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Phenomenological Transport Equation for the Cuprate Metals
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We observe that the appearance of two transport relaxation times in the various transport coefficients
of cuprate metals may be understood in terms of scattering processes that discriminate between currents
that are even or odd under the charge conjugation operator. We develop a transport equation that
illustrates these ideas and discuss its experimental and theoretical consequences.

PACS numbers: 72.15.Nj, 71.30.+h, 71.45.—d

The normal state of the cuprate superconductors exsymmetry operation delineates longitudinal electric cur-
hibits the extraordinary feature of two transport relaxatiorrents, which are oddC = —1), from transverse currents
time scales. In optimally doped compounds, conductivand a whole range of other neutral currents, which are
ity and photoemission measurements indicate a scatterireyen(C = +1). Scattering at the Fermi surface is nor-
rate which grows linearly with temperature,! = n7, mally “blind” to charge conjugation symmetry, leading
where for YBCOn = 2 [1]. By contrast, Hall constant to a single transport relaxation time. Making the tenta-
and magnetoresistance measurements indicate that the diwe observation that in the cuprates odd parity currents
clotron relaxation rater;' has a qualitatively different relax at the fast rate,; !, whereas other even parity cur-

quadratictemperature dependence: rents relax at the slow ratey', we are led to hypothe-
size that new kinds of low-energy scattering processes are
' =T?/W, + b;. (1)  present in the cuprate metals whidapend on the charge
conjugation symmetry of the quasiparticle8y formu-
Experimentally,r;' is inferred from the Hall anglé; =  lating this idea as a phenomenological transport equation
w7y, Manifested in both the Hall conductanog, =  we show that the fastest relaxation rate dominates the re-
o0y and the magnetoconductanter,, = —o..(6x)>.  sistivity, but that the slowest relaxation raselectively

Experiments on YBCO demonstrate thats proportional  short circuits all other current relaxation processes. These
to the impurity concentration aridf; is estimated to be of results constrain a large class of in-plane thermal and

the order of 800 K [2]. Thus in the relevant temperatureelectric transport coefficients, allowing the hypothesis to
range the ratio of the cyclotron and charge transporpe tested.

relaxation timesr /7y =~ T /2W; is small. Consider a Fermi surface described by the Hamiltonian
This is unprecedented behavior, for in conventional met-

als scattering at the Fermi surface does not discriminate be- Ho = Z .- *z//j . )

tween transverse and longitudinal currents. Anderson [3] 0 > p=eATpo TP

has proposed that two relaxation rates are evidence for two

distinct species of quasiparticle which independently relatVe define charge conjugation as

the longitudinal and transverse currents [4]. Two alterna- T - -

tive proposals, involving either strong momentum depen- Vpo = Oy, A— —A, 3)
dence of the electron self-energy [5—7] or singular skew . A e . 5
scattering [8] as the origin of two relaxation time scales Wherép = pr + dpi andp™ = pr — dpa + 0(5p7)
require special conditions to be realized on the Fermi surocate degenerate electron and hole states along the nor-
face. The former requires that the weakly scattered part®@l 72 from the Fermi surface. Physical operatarscan

of the Fermi surface do not short circuit the conductivity; be categorized according to theionservedparity under

the skew scattering model requires near-perfect particleEh@rge conjugatio® — CO (C = =1). For examplti,

hole symmetry. the e_Iectrlc current operator divides into independent “lon-
In this paper we reconsider the idea of two quasipartici@itudinal” and “transverse” components = jr + Jju,

types. For its development, this radical idea requires an . - 1 .

understanding of how longitudinal and transverse com- JE = e%vﬁf‘/’ﬁa%” (€ =-D,

ponents of the electromagnetic current could couple se- - _ -

lectively to two different quasiparticles. To this end, we J# — e X[my'(6p - eA)]"/’;U'*//f"’ (€ =+1),

link the discussion with the concept of charge conjugation i

symmetry [9,10]. Charge conjugation, the interconversiorwith opposite charge conjugation parities. Hewre, is

of electrons and holes, is an asymptotic low-energy symthe effective mass tensor. The transverse current has the

metry of a Fermi surface. The parity = =1 under this sameC = +1 parity as the thermal current operator, and

(4)
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it is this term which gives rise to a Hall and thermoelectrict;' suggest that the same type of quasiparticle carries

response. both the Hall current and the thermocurrent.
Thermal and electric transport is normally described in By taking linear combinations of degenerate electron
terms of four fundamental transport tensors [11] and hole states,
je = aE + BVT, a0 = e + oyl 1 (C=+1),
5) 2 ne )

= b+ VT bpo = 5 W50 — ouh-_,] (€ =~1),
These tensors are directly linked to microscopic chargéhe low-energy excitations of a Fermi surface described by
and thermal current fluctuations via Kubo formulas.(1) may always be rewritten as eigenstates of the charge-
Table | compares the leading temperature depenconjugation operator [9],

dences of the various transport tensors measured

in the optimally doped cuprates with a series of — T L

caIcuIatior?s Wey nove deschine. The thermoelectric Ho 2 Vpo€p-cin, Vi (10)
conductivity B, determined from the conductiv-

ity and Seebeck coefficientsy, g = —oS has a Where\I’}:(r = (a;U,b};g), andr, is the second Pauli ma-
particularly revealing temperature dependence. Inyy pespite the superficial resemblance with Bogoliubov
a naive relaxation time treatment, the temperagyasiparticles, this is merely an alternative, if unfamil-
ture dependence of is dlrectlyl related to the rele- 5 rgpresentation of the unpaired electron gas in terms of
vant quasiparticle relaxation ratg; according to [12] eigenstates of charge conjugation, rather than eigenstates

|pI>1prl.o

72\ [ kgT\ ne of charge. Note that from (10) photon absorption flips the
B = —( ) <—> — TrE, (6) charge conjugation parity of the excitation.
3e €/ m In this new basis the Boltzmanffunction is a matrix
where e is the Fermi energy. Combining this with the
electrical conductivity,c = (ne?/m)r, the dimension- FoRur) — [(afﬁaaﬁﬁ (bt s0a50) } (11)
less thermopower is then vl (alpob50) blsobpe) SR

%= es _ <7'TE> <7T_2> <kB_T> ) where() represents an appropriate coarse grained average
kg Ter 3 ' of the microscopic Green function in the vicinity &
In optimally doped compounds [13], the thermopower[17]' Electric and thermal currents are given by taking

contains an unusual constant pat~ S, — b7 where the trace off (p) with the current operators
So ~ 0.1, which indicates that

€r

Jje(p) = eVjz,, i) =€V, (12
e = T°/ W 8) . o |

_ where V; = vp1 + 37, is the velocity operator and
is a factor T/n Wy, smallqr thf;m the transport relax- iy = m,§1513- The “ransverse” currenﬁH — e, s
ation rate, whereWy, = (3Sy/7*n)er ~ €r/10. The

ble si g q q - band diagonal in this basis, whereas the “longitudinal” current
comparable size and temperature dependenag;oian je = evpTy is off-diagonal. In this representation the

Boltzmann equation becomes
TABLE I. Leading temperature dependences of transport co-

efficients compared with proposed decomposition into two Ma- f + %{f/ﬁ 6Rf}+
jorana relaxation timesf, is the Lorentz numbetr?kj/3¢?). '
1 - = > -
Conduc- Majorana Leading behavior zel(E+ V; X B)1,, V, f} = I[gl, (13)
tivity fluid Iy>T,
(2 (T'> 72 Expt. Ref. Wherel[g]is the collision functionalg = f — s is
) the departure from equilibrium. Here the curly brackets
T T ™! ™! represent anticommutators, which appear when making
f s
Ty o T-3 T-3 the gradient expansion of matrix Green functions. In this
o ‘12 ? . . phenomenological discussion we shall use the relaxation
Aoy —S Gt r_f) r r time approximation to the collision integral, which is
eTLy , 1 T —1 —1
B St G trEr) T T [14] !
LT, Mgl = —+1{I' ¢}, (14)
:Bxy Bxx T+ T T () [14]
o —%(% + ) 7! ?) [15] where I' is the relaxation matrix. For a conventional
Cay lor T° T2 T-1(?) [15,16] metal, where scattering is charge-conjugation invariant,

=Tl
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So far, we have merely reformulated conventional A simple physical picture of the effect of an electric field
transport theory. Our central phenomenological hypothis provided in Fig. 1. When an electric field is applied, it
esis is that in the cuprate metals the relaxation times gbroduces an admixture ¢f = +1 andC = —1 quasipar-
the different Majorana modes at the Fermi surface are néicles whose joint relaxation rat€, = %[rs + Iyl =

longer equal. We assign “fastl’s) and “slow” (I';) scat- 2T is dominated by the rapidly relaxing quasiparticles.
tering rates to quasiparticles of opposite parity, Magnetic fields couple diagonally to the Majorana quasi-
g particles, deflecting each component through a Hall angle

L = diad I'y(T). I (T)]. (15) 05y = w./I's . Sinced; > 6, the Hall current is dom-

of T = T4 + I'_r., wherel's = %[Ff + I,]. Under inated by the sIovy-reIaxation qgasiparticles. o
this assumption, an electron is a linear combination of fast A thermal gradient couples dlagpnally to the_quasmartl-
and slow eigenstates @. Sincel’; 3 T, an electron cles, so thermal and thermoelectric conductivities are de-
will decav rapidlv in tin.1eAt N rf,l intg a quantum termined by the slow relaxation rate. The difference in the
admixturgof erieci/ron and hole f 9 relaxation times of the electrical and thermoelectric cur-
' rents then gives rise to the unique temperature indepen-

_ AT . dent component in the Seebeck coefficineE —p B «

€ (e — h/NV2. (16) TT;/T,. The off-diagonal field-dependent part of the

In this way, charged currents rapidly decay Ieavingthermal conductivity is of interest because it is free from
behind a “neutral’ component which carries the S|0W|yphonon_contrlbutlons. The fleld—dependent_part of thermal
current is even under the charge conjugation operator, so

relaxing Hall, spin, thermal, and thermoelectric currents.th h | Hall le is determined by the fast relaxati
This is an analog of neutral kaon decay [10]. € (nérmal Hall angie IS determined by the 1ast relaxation

— . . — 2 . . _
Let us now follow these effects in the transport equa—rate'eT w/T'+, giving £, . 1./T : Prowsmnal_mea
tions. Writingg = go + & - 7 and resolving the compo- surements of the Hall conductivity [16] show that it grows

nents of the transport equation, we obtain as the temperature i_s lowered, but sugggst~ 1/7, a
result which, if sustained, would refute our approach.
0 G Various exp_eriment_s can be .used to_both test 'and
@+b)|g | =—f|eE-9r | (17) contrast our picture with alternative theorlgs. Most im-
g 0 portantly, we predict that_ the _fast relaxation rate will
only appear in charge-conjugation-odd currents; all other
currents will be short circuited by the slowly relaxing
quasiparticles. ac Hall conductivity,(w) is another
discriminatory probe. Provided’s < I'y, our model

a=9, +T,1+T 1., predicts
(18)

\ivhere fl=0ef le=eyp), Pp= eE - up —eo(p)T~' X
VT - ¥, is the neutral current driving term and

on(w)  —iw + FS(T)‘

cotly(w) = =
Oxy(w) W,

- - > > o 21
b=[e(E+V;,><B)Iy‘V;,+V;,'VT8T] (21)

are the collision and gradient terms, in which we haven the skew-scattering model [8h. — w(T) < 1/T is
implicitly made the transformation renormalized and there is only one relaxation rBie=

Iy, so Inmcoté(w)] =« wT is proportional to temperature.
1 By contrast, in the two-relaxation-time scenario, this
0 (19) quantity is temperature independent. The extension of
0

existing ac Hall measurements on YBCO [18] to a variety
of temperatures can thus delineate these two scenarios.

—Z

SO -
S OO
S OO

0
, 7.— |0
1

9
l
S = O

The equation fog, decouples and has been omitted.

To solve the transport equations, we adopt the standar
Zener-Jones multipole expansion, inverting (17) and ex
panding order by order in powers &f/a, g = gV +
g?® + ..., where g™ = (—a~'p)""1gM. By expand-

ing the leading contributions to the electrical and thermal E
currents
Je = 62[5ng(13) + upgo(p)],
(20) (a) (b)
Jr = Ze(;’)[’ngO(;’) + upgy(P)], FIG. 1. (a) Application of field creates a mixture of slowly

. . and rapidly relaxing quasiparticles. (b) Slow and fast compo-
we obtain the transport coefficients. The results for aents of the Majorana fluid precess in a field, equilibrating at
simplified parabolic band are summarized in Table I. large and small Hall angles, respectively.
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