
VOLUME 76, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 19 FEBRUARY 1996

ngdom

130
de Haas–van Alphen Effect in Canonical and Grand Canonical Multiband Fermi Liquid
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A qualitatively different character of de Haas–van Alphen oscillations has been found in a multiband
(quasi)two-dimensional Fermi liquid with a fixed fermion densityne (canonical ensemble) compared
with an open system where the chemical potentialm is kept fixed (grand canonical ensemble). A new
fundamental periodPf appears whenne is fixed, a damping of the Landau levels is relatively small
and a background density of states is negligible.Pf is determined by thetotal density rather than
by the partial densities of carriers in different bands:Pf ­ 1y2nef for spin-split Landau levels and
Pf ­ 1ynef in the case of spin degenerate levels wheref is the flux quantum.
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The de Haas–van Alphen (dHvA) oscillations of su
ceptibility as a function of the inverse magnetic field1yH
are well studied both experimentally and theoretically [
The frequency of the oscillations is proportional to the e
tremal cross section of the Fermi surface. Therefore
the multiband metals one would expect several differ
dHvA periods corresponding to the independent contrib
tions of different bands [1–3]. The dHvA effect in close
and open systems was analyzed by Dingle back in 1
[4] with the conclusion that there is practically no diffe
ence because the dependence of the chemical potenti
the magnetic field, in the case of fixedne, is very weak.

In this Letter we show that while this is true for thre
dimensions and (or) for the relatively large damping
Landau levels, the dHvA effect is qualitatively different
the near two-dimensional (2D) multiband canonical Fer
liquid compared with the grand canonical ensemble if t
damping is relatively weak [5].

If we keep the total number of electrons per area,ne,
in the near 2D metal fixed, the chemical potential w
oscillate with inverse magnetic field,1yH. These oscil-
lations are responsible for a new fundamental period in
two-band or multiband Fermi liquid. The value of the p
riod can be evaluated by using a simple dHvA resona
condition. There are no partially occupied Landau lev
at the resonance. In two dimensions each of the Lan
levels can be occupied bypH carriers per cm2, where
p ­ 1y2f if the levels are spin split, andp ­ 1yf if they
are not (f ­ p h̄cye is the flux quantum). Then the dHvA
resonance condition for fixedne is

esH 1 DHd sN 2 1d
2p h̄c

­ ne , (1)

whereN ­ 1, 2, 3, . . . is determined by
eHN
2p h̄c

­ ne . (2)

Combining Eq. (1) and Eq. (2) we obtain the fundamen
dHvA period

Pf ­
p
ne

, (3)
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which is independent of the band structure according
the following simple argument. In amultiband metal
the Landau levels (LLs) will be occupied sequentiall
depending on their energy. The number of electrons wh
the LL can accommodate is always equal topH, wherep
s­ ey2p h̄cd is constant, i.e., it does not depend on th
characteristics of the band. It means that the populat
of the LLs in multiband metals with field in the canonica
ensemble is equivalent to that of a one-band metal. T
individual bands will then, generally, show up in a
intensity of peaks in susceptibility resulting in additiona
oscillations of the moment and susceptibility superimpos
on the fundamental one. However, the main Fouri
component will be the fundamental one with frequenc
1yPf . On the other hand, in the open system this Four
component is absent or significantly suppressed compa
with the individual band oscillations. The conditions fo
the observation of the fundamental frequency seem to
only marginally stricter, due to its relatively higher value
than those for the ordinary dHvA effect, and it should b
observable in near 2D electrically insulated specimens.

It turns out that it is quite difficult to obtain the
fundamental frequency in multiband metals with the u
of the standard Poisson summation formula. In wh
follows, we shall therefore consider first the case of
clean 2D metal at zero temperature with (i) the tot
number of electrons being fixed and (ii) the chemic
potentialm being fixed (i.e., the metal is well connecte
to some “reservoir” of electrons). Then we shall estima
the effect of the broadening of the Landau levels.

Let us consider a two-band 2D metal with differen
band masses, where the bands are split into series
Landau levels (Fig. 1),

eisnd ­ Di 1 h̄visn 1
1
2 d, n ­ 0, 1, . . . , (4)

where i ­ 1, 2 is the band index, andvi ­ eHymic
is the cyclotron frequency. Each level is degenera
containspH states, and is broadened by collisions wit
impurities into a Lorentzian with Dingle width,h̄yt

[4]. We shall assume that̄hyt ø h̄v, and describe
© 1996 The American Physical Society
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FIG. 1. A schematic representation of the electronic struct
of a multiband near 2D metal. The two bands correspond
to heavy and light carriers with the offsetD are shown. In
an external magnetic field the bands split into a series
Landau levels whose population depends on the position of
chemical potentialm.

the situation where theN1 levels in the first band and
N2 levels in the second band are occupied, and the
Landau level in the first band is partially occupied b
xpH electrons, wherex ­ neypH 2 fneypHg, 0 , x ,

1, andfag stands for the integer part ofa.
Let us now consider canonical and grand canoni

ensembles.
(i) Canonical ensemblesne ­ constd. Generally, the

orbital moment is found from

M ­ 2

µ
≠F
≠H

∂
T ,V

­ 2
2kBT

p

Z `

2`

de Im Tr
≠Gse, Hd

≠H
lns1 1 esm2edyT d ,

(5)

whereG is the electron Green’s function which accoun
for collisions [6], and the chemical potentialm is defined
by the conservation of the total number of electrons,ne [7].
In the multiband case for a clean metal it would amount
a rather complicated nonlinear equation if we were to ap
the standard Poisson summation formula. To elucidate
physics, we shall consider first the limiting case of ze
temperature in the clean limit. By counting the number
electrons in the Landau levels we obtain

sN1 2 1dpH 1 xpH 1 N2pH ­ ne , (6)

with a similar relation when the LL in the second ban
is partially occupied. Then we immediately have for t
period of the dHvA oscillationsPf ­ 1yH 2 1ysH 1

DHd ­ pyne, i.e., the same fundamental period as w
have found before, Eq. (3), which isthe same for all
bands. For the energy we have, if the partially occupie
LL belongs to the first band,

E ­
N121X
n1­0

pHe1sn1d 1 xpHe1sN1d 1

N2X
n2­0

pHe2sn2d ,

(7)
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with a similar equation when the partially occupied L
belongs to the second band; the moment is found fr
M ­ 2dEydH. We are interested in the semiclassic
regime, where the total number of occupied Landau lev
is large,Ntot ­ neypH ¿ 1, as well as the number o
occupied LLs in each band,

Ni ­

∑
mic
eH

sm 2 Did 2
1
2

∏
¿ 1 . (8)

The chemical potential is pinned to the partially occupi
LL and oscillates about themeanvaluem̄ ­ s2p h̄2ne 1P

i miDidy
P

i mi , which is field independent.
(ii) Grand canonical ensemble,m ­ const. In that case

the period is defined by the condition of the LL crossin
the Fermi level,m ­ Di 1 seh̄Hymicd sNi 1

1
2 d, and we

find that the oscillations have independent periods

Pi ­
e

mic
1

m 2 Di
, (9)

with the ratio

Pi

Pj
­

mjsm 2 Djd
mism 2 Did

­
S21

i

S21
j

, (10)

whereSi is the area of Landau orbit in a plane perpe
dicular to the field. We see that if there were no ba
offset, the ratio of the periods would have been given
the ratio of inverse masses. If the Dingle temperature
much smaller than the interlevel spacing, the total ene
will be given by Eq. (7) without the term containingx. It
is interesting to note the existence of a simplesum rule
relating individual and fundamental dHvA frequenciesX

i

1
Pi

­
1

Pf
. (11)

The moments calculated for two cases withne ­ 0.4 3

1014 cm22, m1:m2 ­ 1:4, and D2 2 D1 ­ 13 meV are
presented in Fig. 2. It is seen that there is a v
difference between the two regimes. In grand canon
ensemble (m ­ const) the total moment is a sum o
two periodic contributions coming with different period
whereas in the canonical ensemble the moments in
bands follow the fundamental period and change
antiphase following the progressive occupation of t
LLs with decreasing field. Although the fundament
period mirrors the level occupationx, the resulting total
moment shows a very complicated behavior which refle
the individual periods with the ratio given by Eq. (10
The reason for this irregularity of the field dependen
of the moment (kinks occurring when the current L
is only partially filled) is thecrossing of the Landau
levels belonging to different bands which can only occ
when simultaneouslyDi fi Dj and mi fi mj . This is
because the energy levels in the light band move fa
with the field and occasionally the partially occupied L
in the light band sinks below the highest occupied L
in the heavy band and leaves it only partially occupie
1309
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FIG. 2. (a) The dHvA oscillations in the canonical ensem
with two undamped bands,m1:m2 ­ 1:4 and D2 2 D1 ­
13 meV, at the surface densityne ­ 0.4 3 1014 cm22. Arrows
indicate the points of Landau level crossing (see text). B
line: total moment, dotted and dashed lines: partial ba
contributions. Partial contribution is scaled down to fit in
the figure. (b) The dHvA oscillations in the grand canonic
ensemble with the same parameters. Bold line: total mom
dotted line: light band, and dashed line: heavy band. In
top panel the filling fractionx of the partially occupied Landau
levels is shown.

This results in discontinuous changes in the moment
susceptibility. The total moment in canonical ensem
oscillates about zero [Fig. 2(a)], similarly to a one-ba
2D metal [1]. In the grand canonical ensemble there
a steady flow of electrons into the system with reduc
field resulting in an overall monotonous change of t
absolute value of the moment [Fig. 2(b)].

The Fourier transform of the total moment (Fig. 3)
the canonical ensemble shows the rich structure of
Fourier components. The light (L) band shows up a
low frequency with an intensive second harmonic (L2)
and has a weight much larger compared to the he
(H) band which gives a signal at higher frequenc
The fundamental period (F) has the largest weight an
intensive second (F2) and third (F3) harmonics. It is
easily seen that oursum rule (11) holds: L 1 H ­ F
(­ 1.65kT in our example).

It is important to consider a situation when the LL
in one band (second, for certainty) are strongly smea
out. Then if the Dingle temperature [4] for the seco
band is bigger than the LL separation in the first ba
h̄yt . h̄v1, the second band can be viewed as a unifo
background density of states,n2sEd ø const, for the series
of the LL in the first band,n1sEd ­ pH

P
n dsE 2 End,

where nisEd stands for the density of states. One c
easily write down the equation form in this case and
apply the Poisson formula to sum over the occupied L
This equation can then be solved by successive iterat
1310
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FIG. 3. The Fourier transform of the moment in (a) th
canonical ensemble and (b) the grand canonical ensemble.
panel (a) note the clearly resolved components of the light ba
(L and the second harmonicL2), the heavy band (H), and the
fundamental period and its higher harmonics (F, F2, andF3).
The sum rule for the dHvA frequencies holds:L 1 H ­ F.
Fundamental frequency equalsF ­ 1yPf ­ 1.65kT . Panel (b)
shows standard individual harmonics (L andH) with much less
weight in the combined harmonic.

with the result that pinning of the chemical potential at th
partially occupied LL vanishes and only thestandardone-
band period,P ­ pyn1, remains. The reason for this is
that the second band would work as a reservoir of electro
for the first band and canonical and grand canonic
ensembles would become indistinguishable. The sam
true if there is a significant background in the density
states. It sets standard constraints for the observation of
fundamental period: maxskBT , h̄ytid , minsh̄vid, which
could be met in clean samples at low temperatures. W
have also performed the calculation for a more realis
model of Landau levels with finite widthGi and obtained
similar results. The fundamental period is seen in syste
obeying this condition and disappears with increasi
width Gi . In three dimensions each LL develops int
a band in such a way that the density of states ha
smooth background weakly depending on energy (~

p
E).

Consequently, the difference between the two ensemb
disappears with increasing dimensionality. We expe
therefore, a new fundamental periodPf to appear when
ne is fixed; the damping of the Landau levels is relative
small and the background density of states is negligible

It is worth noting that the magnetic interaction of elec
trons in different bands could lead to the appearance of a
of combined harmonics likemf1 1 nf2, wherefi ­ 1yPi

is the dHvA frequency associated with theith band and
m andn are integers (Shoenberg effect) [8,9]. Formal
these harmonics would contain the fundamental frequen
as well. It is, however, easy to distinguish between t
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Shoenberg effect and the effect described here in exp
ments on insulated and noninsulated samples. In addit
if the magnetic interaction is important, the low frequenc
difference,j f1 2 f2j, may appear as a real oscillation i
addition to higher frequencies. One may then expec
characteristic amplitude-modulated signal [9].

The difference between canonical and grand canoni
ensembles could be relevant for results of recent dH
measurements on near 2D Sr2RuO4 [10]. Three dHvA
frequencies of3.05kT , 12.7kT , and18.5kT with the ratio
being surprisingly close to1:4:6 have been found [11]. If
they are the genuine frequencies corresponding to th
bands as given by band calculations, the fundamen
frequency is expected to be34.25kT . If, on the other
hand, we consider only the first two frequencies as be
genuine, the fundamental one would be at15.75kT , which
is somewhat smaller than the third measured frequen
of 18.5kT . It would be interesting therefore to go into
the region of about35kT to look for the fundamental
dHvA frequency in Sr2RuO4, and also to compare the
dHvA effect in electrically insulated and noninsulate
samples.

We appreciate enlightening discussions with N.
Mott, D. Shoenberg, D. Khmelnitskii, G. Lonzarich
and A. Mackenzie. We thank the Materials Modellin
Laboratory at Oxford University for the provision o
computer facilities.

[1] D. Shoenberg,Magnetic Oscillations(Cambridge Univ.
Press, Cambridge, 1984).
ri-
n,

a

al

e
al

g

y

.

[2] L. D. Landau and D. Shoenberg, Proc. R. Soc. London
170, 341 (1939).

[3] I. M. Lifschitz and A. M. Kosevich, Zh. Eksp. Teor. Fiz.
29, 730 (1955) [Sov. Phys. JETP2, 636 (1956)].

[4] R. B. Dingle, Proc. R. Soc. London A211, 500, 517
(1951).

[5] In a one-band 2D metal the dHvA effect in canonica
and grand canonical ensembles has been analyzed
D. Shoenberg,Magnetic Interactions in a 2D Electron
Gas,Symposium in memory of T. D. Holstein, Condense
Matter Physics (Springer, Berlin, 1987), p. 129, wh
showed that there are opposite slopes of magnetizat
as a function of the field,M ­ MsHd in these ensembles
but the Fourier transforms are very similar. In our ca
of a multiband metal the Fourier transforms aredifferent
(Fig. 3). The difference between the two ensembles
also noticeable in other situations, such as for disord
ensemble averages in mesoscopic rings and quantum d
See, for instance, B. L. Altshuler, Y. Gefen, and Y. Imry
Phys. Rev. Lett.66, 88 (1991).

[6] Yu. A. Bychkov, Sov. Phys. JETP12, 977 (1961).
[7] The same expression for the moment holds for the gra

canonical ensemble, wherem ­ const and the electron
densityne oscillates.

[8] D. Shoenberg, Philos. Trans. R. Soc. London A255, 85
(1962).

[9] A. B. Pippard, inThe Physics of Metals I. Electrons,edited
by J. M. Ziman (Cambridge Univ. Press, Cambridg
1969), p. 113.

[10] A. P. Mackenzie, S. R. Julian, A. J. Diver, G. G. Lonzarich
Y. Maeno, S. Nishizaki, and T. Fujita (to be published).

[11] Frequencyf ­ 1kT corresponds to an electron densit
per area ne ­ fys2fd ­ 0.242 3 1014 cm22 [Eq. (3)].
The corresponding energy unit is̄h2neym ­ 18.4 meV.
1311


