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Composite Fermion Theory of Collective Excitations in Fractional Quantum Hall Effect
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The low energy neutral excitations of incompressible fractional quantum Hall states are called
collective modes or magnetic excitons. This work shows that the interaction between the quasiparticle
and quasihole forming the exciton is well descrilmpntitativelyby the unprojected composite fermion
theory, except at very small wave vectors. This allows a study of large systems to determine the
collective mode dispersions for general fractions up to an overall additive constant. The positions of
various minima are explained by analogy to the integer quantum Hall effect.

PACS numbers: 73.40.Hm, 73.20.Dx, 73.20.Mf

Girvin, MacDonald, and Platzman [1] developed a sin-dispersion curve, which, as a result of a disorder-induced
gle mode approximation (SMA) to obtain the dispersionbreakdown of the wave vector conservation, are observ-
of collective mode (CM) excitation of the = 1/(2m +  able in inelastic light scattering experiments [4].

1) state. The (unnormalized) SMA takes the wave func- The CF theory [8] is based on the principle that, in a
tion of the collective excitation to be range of filling factors, the electrons in the lowest Landau
YSMA P ) level (LL) find it energgtically favorable to capture an

) ) ) i even numbeKk2m) of vortices of the many-particle wave
where ¢, is the Laughlin wave function [2].P iS  fynction. The bound state of an electron and vortices
the I;l)(\(ve_st-Landau-lgvel projection operator, apd = pehaves the same as a particle, called the composite
>; ¢'*™ is the density wave operator with wave Vector formion. The vortices produce phases as the composite
k. In finite system studies, the SMA was found to work tgrmions move around, which partly cancel the Aharonov-
well in an intermediate range of wave vectors near g,nm phases originating from the external magnetic field,
minimum in the dispersion, called the roton minimum, 504 a5 3 result, the composite fermions experience an
in analogy with Feynman'’s theory of superfliidle. A effective magnetic field given bys* = B — 2mp o,
generalization of the SMA to other fractions, i.e., with where B is the external field,¢o = he/e is the flux
Y in Eqg. (1) replaced by other_fractiongl—quantu_m—HaII—quamum, andp is the electron (or CF) density. The
effect (FQHE) ground states, did not give a satisfactoryegiqyal interaction between the composite fermions is
description of their collective excitations [3]. Finite \ ey and the strongly correlated liquid of electrons maps
system studies have also failed to provide a satisfactory..; 4 weakly interacting gas of composite fermions. An
picture for the collective excitations at other fractions.  otactive single-particle description of the electron state
_ In the last few years, there has been a resurgence _9{Ian becomes possible in terms of composite fermions.
interest in these issues for two reasons. First, signifiqpq energy levels of composite fermions are analogous

cant progress has been made on the experimental frony, e | |°s of noninteractingelectrons in this weaker
Pinczuket al. have measured the positions of the max'magnetic field, called quasi- or CF-LL's. Defining the

ima and minima in the collective modes of the integer-~g filing factor as»* = py/B*, in analogy to the

QHE (IQHE) states [4], and also recently their detailedg|ectron filling factory = p /B, the above equation can
dispersion in modulated density samples [5]. Further, Rag 5 pe expressed as= v*/(2mv* + 1). The IQHE of
man scattering [6] and phonon absorptlon [7] eXpe”r,nentEomposite fermions al*| = n manifests as the FQHE
have reported observation of the collective modes in they glectrons av = n/(2mn + 1).

FQHE regime. Second, there now exists a new theoreti- the CF picture has led to two detailed, microscopic
cal framework, called the composite fermion (CF) theoryca|cylational schemes. One constructs explicit trial wave
[8], for describing all FQHE on an equal footing. The fynctions [8]. We confine the discussion below to the
FQHE of electrons is understood as the IQHE of com-pecial filling factorsy = n/(2mn + 1), where the CF
posite fermions, suggesting that it should be possible t¢jling factor is »* = n. Let us denote the ground
describe the collective excitations of the FQHE states astate of noninteracting electrons at = n by ®,. The
the simple, IQHE-like collective excitations of composite corresponding wave function for the composite fermions
fermions. This work studies the collective modes of sevis obtained by attachingm vortices to each electron
eral FQHE states using the CF theory, and obtains detailg@l the state ®,, which amounts to a multiplication
predictions for their dispersions; in particular, the minimaby the Jastrow facto];-,(z; — z)*", where z; =
and maxima in the dispersion are identified. These are; + iy, denotes the position of th¢th electron. The
of experimental relevance, since the CM density of statesvave function, P [];<;(z; — z%)*™ @, thus describes
has peaks at energies corresponding to the extrema of tiiee electron ground state at= n/(2mn + 1). The CF
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structure of this state suggests a new wave function fo¢¢”), and the corresponding IQHE Slater determinant basis

the collective excitation given by state by®, (¢¢, €%). The CM wave function with a well
. - h . . -
CF _ p l_[( P [t ] = Py P definedL andL; = {7 + {7 is an appropriate linear com-
Xk 11 2 T %k Pk n Xk ’ bination of the basis states. We restrict our study to the
J<

(2) L. = 0sector, with no loss of generality. The CM wave

UP-CF function of the IQHE state is given by

where y; is the unprojectedCF wave function. In
second quantized notation (choosing Landau gauge), _ ¢
n—n+1 iky t pr B, = (€ + 1,66, —€]L,0)
Pk = Z<l’l + l’p + kle }|n7p>cn+1,p+kcn,p > t=—¢
P X ¢n(€z» _€z) .

where |n, p) denotes the wave vectgr state in thenth , ] )

LL, and they axis is chosen parallel t. The operator It contains no adjustablq pargpeters_. The same is true
pi~" "1 excites a single electron from the topmost filled Of the CF-CM wave functiony,~, obtained according to
(nth) LL of ®, to the lowest empty, i.e., thé: + 1)th Eq. (2)_. We h{:\ve computed the CM energy from_exact di-
LL, creating the lowest energy collective mode of the@gonalization in the lowest LLAVe,) from the projected

»* = n IQHE state [9]. x°F contains a single excited CF wave funct_lonXCF (AV,) and from the unprojected
composite fermion in thén + 1)th CF-LL (which will  CF wave functiony""~¢" (AV). In each case, the CM
be referred to as a quasiparticle below [10]) and a hol&€nergy is measured relative to the corresponding ground
left behind in thenth CF-LL (which will be called a State energy. S , o
quasihole). It can be interpreted either as the collective A comparison with finite-size exact-diagonalization

modeof composite fermionsr as the CF exciton. studies has shown thakV, provides a good quanti-
For thel/(2m + 1) state, the SMA wave function can tative description of the collective modes of various
be written as FQHE states [14,15]. However, our brute force projec-
tion method (for details, see Ref. [15]) allows us to carry
xiM = P[] — )™ pe®1 . out the projection for general states only for up~d0
J<k electrons. We now generalize a Monte Carlo projection

Kohn's theorem tells us thas, @, = p,’j*”“q)n in the technique used by Bonesteel [16] to obtain the energy of
limit k — 0. Thus, for thel /(2m + 1) state,yp"* and the collective mode of the /B state for large systems.
x<F become identical in the limit — 0. At finite k, the ~ This relies on the special feature of the unprojectg8-1
two are different. p, excites electrons to arbitrarily high CM wave function that it contains no more than one elec-

LL’s, and hence, in the CF interpretatiopi™* contains  tron in the second LL, and none in the higher LL’s. The
composite fermions excited to arbitrarily high CF-LL's. projected wave function can then be written as [16]

For other 'fractions,)_(,f’MA does not yield to a CF-type VCF o (T — Ey)yUPCF 3)
interpretation, and differs frony, " at all k.

In the second scheme, the composite fermions are modavhere T is the kinetic energy operator anb; is the
eled as electrons carrying flux quanta at the mean-fieldnergy separation between the two lowest LL’s, equal to
level, where the flux quanta simulate the vortices [8,11]. A(1 + ¢~ ")ieB/mc in the spherical geometry. Figure 1
perturbation theory around the mean-field solution is thershows the CM energV,, as a function ofk for a 20-
carried out using Chern-Simons (CS) field theoretical techelectron system. There is a deep minimunkigt= 1.4.
niques. There have been several studies of the collectiv®ur estimate for the thermodynamic value of the energy
mode dispersion using the CS approach [12]. at the minimum0.063(3)e?/€l, (see the inset in Fig. 1),

We develop here techniques for computing the CM diswhich should be compared to the SMA valué78¢2/ €l
persion using the CF wave functions. The standard sphefi]. (Note that both approximations use the same ground
ical geometry [13] is used in our calculations below. Thestate.) Additional minima are clearly visible af, =
total orbital angular momenturh is related to the wave 2.7 and3.5. Are they real? We believe so. A direct
vector of the planar geometry ltyy = L/./q, wherely is  confirmation of the genuineness of the former minimum is
the magnetic length, aritd ¢ is the magnetic flux through seen in the nine-electron exact diagonalization calculation
the surface of the sphere. If the highest occupied shell inf Fano, Ortolani, and Colombo [17], reproduced in
@, has angular momentury then the IQHE collective Fig. 2(b).
mode has a single excited electron in {we+ 1)th LL, This method, however, is not applicable to other FQHE
with angular momentund + 1, and the hole in thesith  states. We now show that the unprojected CF wave func-
LL, with angular momentund, with the allowed values of tion, yY?~CF, can itself be used to investigate the collec-
L for the collective mode given b = 1, 2,...,2¢ + 1  tive excitations. The relevance of the unprojected theory
with precisely one multiplet at eadh(with2L + 1 degen- for the CM dispersion can be motivated by the following
erate states). Let us denote theomponent of the angular consideration. At large wave vectors, the CM state con-
momentum of the excited electron (hole left behind)By tains a far separated pair of a quasiparticle and a quasihole,
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FIG. 1. The energy of the collective mode computed with the E * 3
projected CF wave functions/, triangles) and with the un- 03 E : T L &
projected wave functionsA(V + T, circles,I" = 0.064¢2/€l) 00 E | | 3
for N = 20 electrons. The error bar for the latter is smaller 12E @ 3
than the size of the circles. All energies are in unitsbfely, E o - 3 3
wheree is the background dielectric constant. The inset shows 09 E oo .« v ¥ 3
the energy at the minimum as a function 8f'!; these have .06 - . - 3
been determined in each case by fitting the lowest few points to 03 B =
a smooth curve. g L [ 1 | L3
0 1

] |
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which approach one another Ass reduced. So long as L
the distance b_etween them is not t(_)o small, the CM €NEIG. 2. The collective mode energies from the exact diago-
ergy can be viewed as the sum of (i) the creation energjajization AV.,, dashes) shown together with those obtained
of an isolated quasihole, (ii) the creation energy of an isofrom the unprojected CF theonAy + T, filled circles). The
lated quasiparticle, and (iii) their interaction energy. Theexact energies in (b) are taken from Faebal.[17]; in (c)
creation energy, computed with the unprojected CF wavflogng 9')\1- gnpar?r?r(lg)nﬁg'r'naggtlzl 'E/g]f, [Phys. Rev. BO, 6108
functions, differs from the actual energy by as much as ' B
factor of 2, indicating that the small amount of admixture
with higher LL’s, present in the unprojected CF wave func-collective mode energy. We have found that the agree-
tions, builds very good short distance correlations. The unment becomes better for larger systems; for small systems,
projected wave function should nonetheless provide a gootihe quasiparticle and quasihole are not sufficiently far sep-
estimate for thénteraction energyprovided the quasipar- arated, especially for/5 and 37 (whose quasiparticles
ticle and the quasihole are not too close. This expectaare of larger extent).
tion is based on the observation that the density profile The advantage of working with the unprojected CF
away from the core of an isolated quasiparticle or quasiwave functions is that a treatment of large systems
hole is obtained reasonably accurately by the unprojectedecomes possible for all FQHE states. Figure 1 depicts
theory, as is also the density profile in the overlap region oAV + T for a 20-electron system for the/3 FQHE state.
a state containing a quasiparticle and a quasihole (see, e.é\,lack of any significant size dependence for systems
Ref. [16]), except when they are very close. This leads usvith slightly larger N shows that these results are close
to the hypothesis tha&tV + I" should give a good approx- to the thermodynamic limit. Let us first concentrate only
imation of the actual CM energy, except at smallvhere  on the rangel, > 0.5. Here,AV + I’ provides a good
the constant’ corrects for the error in the creation part. approximation forAV,, and, in particular, obtains the
We first test this hypothesis in finite system calculationsadditional minima. We note that there is no principle that
The unprojected energiesV are computed using varia- rules out the existence of more than one minimum in the
tional Monte Carlo techniques. The exact diagonalizatiorCM dispersion of the A3 state; the structure in the CM
energies AV, and AV + T' (with a suitable choice of dispersion arises simply from an interplay between the
I') are shown in Fig. 2 for some of the biggest systemgseveral) maxima and minima in the density profiles of
for which exact diagonalization has been performed. Théhe quasiparticle and quasihole, as the distance between
unprojected theory does indeed capture the essential fetliem is varied. The CM dispersions fof®2and 37 are
tures of the true collective mode; in particular, it obtainsshown in Fig. 3. The positions of the two deep minima
correctly the minima and maximaAV + I" also provides for the 2/5 collective mode in Fig. 3 agree well with those
a reasonably good quantitative approximation for the trudound in the exact diagonalization results of Refs. [3,18].

0
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N B N made. Modification in the Coulomb interaction because
of the finite width of the quantum well, LL mixing, and
disorder are all known to change the numerical values of
the excitation energies. A good first approximation for
the experimental CM dispersion should be obtained by
AV + T, with a choice ofl" that makes the largk-imit
equal to the experimental transport gap.

In conclusion, we have used the CF wave functions
to investigate the collective mode excitations of various
FQHE states. This provides new qualitative information
as well as better quantitative estimates than available
previously.
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