exhibit no intercha
correlations above 60 K. The fluctuations have be
measured until aboutT0 ­ 120 K, the temperature a
which the correlation length (divided by lattice consta
7.16 Å) along the chainj . 1.12 grows away from
the interspin distance. Figure 2 shows the inverse
the thermal dependence of the x-ray diffuse scatter
intensity I (corrected by the thermal population facto
and ofj21. Both I andjsT d increase rapidly belowT0,
whereasI21 and j21 vanish atTSP showing the second
order nature of the SP transition of (BCPTTF)2AsF6.

From the position of the maximum of the measur
xsT d [2] around 168 K, Fig. 1(a) first givesJ . 140 K
for the purely Heisenberg part of the model. The su
sequent identification ofT0 with the x-ray temperature
scale for strong SP lattice fluctuations (Fig. 2), name
T0 . 120 K, allows us to fix all the SP parameters
(6) and calculate all quantities of interest. As one c
see from Fig. 2, the transfer matrix result forjsT d gives
a good description of the correlation effect down to t
critical domain aroundTp . 40 K. Correspondingly, the
calculatedxsTd reported in Fig. 1(b) is slightly more
depressed when entering in the critical domain. Straig
forward but lengthy calculations performed in the pre
ap.
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FIG. 2. Measured x-ray diffuse scattering intensityIyT (dia-
monds) and inverse longitudinal correlation length times the
terspin distancej21 (dots) vs temperature for (BCPTTF)2AsF6.
The continuous line forj21 corresponds to the 1D results o
the transfer matrix method.

ence of interchain coupling (e.g., via three-dimension
phonons) can be shown to improve the accuracy in t
critical domain close toTSP but lead to a similar activated
behavior well belowTSP . Quite similar results have been
obtained for the (BCPTTF)2PF6 analog withJ . 175 K,
T0 . 100 K, and TSP ­ 37 K [2]. The application to
existing data for the cuprate compound CuGeO3 [3] is
straightforward if one includes second-nearest-neighb
exchange to the spin part of the model, which is known
be relevant for this system [13]. A more detailed accou
of the present work will be given elsewhere.
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