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Floating of Extended States and Localization Transition in a Weak Magnetic Field
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We report results of a numerical study of noninteracting electrons moving in a random potential
in two dimensions in the presence ofneeak perpendicular magnetic field. We study the topological
properties of the electronic eigenstates within a tight binding model. We find that in the weak magnetic
field or strong randomness limit extended states float up in energy. Further, the localization length is
found to diverge at the insulator phase boundary withsdmmeexponentr as that of the isolated lowest
Landau band (high magnetic field limit).

PACS numbers: 71.30.+h, 73.40.Hm

Recently there has been considerable interest in the fatgall conductance, in units of?/h [16,17]. A state with
of delocalized electronic states in a weak magnetic fieldhonzero Chern number carries Hall current and is necessar-
in two dimensions (2D) [1-5]. In the limit of strong ily extended. Thus by calculating the Chern numbers one
magnetic field, or equivalently weak randomness, it is beis able to identify extended states unambiguouslyioite
lieved that there exists a single critical energy within eactsize systems. This approach has proved very successful in
Landau band where the localization length of electroniaddressing the localization problem in the lowest Landau
states diverges [6,7]. In contrast, one electron localizaband [19]. In this paper, we apply this approach to the
tion theory [8] predicts that in the absence of magneticTBM studied by Liu, Xie, and Niu [5] and also by Ando
field all states are localized in 2D. Consequently, it wag20]. Our results clearly support the “floating up” picture
argued [9,10] that in the limit of weak magnetic field or and are consistent with Thouless number calculations by
strong randomness, where Landau bands merge togethémdo [20]. In fact, the results of Liu, Xie, and Niu [5]
these extended states do not disappear discontinuously bare also consistent with ours, but our interpretation of their
“float up,” tending to infinite energy in th8 — 0 limit. results is somewhat different, as we discuss later.

Thus, for a given electron density (and hence finite Fermi We also study the dependence of the number and en-
energyEr), for sufficiently low B all extended states are ergies of extended states on system size. We find, just
aboveEr and the system becomes insulating. This sceas in the case of individual Landau bands, the localiza-
nario is crucial to the global phase diagram for the quantion length diverges only at individual energies. In the
tum Hall effect proposed by Kivelsoet al. [11] and has high field limit, the localization exponent is found to be the
received strong experimental support [1-3]. Recentlysame as that of an isolated lowest Landau bapd= 2.4
however, based on numerical calculations of localizatiorf7]. For strong enough randomness the localization length
length on a tight binding model (TBM), Liu, Xie, and Niu remains finite throughout the band and the number of ex-
[5] concluded that extended states do not float. This issugnded states goes to zero as the system size goes to infin-
is more clearly posed, and its resolution well describedity, in this one band model. Using finite size scaling, we
by studying certain topological properties of the electronidind the largest localization length of the system diverges
eigenstates, as we shall see below. as the critical randomness is reached with an expongnt

A second issue of interest is the divergence of the lowhich is the same asy, contrary to previous suggestion
calization length when approaching the insulator quantunfil2,14] that they may be different. Thus our data show
Hall phase transition. A previous numerical study [12]thatw is a universal exponent for all spin polarized integer
performed on a random site TBM with a magnetic fieldquantum Hall transitions, including the ultimate one to the
suggested that the localization length exponent= 0.8  insulating state.
in 2D at the localization transition point. Besides the fact We study the TBM on a square lattice with nearest
that this value is much smaller than that at the transitiomeighbor hopping, a uniform magnetic field, and random
between quantum Hall phases in the strong magnetic fieldotential, described by the Hamiltonian
limit [7] vy = 2.4, it violates the inequalityy = 2/d + + ‘

[13] which is widely believed to be satisfied in known ran- H = D { = t(Cms14Cmn + Cps1€2™ " Cpn + H.C)
dom systems [14]. To address both these issues, a more mn +
clear-cut numerical method appears warranted. + €mnConCmn} s 1)

In the presence of a magnetic field, electronic states exwhere the integers: andn are thex andy coordinates
hibit interesting topological properties [15—18]. In par- of the lattice site,c,,, is the fermion operator on that
ticular, each state can be labeled by an integer called thate, ¢ is the hopping matrix element which we set as
Chern number, which is its boundary condition averagedhe unit of energy from now on, and is the random
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potential ranginguniformly from —W to W. « is the by numerically diagonalizing the Hamiltonian on a grid
amount of magnetic flux per plaquette in units of the fluxof ¢, and ¢,, and calculating the Chern numbers by
guantumic/e. The Landau gaugd = (0, Bx,0) is used converting the integral in (2) to a sum over grid points,
in Eq. (1). Here we concentrate on the case= 1/N;,  we are able to identify extended states unambiguously.
whereN; is an integer. In this case, we haW¥g Landau We have studied systems of square geometry with vari-
subbands in the absence of random potential, and theus size (fron8 X 3to 15 X 15), strength of randomness
lowest energy subbands map onto the lowest Landa(iv), and magnetic field (equivalentlyy;). The number
levels in the limitN; — o, which is the continuum limit. ~ of samples explored for a giveéi range from 2000 to 30
The Hall conductance of an individual eigenstdi®  depending on system size. Most of our data were taken

can be obtained easily using the Kubo formula [18] for Ny = 3. We do not, however, see any qualitative dif-
" ielh ference in behavior of the extended states, for systems
T T T4 with N, as large as 13. Hence we believe our results are

generic and apply to the continuum lint; — .

x Y (mlvyln) (nlvilm) = (mlvsln) nlvylm) ’ Figure 1 shows the density of stateg[)] and density

nEm (E, — Ep)? of extended states with nonzero Chern numbgsH)],

whereA is the area of the system, amg andv, are the for two different strengths of randomness fy = 3 on a
velocity operators in the andy directions, respectively. square of lattice siz@ X 9. For weak enough randomness
For a finite system with the geometry of a parallelogram(W = 1.0), the three Landau subbands are broadened by
with periodic boundary conditions (torus geometry),  randomness, but are still well separated. We see there
depends on the two boundary condition phageand¢,. are extended states in all subbands, with their densities
As shown by Niuet al., the boundary condition averaged peaked essentially at the center of each subband. This is

Hall conductance takes the form [16] consistent with the previous study on individual Landau
1 bands [19]. Asrandomness increases, the subbands further
() = 73 f dpiddr ol (p1,$2) = Cm)e*/h, broaden and start to merge, as is seenWor= 2.5. In

this case there are still three prominent peakg (i) (we
(2 cal themkE,, E,, andEj;, respectively), which are (loosely)
whereC(m) is an integer called the Chern number of theidentified as centers of Landau subbangds(E), however,
state|m). States with nonzero Chern numbers carry Hallnow looks very different: most of the extended states are
current and are necessarily extended states [17,19]. Thuear the center of the entire barith) and there is no peak
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FIG. 1. Ensemble averaged density of stagté&) and density of extended statps(E) for two values of randomnes#, for
systems of siz® X 9.
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in p.(E) at E| or E3, which are the centers of Landau ergies) grows roughly linearly with randomness strength
subbands. There are nontrivial featurespif(E) which  as it further increases. However, we are unable to test the
we discuss below, but it is clear from Fig. 1 that as thequantitative prediction of Refs. [9,10] due to system size
three subbands start to merge the extended states in thmitations.
lower and upper subbands move away from the centers of Figure 2 depicts the number of states with nonzero
the subbandsH; and E3) toward center of the bandZ¢).  Chern numberN. = [~ p.(E)dE versus the system
This behavior is also seen in systems/f as large as size N, (number of sites), for different values of disorder
13. We hence believe in the limM; — <« (which can be W, for N, = 3, on a double logarithmic plot. We find the
mapped onto the continuum model) the extended states piot is essentially linear for smaW up toW = 3.0, with
the lowest subbands (which becomes Landau levels) floalope y = 0.79 = 0.01 which is relatively independent
up toward the center of the band (which is at infinitely highof W, indicating thatN. ~ (N,)? in this region. This
energy relative to them in the continuum model). This propower law behavior is exactly what is expected [18,19]
vides unambiguous support for the floating up picture prewhere there are individual critical energidg in the
dicted theoretically [9,10] and seen experimentally [1—3].vicinity of which the localization length diverges with
The fact that the extended states in the lower and uppex power law of the formé(E) ~ |[E — E.[™”. In a
subbands float toward the center of the band as randonfinite system with linear sizelL, = \/NS, states with
ness increases may be understood in the following mar¢(E) > L, look extended. The number of such states
ner. In finite size systems, the Chern number of a state cagoes liken, ~ Nsp(Ec)L;l/V ~ NSV thusy = 1 —
change only when it becomes degenerate with a anothgt/2,,. This givesy = 2.4 * 0.1, in agreement with the

state under certain boundary conditions. If such a degery,, for lowest Landau band [7,19]. This suggests tha

eracy were to occur, the Chern numbers of the two stateg yniversal exponent in all spin-polarized integer quantum
involved may change but their sum is conserved. Random4g|| transitions.

ness tends to localize all states and annihilate the nonzero For Jargeri, the dependence of. on N, deviates from
Chern numbers carried by the extended states. Thus statgower law and bends down &5 increases, indicating

with nonzero Chern numbers of opposite signs “attractthat the two critical energies have merged and disappeared;
each other and tend to move close in energy as randomnegss finite throughout the band. For strong enough ran-
increases. It is believed that in the thermodynamic limitgomness and larg¥,, N. decreasessN, increases; thus
true extended states exist only at individual critical eneri the localized regime the average number of extended
gies (see below). Each such critical energy is characterizegtates per sample goes to zero in the thermodynamic limit.
by its total Chern number whichisvariantas randomness From the shape of the density of extended states and
varies, unless merging between critical energies occur. Fafcaling of data we determine the critical randomness to
exactly the same reason, critical energies with total Cherge w, ~ 2.9 + 0.1. For W greater than but close %,
numb_ers of opposite sign also attract each other as randorand large size®/,, N, is expected to take the scaling form
ness increases. In the caseNyf = 3 systems, the total N, ~ NVE(L, /&) ~ NgVF(Nsl/(ZV’)(W — W.)), where

c s m C ’
Chern numbers for the three subbands Bre-2, andl,  » s the |argest localization length in the system that

respectively [21]. Bepause of the “attraction,” we expec iverges adV, is approached with exponent. The best
that as randomness is turned on the extended states in the

central subband with total Chern numbe2 splits into two
critical energies with total Chern numben each (by sym-

metry) and move toward the two band edges as random- Dwers =
ness is increased further. Concurrently, the two critical oW=25 i -
energies of the upper and lower subbands with total Chern piWg = >
number+1 move away from the center of the subbands to- e /ﬁ/ =

ward the center of the band. This is precisely what is seen 10 Few=50 ? = T
in p.(E) atW = 2.5: There is a small dip at the center of ow=60 s - =

the band indicating the splitting of the central critical en-  N¢ = . _ ¥ I
ergy; further, there are two less pronounced peaks from the b . -

two edge subbands, whose positions have clearly moved - = * L) I
away from the corresponding peaksg(f£). Similar be- o |
havior is found for systems with large¥,. Our data - z

suggest that the shift of critical energies from their corre- 3

sponding peaks o (E) (floating) becomes sizable when E

the broadening of subbands due to randomness is com- 0 00

parable to subband gaps, consistent with previous predic- N

tion [9,10] that floating becomes important y\_/hergr "~ FIG. 2. Number of extended statds vs system sizeV, for
1. The number of states below these critical energiegariousw on a double logarithmic scale. The solid line with

(or, equivalently, the filling factor at these critical en- slopey = 0.79 is a linear fit to the data fow = 3.0.
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05T ' ' ] results forN, = 3 are consistent with very little shift of
R — | peaks ofp.(E) from edge bands relative #,. However,
EEE; critical energies clearly float away from peaks @fE)
Ne ¥z ] (which are roughly at the centers of Landau subbands).
N OW=35 % This is because as randomness increases, both the bottom
01 eW=37 ] 1 of the band and peaks ip(E) move downward We
i iw:::g [ believe thisrelative movement is a clear indication of
mW=45 E ] floating of extended states which survives the continuum
limit.
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FIG. 3. The scaling functio®(N/®")(W — W,)).

critical randomness is almoat; independent and is about size effects and data on larger systems suggest that
W, = 3t, in agreement with Ando [20]. The energy at v >2/d = 1. But the v obtained here is still system
which the final merging and disappearance of critical en-  size dependent and much lower than 2.4 which is believed
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