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We present single-particle and thermodynamic properties of the half-filled single-band Hubbard model
in 2D calculated in the self-consistent fluctuation exchange approximation. The low-energy excitations
at moderate temperatures and snidllare quasiparticles with a short lifetime. As the temperature is
lowered, coupling to evolving spin fluctuations leads to the extinction of these quasiparticles, signaled
by a weak pseudogap in the density of states and by a positive slopedfkRes) and a local
maximum in|Im3(kg, €)| ate = 0. We explain these results using a simple spin-fluctuation model.

PACS numbers: 71.27.+a, 75.10.Lp, 75.30.Kz

The 2D single-band Hubbard model plays a centraFor studying the spectral function and density of states
role in efforts to understand the behavior of electrongDOS), the FEA has several important advantages over
near the Fermi surface in the cuprate superconductors a@MC: (1) There is no inherently statistical error in the
their parent compounds [1]. The model is characterizedrEA results, which removes most of the uncertainty in ex-
by a nearest-neighbor hopping energyand an on-site tracting A(k, ¢) from G(k, 7). (2) FEA calculations are
Coulomb energy,U. For a half-filed band, thet’ =  possible for large enough lattices (typically8 X 128) to
0 state is believed to be an antiferromagnetic (AFM)ensure that the profile of(k, £) represents the infinite lat-
insulator for allU > 0 [2,3]. ForT > 0, the Mermin- tice limit, and does not in part reflect the small number of
Wagner theorem precludes the existence of long-rangdecay channels available to a low-energy quasiparticle on a
AFM order in 2D, but with strong couplingl{ = 8¢)  small lattice. (3) The FEA can cover a wider range of tem-
the low-temperature electronic state is almost certainlperatures than are currently accessible to QMC. (4) The
a Mott insulator. WithU = 4r and0.10t = T < 0.25¢,  FEA provides real-frequency self-energies and fluctuation
conflicting results have been obtained from quantunpropagators that explain the origin of structuregiik, ¢)
Monte Carlo (QMC) calculations of the one-electronand directly test the applicability of the Fermi liquid
spectral weight functionA(k, ), depending on lattice picture.
size and especially on the method used to extidkt ¢) We find that in the FEA a paramagnetic non-Fermi-
from the Green's functionG(k,r) produced directly liquid state evolves with decreasing temperature. The
by QMC calculations. Spectral functions on the Fermispectral functions on the FS show no pseudogaps over
surface (FS) produced by the maximum entropy techniquéhe range of temperatures covered by QMC calculations,
show a single peak whenever the lattice is larger thabut are exceptionally broad. For momenta close to the
the AFM correlation length, but develop a pseudogagFS, spectral weight is shifted away froen= 0, produc-
on smaller lattices [4]. In contrast, recent calculationsng a weak secondary maximum, which might suggest a
using the method of singular value decomposition yield‘shadow band” [1], although the real part of the denomi-
a pseudogap in both the spectral function on the FS and inmator of the Green’s function still has only a single zero.
the total density of statey(s) = N~ ' >, A(k, &), even These features produce a weak pseudogap in the total DOS,
for lattices larger than the correlation length [5]. even though the FS spectral functions are single peaked [9].

We report calculations of(k, ) andN(¢) at half filling ~ For momenta on or near the FS, the real part of the self-
and moderaté&’ (<4.8t) using the fluctuation exchange ap- energy has an anomalous positive slope rear 0 and the
proximation (FEA), a self-consistent conserving approxi-quasiparticle lifetime has a local minimum there. A sim-
mation that has been applied to the 2D Hubbard modgble analytic model shows that these anomalies result from
in a number of recent papers [6—8]. In particular, thethe coupling of quasiparticles to AFM spin fluctuations,
FEA has been used to argue fod-avave superconducting without a phase transition to AFM order. The process is
transition in the high¥. cuprates [8]; the need to evalu- anisotropic, beginning at th& point and spreading over
ate these claims adds to the importance of knowing whahe FS.
the FEA predicts (rightly or wrongly) for the normal state The FEA for the self-energy in a paramagnetic state of
at half filling. Compared to QMC, the FEA has the dis- the Hubbard model is [10]
advantage that it is inherently an approximation, though
imaginary-time Green’s functions from the FEA and QMCE(r’ 7) = ULxpn(r.7) + Tpp(r,7) + Too(r, )]G(r, 7)
agree surprisingly well at half filling and moderdte[6]. + UT,,(r, 7)G(—r,—7), @
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wherey,(r,7) = —=G(r,7)G(—r,—7) and T,,, T,,, is inconsistent with Fermi liquid theory: an anomalous
and T,, are propagators for spin fluctuations, densitymaximum is clearly evident at = 0 in |[ImX|, and
fluctauations, and singlet pair fluctuations. For exampleReX at ¢ = 0 has a positive slope which is inconsistent
the spin-fluctuation propagator is with the interpretation of1 — o ReX(kr, £)/del.—o] !
3 Uy, o) as th.e quasiparticl_e polt_e weight. For the satha self-
Toolq, wm) = — P (2)  consistent calculation with only the second-order skeleton
2 1 = Uxpn(q, ©m) diagram yields a sharp spectral function and self-energies
The Green’s function is obtained from Dyson’s equation, without these anomalies.
The dramatic loss of spectral weight at the Fermi surface
G(k,e,) "' = Golk,&,)"" — 2(k, &), (3) s reflected in the formation of a weak pseudogap in the
total density of states as a function of temperature as shown
' for U = 1.57 in Fig. 3. The anomalies i, first appear
at the Van Hove critical points, and spreadladecreases;
for a range ofU andT, the anomalous excitations near the
X points coexist with more conventional quasiparticles on
Xhe rest of the Fermi surface.

where Gy(k, &,) is the noninteracting Green'’s function
and the self-consister} is found by iteration. We have
performed calculations oi28 X 128 lattices ofk points

[11] with typically 512 Matsubara frequencies using a
new massively parallel algorithm that treats high frequenc

contributions exactly [12]. This greatly improved treat- The redistribution of spectral weight away from the

ment of high-frequency information allows us to obtain Fermi energy is a consequence of strong antiferromagnetic
what we believe are the first meaningful results for the 9y q 9 9

FEA spectral functions of the Hubbard model at half filling. spin corr'elanons, ;lgnaled t_)y the growth of sharp structure
. ; X . in the spin-fluctuatio” matrix T, whenU x,,(Q, 0) ap-
Numerical analytic continuation & to the real-frequency

. 4 . . . proaches unity a = (s, 7). In a Hartree-Fock theory,
axis is accomplished using Padé approximants [13]. . - i
The extinction of sharp quasiparticles at thiepoint Uxy1(Q.0) reaches unity at a sufficiently low tempera

. - . — ture, signaling a transition to AFM order. Within the FEA,
is evident from the spectral functions in Fig. 1. For . X N e

_ _ : the self-consistently determined quasiparticle lifetime
U =1.0andT = 0.1, the FEA solution shows a sharp requlates the growth d y,,(Q.0). As shown in Fig. 4
guasiparticle at = 0, the Fermi energy (henceforth all 9 9 Xphi%2, %) 9- %

energies are in units a). While an increase in the inter- U xpn(Q, 0) closely approaches unity with decreasing tem-

action strength and thus an increase in the quasiparticl erature at fixed/, and with increasing/ for fixedT. As

quasiparticle scattering rate leads generally to a reductio he temperature is decreased for fixéda sharply peaked

. > . Structure evolves iMTy,,(q, wy,) within |Ag| = 0.057 of
in spectral weight at = 0 and a broadening of the spec- _ _ )
tral function, the effect shown fot/ = 2.3 in Fig. 1 is Q (for U =27 andT = 0.10) and, to an excellent ap

much larger than expected proximation, aw,, = 0. For real frequencied;,,(Q, w)

To see this. focus on th.e self-energies at theoint has a sharply peaked structure as shown in Fig. 4. At
shown in Fig’ 2. Scaling of th&/ = 1 result by U? higher temperatures, as shown for= 0.15, temperature
leads to an I cbmparable to th&/ = 2.3 result at high and correlations broaden the peak ify,,(Q.0) and

frequency, but smaller than the true self-energysee 0
by a factor of=2.5. The FEA self-energy at low energy
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FIG. 1. Left: Spectral functions calculated in the FEA at 0.40
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T = 0.10, showing a dramatic reduction of spectral weight at
the X point (on the Fermi surface) with a modest increase in
U betweenT = 0.10 and U = 1.0 (dotted) and2.3 (dashed). FIG. 2. The real and imaginary parts of the FEA self-energy
Also shown forU = 2.3 (solid) is a calculation with only the at theX point for U = 1.0 (dashed) and/ = 2.3 (solid). Note
second order skeleton diagram. Right: FEA spectral functionshe “inverted peak” ate = 0 in the imaginary part and the
for k = (0.8917,0) (solid) andk = (7,0) (dashed) shown positive slope at low energy in the real part. Also shown
in comparison with those for the simple spin fluctuationis the self-energy from a self-consistent calculation with only
model (long-dash-short-dashed and dotted, respectively) fahe second-order skeleton diagram fér= 2.3 (dash-dotted)
1,, = 0.05. which is qualitatively similar to the FEA fot/ = 1.0.
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FIG. 3. Top: The density of states as a function of energ
for U = 1.57 andT = 0.16 (dashed).14 (dash-dotted)(.07
(dotted), and0.05 (solid) showing the evolution of a weak

At T = 0.1, further increases iU lead to neither a
positive slope in RE nor sharp structure in I ate = 0,
perhaps because the large quasiparticle width “smears” the
Fermi surface and reduces the effect of nesting and Van
Hove critical points. HoweverlJ x,,(Q,0) continues to
approach unity monotonically up to the largést(=3.6)
for which we have solutions & = 0.1. Hence it is the
sharpness d¥/ x,»(Q, 0) (andT,) and not simply its size
that leads to the observed anomalies.

The entropyS and AFM susceptibilityyarv [14] as a
function of temperature are shown in Fig. 3 tér= 1.57.

At high temperaturess(T') tracks thel/ = 0 entropy. As
the pseudogap opens the entropy turns down, signaling the
loss of quasiparticle states. F&r= 0.05, yarm Shows
only a modest enhancement and the paramagnetic state
remains stable, as required in 2D. The nearly singular
behavior ofT,,(Q,0) is offset by the vertex corrections
included in a fully conserving description, as suggested by
yprevious calculations [15].

To understand better the self-consistent self-energy, we

pseudogap with decreasing temperature. Bottom: The sel@ppeal to a simple model motivated by a calculation of

consistent AFM spin susceptibility (diamonds) and entro@y

as a function of temperature fér = 1.57. Also shown is the
entropy forU = 0 (dashed). Note that for clarityyarm(7)

has been plotted agarm(T)/4xarm(0.05). There is no sign
of a spin density wave withq = (7r,7) in the full spin

susceptibility.

hence in R&,, (see Fig. 4, inset) sufficiently that a
region of positive slope in R&kr,e) at e = 0 is not
observed for anyy and only a weak maximum df =
4.8 is evident inU x,,(Q, 0) as a function oU.
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FIG. 4. The self-consistent/ y(Q,0) (top) for U = 1.57 as
a function of T and (bottom) forT = 0.05 (squares),0.10
(diamonds), and0.15 (®) as a function ofU. The inset
shows analytic continuations of the self-consist@htnatrix
ReT,,(Q,w) for T = 0.10 and U = 2.7 (solid) and forT =

the fluctuation conductivity abové,. in superconductors
[16]. The anomalies ir® are always accompanied by a
T,(q, w,) thatis strongly peaked neqr= Q andw,, =
0[17]. Assuming that the spin-fluctuation contribution to
3, dominates,

E(k, en) = Gk + Q, 6n);sp s (4)

wheref,, is proportional to the weight of the peak iy,
within a reciprocal correlation length™! of Q,

2
= E Y 1@t qon =0 ()
lgl<1/¢

Equations (4) and (5), together with Dyson’s equation, can
be solved directly. For = 0 the slope of RE(g) is
1/2. Inthe full calculation, the slope is also positive when
T, is sharply peaked, but generally differs frdn'2 due
to other contributions to the self-energy not included in
Eq. (4). We observe that for slopes greater than unity,
multiple quasiparticle peaks can appear in the spectral
function, corresponding to multiple solutionsof- €, —
Re3(k, &) = 0 for a given wave vector. F&f = 0.05 we
have not observed such a splitting of the band, in contrast
to at least two non-self-consistent calculations describing
the effects of strong antiferromagnetic correlations on
quasiparticle properties [18,19].

The single-particle spectral function for the model is
nonzero only fol0 < e_g, < 4i,,, and given by

1 € -
Ak, g) = — 1/8—+1/t5p —e_¢e4+ /4, (6)
sp -

where e =& — € and e, = & — ex4Q = & + €.
This spectral function shares two important features with
the full calculation. First, spectral weight &g is shifted

0.15 and U = 4.8 (x10 and dashed). The former shows a away frome = 0, with the noninteracting delta function

pseudogap in the density of states but the latter does not.
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