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Composite Fermion Theory of Collective Excitations in Fractional Quantum Hall Effect
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The low energy neutral excitations of incompressible fractional quantum Hall states are called
collective modes or magnetic excitons. This work shows that the interaction between the quasiparticle
and quasihole forming the exciton is well describedquantitativelyby the unprojected composite fermion
theory, except at very small wave vectors. This allows a study of large systems to determine the
collective mode dispersions for general fractions up to an overall additive constant. The positions of
various minima are explained by analogy to the integer quantum Hall effect.

PACS numbers: 73.40.Hm, 73.20.Dx, 73.20.Mf
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Girvin, MacDonald, and Platzman [1] developed a s
gle mode approximation (SMA) to obtain the dispersi
of collective mode (CM) excitation of then ­ 1ys2m 1

1d state. The (unnormalized) SMA takes the wave fun
tion of the collective excitation to be

x
SMA
k ­ P rkcL , (1)

where cL is the Laughlin wave function [2],P is
the lowest-Landau-level projection operator, andrk ­P

j eik?rj is the density wave operator with wave vect
k. In finite system studies, the SMA was found to wo
well in an intermediate range of wave vectors near
minimum in the dispersion, called the roton minimum
in analogy with Feynman’s theory of superfluid4He. A
generalization of the SMA to other fractions, i.e., wi
cL in Eq. (1) replaced by other fractional-quantum-Ha
effect (FQHE) ground states, did not give a satisfacto
description of their collective excitations [3]. Finit
system studies have also failed to provide a satisfact
picture for the collective excitations at other fractions.

In the last few years, there has been a resurgenc
interest in these issues for two reasons. First, sign
cant progress has been made on the experimental fr
Pinczuk et al. have measured the positions of the ma
ima and minima in the collective modes of the intege
QHE (IQHE) states [4], and also recently their detail
dispersion in modulated density samples [5]. Further, R
man scattering [6] and phonon absorption [7] experime
have reported observation of the collective modes in
FQHE regime. Second, there now exists a new theor
cal framework, called the composite fermion (CF) theo
[8], for describing all FQHE on an equal footing. Th
FQHE of electrons is understood as the IQHE of co
posite fermions, suggesting that it should be possible
describe the collective excitations of the FQHE states
the simple, IQHE-like collective excitations of composi
fermions. This work studies the collective modes of se
eral FQHE states using the CF theory, and obtains deta
predictions for their dispersions; in particular, the minim
and maxima in the dispersion are identified. These
of experimental relevance, since the CM density of sta
has peaks at energies corresponding to the extrema o
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dispersion curve, which, as a result of a disorder-induc
breakdown of the wave vector conservation, are obse
able in inelastic light scattering experiments [4].

The CF theory [8] is based on the principle that, in
range of filling factors, the electrons in the lowest Landa
level (LL) find it energetically favorable to capture a
even numbers2md of vortices of the many-particle wave
function. The bound state of an electron and vortic
behaves the same as a particle, called the compo
fermion. The vortices produce phases as the compo
fermions move around, which partly cancel the Aharono
Bohm phases originating from the external magnetic fie
and, as a result, the composite fermions experience
effective magnetic field given byBp ­ B 2 2mrf0,
where B is the external field,f0 ­ hcye is the flux
quantum, andr is the electron (or CF) density. The
residual interaction between the composite fermions
weak, and the strongly correlated liquid of electrons ma
into a weakly interacting gas of composite fermions. A
effective single-particle description of the electron sta
then becomes possible in terms of composite fermio
The energy levels of composite fermions are analogo
to the LL’s of noninteractingelectrons in this weaker
magnetic field, called quasi- or CF-LL’s. Defining th
CF filling factor as np ­ rf0yBp, in analogy to the
electron filling factorn ­ rf0yB, the above equation can
also be expressed asn ­ npys2mnp 1 1d. The IQHE of
composite fermions atjnpj ­ n manifests as the FQHE
of electrons atn ­ nys2mn 6 1d.

The CF picture has led to two detailed, microscop
calculational schemes. One constructs explicit trial wa
functions [8]. We confine the discussion below to th
special filling factorsn ­ nys2mn 1 1d, where the CF
filling factor is np ­ n. Let us denote the ground
state of noninteracting electrons atnp ­ n by Fn. The
corresponding wave function for the composite fermio
is obtained by attaching2m vortices to each electron
in the state Fn, which amounts to a multiplication
by the Jastrow factor

Q
j,kszj 2 zkd2m, where zj ­

xj 1 iyj denotes the position of thejth electron. The
wave function, P

Q
j,kszj 2 zkd2m Fn, thus describes

the electron ground state atn ­ nys2mn 1 1d. The CF
© 1996 The American Physical Society
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structure of this state suggests a new wave function
the collective excitation given by

x
CF
k ­ P

Y
j,k

szj 2 zkd2m frn!n11
k Fng ; P x

UP2CF
k ,

(2)
wherex

UP2CF
k is theunprojectedCF wave function. In

second quantized notation (choosing Landau gauge),

r
n!n11
k ;

X
p

kn 1 1, p 1 kjeiky jn, plcy
n11,p1kcn,p ,

where jn, pl denotes the wave vectorp state in thenth
LL, and they axis is chosen parallel tok. The operator
r

n!n11
k excites a single electron from the topmost fille

(nth) LL of Fn to the lowest empty, i.e., thesn 1 1dth
LL, creating the lowest energy collective mode of th
np ­ n IQHE state [9]. xCF contains a single excited
composite fermion in thesn 1 1dth CF-LL (which will
be referred to as a quasiparticle below [10]) and a ho
left behind in thenth CF-LL (which will be called a
quasihole). It can be interpreted either as the collect
modeof composite fermionsor as the CF exciton.

For the1ys2m 1 1d state, the SMA wave function can
be written as

x
SMA
k ­ P

Y
j,k

szj 2 zkd2m rkF1 .

Kohn’s theorem tells us thatrkFn ­ r
n!n11
k Fn in the

limit k ! 0. Thus, for the1ys2m 1 1d state,xSMA
k and

x
CF
k become identical in the limitk ! 0. At finite k, the

two are different. rk excites electrons to arbitrarily high
LL’s, and hence, in the CF interpretation,x

SMA
k contains

composite fermions excited to arbitrarily high CF-LL’s
For other fractions,xSMA

k does not yield to a CF-type
interpretation, and differs fromxCF

k at all k.
In the second scheme, the composite fermions are m

eled as electrons carrying flux quanta at the mean-fi
level, where the flux quanta simulate the vortices [8,11].
perturbation theory around the mean-field solution is th
carried out using Chern-Simons (CS) field theoretical tec
niques. There have been several studies of the collec
mode dispersion using the CS approach [12].

We develop here techniques for computing the CM d
persion using the CF wave functions. The standard sph
ical geometry [13] is used in our calculations below. Th
total orbital angular momentumL is related to the wave
vector of the planar geometry bykl0 ­ Lyp

q, wherel0 is
the magnetic length, and2qf0 is the magnetic flux through
the surface of the sphere. If the highest occupied shel
Fn has angular momentum,, then the IQHE collective
mode has a single excited electron in thesn 1 1dth LL,
with angular momentum, 1 1, and the hole in thenth
LL, with angular momentum,, with the allowed values of
L for the collective mode given byL ­ 1, 2, . . . , 2, 1 1
with precisely one multiplet at eachL (with 2L 1 1 degen-
erate states). Let us denote thezcomponent of the angular
momentum of the excited electron (hole left behind) by,e

z

or

e
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z d, and the corresponding IQHE Slater determinant ba

state byFns,e
z , ,h

z d. The CM wave function with a well
definedL andLz ­ ,e

z 1 ,h
z is an appropriate linear com-

bination of the basis states. We restrict our study to t
Lz ­ 0 sector, with no loss of generality. The CM wav
function of the IQHE state is given by

rn!n11
L Fn ­

,X
,z­2,

k, 1 1, ,z; ,, 2,zjL, 0l

3 Fns,z , 2,zd .

It contains no adjustable parameters. The same is t
of the CF-CM wave function,xCF

L , obtained according to
Eq. (2). We have computed the CM energy from exact
agonalization in the lowest LLsDVexd from the projected
CF wave functionxCF sDVpd and from the unprojected
CF wave functionxUP2CF sDV d. In each case, the CM
energy is measured relative to the corresponding grou
state energy.

A comparison with finite-size exact-diagonalizatio
studies has shown thatDVp provides a good quanti-
tative description of the collective modes of variou
FQHE states [14,15]. However, our brute force proje
tion method (for details, see Ref. [15]) allows us to car
out the projection for general states only for up to,10
electrons. We now generalize a Monte Carlo projecti
technique used by Bonesteel [16] to obtain the energy
the collective mode of the 1y3 state for large systems
This relies on the special feature of the unprojected 1y3-
CM wave function that it contains no more than one ele
tron in the second LL, and none in the higher LL’s. Th
projected wave function can then be written as [16]

xCF ~ sT 2 E1dxUP2CF , (3)

where T is the kinetic energy operator andE1 is the
energy separation between the two lowest LL’s, equal
s1 1 q21dh̄eBymc in the spherical geometry. Figure 1
shows the CM energyDVp as a function ofk for a 20-
electron system. There is a deep minimum atkl0 ø 1.4.
Our estimate for the thermodynamic value of the ener
at the minimum0.063s3de2yel0 (see the inset in Fig. 1),
which should be compared to the SMA value0.078e2yel0

[1]. (Note that both approximations use the same grou
state.) Additional minima are clearly visible atkl0 ø
2.7 and 3.5. Are they real? We believe so. A direc
confirmation of the genuineness of the former minimum
seen in the nine-electron exact diagonalization calculat
of Fano, Ortolani, and Colombo [17], reproduced
Fig. 2(b).

This method, however, is not applicable to other FQH
states. We now show that the unprojected CF wave fu
tion, xUP2CF, can itself be used to investigate the colle
tive excitations. The relevance of the unprojected theo
for the CM dispersion can be motivated by the followin
consideration. At large wave vectors, the CM state co
tains a far separated pair of a quasiparticle and a quasih
1333
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FIG. 1. The energy of the collective mode computed with
projected CF wave functions (Vp , triangles) and with the un
projected wave functions (DV 1 G, circles,G ­ 0.064e2yel0)
for N ­ 20 electrons. The error bar for the latter is smal
than the size of the circles. All energies are in units ofe2yel0,
wheree is the background dielectric constant. The inset sho
the energy at the minimum as a function ofN21; these have
been determined in each case by fitting the lowest few point
a smooth curve.

which approach one another ask is reduced. So long a
the distance between them is not too small, the CM
ergy can be viewed as the sum of (i) the creation ene
of an isolated quasihole, (ii) the creation energy of an i
lated quasiparticle, and (iii) their interaction energy. T
creation energy, computed with the unprojected CF w
functions, differs from the actual energy by as much a
factor of 2, indicating that the small amount of admixtu
with higher LL’s, present in the unprojected CF wave fun
tions, builds very good short distance correlations. The
projected wave function should nonetheless provide a g
estimate for theinteraction energy, provided the quasipar
ticle and the quasihole are not too close. This expe
tion is based on the observation that the density pro
away from the core of an isolated quasiparticle or qua
hole is obtained reasonably accurately by the unprojec
theory, as is also the density profile in the overlap region
a state containing a quasiparticle and a quasihole (see,
Ref. [16]), except when they are very close. This leads
to the hypothesis thatDV 1 G should give a good approx
imation of the actual CM energy, except at smallk, where
the constantG corrects for the error in the creation part.

We first test this hypothesis in finite system calculatio
The unprojected energiesDV are computed using varia
tional Monte Carlo techniques. The exact diagonalizat
energies,DVex, and DV 1 G (with a suitable choice of
G) are shown in Fig. 2 for some of the biggest syste
for which exact diagonalization has been performed. T
unprojected theory does indeed capture the essential
tures of the true collective mode; in particular, it obtai
correctly the minima and maxima.DV 1 G also provides
a reasonably good quantitative approximation for the t
1334
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FIG. 2. The collective mode energies from the exact diag
nalization (DVex, dashes) shown together with those obtain
from the unprojected CF theory (DV 1 G, filled circles). The
exact energies in (b) are taken from Fanoet al. [17]; in (c)
from N. d’Ambrumenil and R. Morf, [Phys. Rev. B40, 6108
(1989)], and in (d) from Heet al. [12].

collective mode energy. We have found that the agre
ment becomes better for larger systems; for small syste
the quasiparticle and quasihole are not sufficiently far se
arated, especially for 2y5 and 3y7 (whose quasiparticles
are of larger extent).

The advantage of working with the unprojected C
wave functions is that a treatment of large system
becomes possible for all FQHE states. Figure 1 depi
DV 1 G for a 20-electron system for the 1y3 FQHE state.
A lack of any significant size dependence for system
with slightly largerN shows that these results are clos
to the thermodynamic limit. Let us first concentrate on
on the rangekl0 . 0.5. Here,DV 1 G provides a good
approximation forDVp, and, in particular, obtains the
additional minima. We note that there is no principle th
rules out the existence of more than one minimum in t
CM dispersion of the 1y3 state; the structure in the CM
dispersion arises simply from an interplay between t
(several) maxima and minima in the density profiles
the quasiparticle and quasihole, as the distance betw
them is varied. The CM dispersions for 2y5 and 3y7 are
shown in Fig. 3. The positions of the two deep minim
for the 2y5 collective mode in Fig. 3 agree well with thos
found in the exact diagonalization results of Refs. [3,18
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FIG. 3. DV 1 G is shown for for 2y5, with N ­ 30
and G ­ 0.037e2yel0; and for 3y7, with N ­ 27 and G ­
0.028e2yel0. The values ofG are chosen so as to provid
a reasonable large-k limit. The typical error bar is shown on
the first point in each case.

Additional weaker structure, analogous to the 1y3 case,
also appears. The relatively complicated structure in
dispersion clarifies why the small system calculations
unable to provide a coherent picture.

A curious feature of the CM dispersion in Fig. 3 is th
DV bends downward at small wave vectors (kl0 , 0.5 for
1y3). The unprojected scheme is not trustworthy at sm
k, since the projection is known to alter the CM wav
function significantly at smallk. In fact, atL ­ 1, the
CM states have a zero projection on the lowest LL [1
Indeed,DVp in Fig. 1 shows no such bending, and th
k ! 0 value ofDVp is consistent with the SMA value o
0.15e2yel0, as expected.

A comparison with the collective mode of thenp ­
n IQHE state [9] is illuminating. First of all, the
interaction energy of the collective excitation decreas
for small wave vectors, similar to that found above.
general, the number of minima or inflection points in t
CM dispersion of thenp ­ n IQHE state isn, which
correlates with the number ofstrongminima atnys2n 1

1d. In fact, even the positions of the latter can b
understood by analogy to the IQHE: They occur in bo
cases at the same wave vectors (or, in spherical geom
at the sameL). The k values of the minimayinflection
points in the CM dispersion of the corresponding IQH
states are shown in Figs. 1, 2, and 3 by vertical arro
The weaker minima have no analog in the IQHE; th
appear only after multiplication by the Jastrow factor, a
refer to features beyond the mean-field theory.

Several effects left out in the above study must
incorporated before a comparison with experiment may
e
e

ll

.

s

ry,

s.

e

made. Modification in the Coulomb interaction becau
of the finite width of the quantum well, LL mixing, and
disorder are all known to change the numerical values
the excitation energies. A good first approximation fo
the experimental CM dispersion should be obtained
DV 1 G, with a choice ofG that makes the large-k limit
equal to the experimental transport gap.

In conclusion, we have used the CF wave functio
to investigate the collective mode excitations of vario
FQHE states. This provides new qualitative informatio
as well as better quantitative estimates than availa
previously.
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