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de Haas—van Alphen Effect in Canonical and Grand Canonical Multiband Fermi Liquid
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A qualitatively different character of de Haas—van Alphen oscillations has been found in a multiband
(quasi)two-dimensional Fermi liquid with a fixed fermion density (canonical ensemble) compared
with an open system where the chemical potentiabs kept fixed (grand canonical ensemble). A new
fundamental period®, appears whem, is fixed, a damping of the Landau levels is relatively small
and a background density of states is negligible, is determined by theotal density rather than
by the partial densities of carriers in different ban#s:= 1/2n.¢ for spin-split Landau levels and
P; = 1/n.¢ in the case of spin degenerate levels whéres the flux quantum.

PACS numbers: 71.18.+y

The de Haas—van Alphen (dHvA) oscillations of sus-which is independent of the band structure according to
ceptibility as a function of the inverse magnetic fiéldf  the following simple argument. In aultiband metal
are well studied both experimentally and theoretically [1].the Landau levels (LLs) will be occupied sequentially
The frequency of the oscillations is proportional to the ex-depending on their energy. The number of electrons which
tremal cross section of the Fermi surface. Therefore, ithe LL can accommodate is always equaptd, wherep
the multiband metals one would expect several differenf= e¢/2w/ic) is constant, i.e., it does not depend on the
dHVA periods corresponding to the independent contribueharacteristics of the band. It means that the population
tions of different bands [1-3]. The dHVA effect in closed of the LLs in multiband metals with field in the canonical
and open systems was analyzed by Dingle back in 195&nsemble is equivalent to that of a one-band metal. The
[4] with the conclusion that there is practically no differ- individual bands will then, generally, show up in an
ence because the dependence of the chemical potential oriensity of peaks in susceptibility resulting in additional
the magnetic field, in the case of fixed, is very weak. oscillations of the moment and susceptibility superimposed

In this Letter we show that while this is true for three on the fundamental one. However, the main Fourier
dimensions and (or) for the relatively large damping ofcomponent will be the fundamental one with frequency
Landau levels, the dHVA effect is qualitatively differentin 1/P;. On the other hand, in the open system this Fourier
the near two-dimensional (2D) multiband canonical Fermicomponent is absent or significantly suppressed compared
liquid compared with the grand canonical ensemble if thewith the individual band oscillations. The conditions for
damping is relatively weak [5]. the observation of the fundamental frequency seem to be

If we keep the total number of electrons per area, only marginally stricter, due to its relatively higher value,
in the near 2D metal fixed, the chemical potential will than those for the ordinary dHVA effect, and it should be
oscillate with inverse magnetic field/H. These oscil- observable in near 2D electrically insulated specimens.
lations are responsible for a new fundamental period in the It turns out that it is quite difficult to obtain the
two-band or multiband Fermi liquid. The value of the pe-fundamental frequency in multiband metals with the use
riod can be evaluated by using a simple dHVA resonancef the standard Poisson summation formula. In what
condition. There are no partially occupied Landau leveldollows, we shall therefore consider first the case of a
at the resonance. In two dimensions each of the Landaclean 2D metal at zero temperature with (i) the total
levels can be occupied byH carriers per cy where number of electrons being fixed and (i) the chemical
p = 1/2¢ ifthe levels are spin split, and = 1/¢ ifthey  potential u being fixed (i.e., the metal is well connected
are notgp = whc/eisthe fluxquantum). Thenthe dHvVA to some “reservoir” of electrons). Then we shall estimate

resonance condition for fixed, is the effect of the broadening of the Landau levels.
e(H+ AH)(N — 1) Let us consider a two-band 2D metal with different

Yfic = Ne> (1) band masses, where the bands are split into series of
whereN = 1,2,3,...is determined by Landau levels (Fig. 1),

eHN (2) Gl‘(l’l) = A,‘ + hw,-(n + %), n=201,..., (4)

=n,.

2mwhe where i = 1,2 is the band index, andv; = eH /m;c
Combining Eq. (1) and Eq. (2) we obtain the fundamentals the cyclotron frequency. Each level is degenerate,
dHVA period containspH states, and is broadened by collisions with

Py — ya ®) impurities into a Lorentzian with Dingle width-7/7

: ne’ [4]. We shall assume that/7r < hiw, and describe
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E with a similar equation when the partially occupied LL
belongs to the second band; the moment is found from
M = —dE/dH. We are interested in the semiclassical
regime, where the total number of occupied Landau levels
is large, Ny = n./pH > 1, as well as the number of
occupied LLs in each band,

m;c 1
Ni=|— —A)— = |>1. 8
= - a0 - 5 ®
The chemical potential is pinned to the partially occupied
LL and oscillates about thmeanvalue @ = 27 /%n, +
0 > .m;A;)/ Y m;, which is field independent.

. . . (il) Grand canonical ensemblg, = const. In that case
FIG. 1. A schematic representation of the electronic structur S . . .
of a multiband near 2D metal. The two bands correspondinghe Pe”OF’ is defined by the condition of thel‘ LL crossing
to heavy and light carriers with the offsét are shown. In the Fermileveluy = A; + (e/iH/m;c) (N; + 3), and we

an external magnetic field the bands split into a series ofind that the oscillations have independent periods
Landau levels whose population depends on the position of the

chemical potentiaj. p. — e 1 )
Y omie p— A

the situation where thév; levels in the first band and with the ratio

N, levels in the second band are occupied, and the last

Landau level in the first band is partially occupied by P mj(p — 4)) _ E
xpH electrons, where = n,/pH — [n./pH],0 < x < P omi(p —A) s
1, and[a] stands for the integer part af

Let us now consider canonical and grand canonicaYv.hereSi IS the_area of Landau Orp't in a plane perpen-
ensembles. dicular to the field. We see that if there were no band

(i) Canonical ensemblén, = cons). Generally, the offset, the ratio of the periods would have been given by
orbital moment is found fror; ’ 4 the ratio of inverse masses. If the Dingle temperature is
much smaller than the interlevel spacing, the total energy

(10)

M= _<£> will be given by Eq. (7) without the term containing It
oH )71y is interesting to note the existence of a simpilen rule
o relating individual and fundamental dHvA frequencies
2kgT aG(e, H _
= =2 f deimTr G 10 pwmarry, L

v —o0
— = 11
5) Z P; Py -

whereG is the electron Green’s function which accounts The moments calculated for two cases with= 0.4 X
for collisions [6], and the chemical potential is defined 10 cm™2, m;:m, = 1:4, and A, — A, = 13 meV are
by the conservation of the total number of electrond7].  presented in Fig. 2. It is seen that there is a vast
In the multiband case for a clean metal it would amount tajifference between the two regimes. In grand canonical
a rather complicated nonlinear equation if we were to applgensemble & = const) the total moment is a sum of
the standard Poisson summation formula. To elucidate thgvo periodic contributions coming with different periods,
physics, we shall consider first the limiting case of zerowhereas in the canonical ensemble the moments in the
temperature in the clean limit. By counting the number ofpands follow the fundamental period and change in
electrons in the Landau levels we obtain antiphase following the progressive occupation of the
o LLs with decreasing field. Although the fundamental
Ny = DpH + xpH + NopH = ne, ©6) period mirrors the level occupatian the resulting total
with a similar relation when the LL in the second bandmoment shows a very complicated behavior which reflects
is partially occupied. Then we immediately have for thethe individual periods with the ratio given by Eq. (10).
period of the dHVA oscillationsP; = 1/H — 1/(H + The reason for this irregularity of the field dependence
AH) = p/n,., i.e., the same fundamental period as weof the moment (kinks occurring when the current LL
have found before, Eq. (3), which ihe same for all is only partially filled) is thecrossing of the Landau
bands For the energy we have, if the partially occupiedlevels belonging to different bands which can only occur

LL belongs to the first band, when simultaneoushyA; # A; and m; # m;. This is
Ni—1 N, because the energy levels in the light band move faster
E = He(n)) + xpHe (Ny) + Her(ny), with the field and occasionally the partially occupied LL
an::OP o pH&aN, HZZZOP 2lna) in the light band sinks below the highest occupied LL

(7) in the heavy band and leaves it only partially occupied.
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FIG. 2. (a) The dHVA oscillations in the canonical ensemble

with two undamped bandsp;:m, = 1:4 and A, — A| = FIG. 3. The Fourier transform of the moment in (a) the
13 meV, at the surface density = 0.4 X 10" cm™2. Arrows  canonical ensemble and (b) the grand canonical ensemble. In
indicate the points of Landau level crossing (see text). Boldpanel (a) note the clearly resolved components of the light band
line: total moment, dotted and dashed lines: partial bandL and the second harmonic2), the heavy bandH), and the
contributions. Partial contribution is scaled down to fit into fundamental period and its higher harmoniés ¢2, and F3).

the figure. (b) The dHvA oscillations in the grand canonical The sum rule for the dHvA frequencies holds:+ H = F.
ensemble with the same parameters. Bold line: total momenfundamental frequency equdis= 1/P, = 1.65kT. Panel (b)
dotted line: light band, and dashed line: heavy band. In theshows standard individual harmonids &4nd /) with much less

top panel the filling fraction: of the partially occupied Landau weight in the combined harmonic.

levels is shown.

with the result that pinning of the chemical potential at the

This results in discontinuous changes in the moment angartially occupied LL vanishes and only teandardone-
susceptibility. The total moment in canonical ensembleband period,? = p/n;, remains. The reason for this is
oscillates about zero [Fig. 2(a)], similarly to a one-bandthat the second band would work as a reservoir of electrons
2D metal [1]. In the grand canonical ensemble there igor the first band and canonical and grand canonical
a steady flow of electrons into the system with reducingensembles would become indistinguishable. The same is
field resulting in an overall monotonous change of thetrue if there is a significant background in the density of
absolute value of the moment [Fig. 2(b)]. states. It sets standard constraints for the observation of the

The Fourier transform of the total moment (Fig. 3) in fundamental period: makzT, 7/7;) < min(fiw;), which
the canonical ensemble shows the rich structure of theould be met in clean samples at low temperatures. We
Fourier components. The light) band shows up at have also performed the calculation for a more realistic
low frequency with an intensive second harmoni@) model of Landau levels with finite width’; and obtained
and has a weight much larger compared to the heavgimilar results. The fundamental period is seen in systems
(H) band which gives a signal at higher frequency.obeying this condition and disappears with increasing
The fundamental periodF() has the largest weight and width I';. In three dimensions each LL develops into
intensive secondFA2) and third ¢3) harmonics. It is a band in such a way that the density of states has a
easily seen that ousum rule(11) holds:L + H = F  smooth background weakly depending on energy/[).
(= 1.65kT in our example). Consequently, the difference between the two ensembles

It is important to consider a situation when the LLs disappears with increasing dimensionality. We expect,
in one band (second, for certainty) are strongly smearetherefore, a new fundamental peridg to appear when
out. Then if the Dingle temperature [4] for the secondn, is fixed; the damping of the Landau levels is relatively
band is bigger than the LL separation in the first bandsmall and the background density of states is negligible.
h/T > hwi, the second band can be viewed as a uniform It is worth noting that the magnetic interaction of elec-
background density of states,(E) = const, for the series trons in different bands could lead to the appearance of a set
of the LL in the first bandy(E) = pH Y , 8(E — E,), of combined harmonics like.f; + nf,, wheref; = 1/P;
where v;(E) stands for the density of states. One canis the dHVA frequency associated with thié band and
easily write down the equation for in this case and m andrn are integers (Shoenberg effect) [8,9]. Formally
apply the Poisson formula to sum over the occupied LLsthese harmonics would contain the fundamental frequency
This equation can then be solved by successive iteratiorss well. It is, however, easy to distinguish between the
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Shoenberg effect and the effect described here in experi{2] L.D. Landau and D. Shoenberg, Proc. R. Soc. London A

ments on insulated and noninsulated samples. In addition, 170 341 (1939).

if the magnetic interaction is important, the low frequency [3] I-M. Lifschitz and A.M. Kosevich, Zh. Eksp. Teor. Fiz.

difference,| fi — f»|, may appear as a real oscillation in 29, 730 (1955) [Sov. Phys. JETE 636 (1956)].

addition to higher frequencies. One may then expect al4l '(Ql'gBS'l)D'”gle' Proc. R. Soc. London 211 500, 517

characteristic amplitude-modulated signal [9]. : . .
The difference between canonical and grand canonical[s] In a one-band 2D metal the dHvA effect in canonical

and grand canonical ensembles has been analyzed by
ensembles could be relevant for results of recent dHvVA D. ShoenbergMagnetic Interactions in a 2D Electron

measurements on near 2D,BuQ, [10]. Three dHVA Gas, Symposium in memory of T.D. Holstein, Condensed
frequencies o8.05kT, 12.7kT, and18.5kT with the ratio Matter Physics (Springer, Berlin, 1987), p. 129, who
being surprisingly close tb:4:6 have been found [11]. If showed that there are opposite slopes of magnetization

they are the genuine frequencies corresponding to three as a function of the fieldy = M(H) in these ensembles
bands as given by band calculations, the fundamental but the Fourier transforms are very similar. In our case

frequency is expected to b@t.25kT. If, on the other of a multiband metal the Fourier transforms aliéferent
hand, we consider only the first two frequencies as being ~ (Fig. 3). The difference between the two ensembles is
genuine, the fundamental one would bd %F5kT’, which also noticeable in other situations, such as for disorder-

is somewhat smaller than the third measured frequency g’;ieTok:I?ngaerzggeET ”Efs?lsuclgf'i(”'ég;:r?da%a\r('tulmr(:/OtS'

of 18.5kT. It would be interesting therefore to go into Phys. Rev. Lett66, 88 (1991)
the region of abouB5kT to look for the fundamental [6] YU A Bychkov Sov. Phys. JETR2 977 (1961).

dHVA frequency in SfRuQ;, and also to compare the [7] The same expression for the moment holds for the grand

dHvVA effect in eleCtrica”y insulated and noninsulated canonical ensemble, Wherﬂ = const and the electron
samples. densityn, oscillates.
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[1] D. ShoenbergMagnetic Oscillations(Cambridge Univ. per arean, = f/(2¢) = 0.242 X 10" cm™* [Eq. (3)].
Press, Cambridge, 1984). The corresponding energy uniti8n,/m = 18.4 meV.
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