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Two-Dimensional Electron Magnetohydrodynamic Turbulence
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A novel type of turbulence, which arises in 2D electron magnetohydrodynamics, is studied by
numerical simulation. Energy dissipation rates are found to be independent of the dissipation
coefficients. The energy spectruti follows the basic Kolmogorov-type predictioris,>/? for kd, > 1
andk~7/3 for kd, < 1 (d, is the electron inertial length) and is hence independent of the linear wave
properties. Results are compared with other 2D turbulent systems.

PACS numbers: 52.35.Ra, 47.27.Eq, 52.30.—q

Two-dimensional turbulent systems have recently at- As in the case of 2D incompressible MHD the 2D
tracted considerable attention, notably in Navier-Stoke€EMHD equations can be written in terms of two scalar
theory (e.g., [1,2]), magnetohydrodynamics (e.g., [3]),quantities, the flux function describing the magnetic
and the Hasegawa-Mima equation (e.g., [4,5]). Aparfield in the plane (or poloidal fieldp = % X Vi, and
from their relevance for modeling important predom-a stream functioney describing the poloidal electron
inantly two-dimensional phenomena, such 2D systemfiow 7 = 2 X Vo, which is proportional to the poloidal

are also interesting in their own right. Because ofcurrent density, hence gives the out-of-plane or axial
the presence of several ideal invariants 2D turbulentield fluctuationy = 8B.,

systems exhibit both direct and inverse spectral cascades S rYE I T N
the latter giving rise to large-scale self-organization. Here O =de)) + 0 -Vl = d, ) po(=V", (D)

we present results on a novel 2D turbulent system, at(gp—dga)—dgi; . Va+§~Vj= —u, (V)"
2D electron magnetohydrodynamic (EMHD) turbulence.

EMHD [6] provides a fluid description of the plasma (2)
behavior on scales below the ion inertial lengtfw ,;, j= Vzlﬂ, a = VZQD.

where the plasma dynamics is governed by electron flow. h i iten | di onal f
and their self-consistent magnetic fields, while the jons' ''¢ €quUalions are writteén in nondimensional form us-

form a static charge-neutralizing background. Special in'Nd the unitsL is the typical macroscopic spatial scale,

terest in EMHD has arisen to model collisionless recon?* — (d:Q1,)"" is the so-called vv_hlstlertlme, Whed@. _
nection, which appears to be the origin of strong magnetié/“’!’eL’. Q? - EB"(mec’.andB" is the typlcal (poloidal)
activity in nearly collisionless plasmas such as the solaff@gnetic field. - [Since n E.MHD the ions are assumed
corona and the Earth’s magnetosphere. mﬂmtejy hea\_/y, the Alfyen_ timery — c cannot be useq
3D EMHD simulations have revealed that strong tur-2s a time unit.  For finite ion mass we have the relation
bulence is excited by the current density gradients in théw = tAL/(C/“’P.")'] . The _den3|ty_ IS ass_umed constant
reconnection region, which gives rise to anomalous elec? — "0 = 1, which is consistent with the incompressibil-
tron viscosity [7]. However, 3D turbulence simulations ity Of the electron flowv - o =V - j = 0. Including a
are still rather limited in spatial resolution. 2D EMHD finite density gradient gives rise to interesting effects in
simulations of the coalescence of two magnetic flux bunlow density plasma opening switches, see, e.g., [6,9], but
dles show [8] that the reconnection rate is independeruch effects will not be considered in the present paper.
of the smallness parameters of the system, i.e., the elefY€ have also introduced generalized dissipation opera-
tron inertial lengthe/w . and the dissipation coefficients. t0rs With» = 1 corresponding to resistivity ane = 2 to
For sufficiently small values of the latter strong turbulence®!€Ctron viscosity. The ideal invariants of the system (1)
develops also in the 2D system. In this Letter freely de2nd (2) are
caying 2D isotropic homogeneous EMHD turbulence is 1 2 2 T 21 2
investigated by high-resolution numerical simulations, re- E= 2 ]{(W) ot + d L)+ (Ve)lhdx, (3)
vealing a number of very interesting properties, which dif- s
fer from those in previously studied 2D systems. H = [f(‘p —d;j)dx, (4)
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_ 2 N (o — g2 g2 After an initial relaxation, corresponding primarily to

K (¢ = dealg’(y = dej)d’x, ®) the buildup of small-scale dissipative mode amplitudes,
where f and g are arbitrary functions. In turbulence the system soon reaches a self-consistent turbulent state.
theory the quadratic invariants are most important leading'he energy dissipation rate= —dE /dt rapidly increases
to the choicef (x) = g(x) = x2. Expressions (3)—(5) are up to a maximum value. Subsequently the turbulence and
generalizations of the corresponding ones in 2D MHD hencee decay in a self-similar way. An important result
As in MHD one expects a direct cascade of the energys that ¢ is independent of the dissipation coefficient, as
and an inverse cascade of the (generalized) mean squasieown in Fig. 1, where the time evolutiarny) is plotted
magnetic potential{. Equations (1) and (2) are more for different values ofu;. Figure 1(a) refers td, = 0.3.
complicated than 2D MHD, containing the inherent scaleShown are three caseg; = 1078 (dashed line),107°
lengthd,. Hence one has to distinguish between the long{dash-dotted line), and a case starting with®, switching
wavelength regimekd, < 1 and the short-wavelength to 107 at+ = 0.5 and t0107!° at r = 1.0 (solid line).
regime kd, > 1, though certain properties are found to Turning downu 5 the system responds by exciting smaller

be uniformly valid. scales, so that the dissipation rate soon reaches the previous
Linearizing Egs. (1) and (2) about a constant magnetitevel. Figure 1(b) gives similar plots faf, = 0.033. The
field yields the dispersion relation dashed curve correspondsue = 108, switches tol0~°
w = *kkyd>Q./(1 + d*k?), (6) atr=05and10"'%atr = 1. Atr = 1.4 ujis switched

to 10! (dash-dotted line).
_ . The energy dissipation rate, however, dependsd oas
ei = ki, (7) s clear comparing Figs. 1(a) and 1(b). We fint) =

valid independent of k. Hence the magnetic field inthe (1/4,)E((¢/d,), i.e.,E(t) = Ey(t/d,). This behavior can
large energy-containing eddies gives rise to a coupling ope derived from Egs. (1) and (2) in the lardglimit. For
the small-scale poloidal and axial field fluctuations, suchsmall d,, (¢) should be independent af, as is, in fact,
that these tend to behave as whistler waves, which we casbserved by comparingwith d, = 0.033 andd, = 0.01
call the whistler effect in analogy to the Alfvén effect (not shown in Fig. 1).
in MHD turbulence [10]. Contrary to Alfvén waves, The energy spectrunky, defined by E = [ E; dk,
however, whistler waves are dispersive with large grougexhibits different power laws fokd, > 1 andkd, < 1.
velocity v, « k for kd, < 1 and vy =0 for kd, > 1. |n the former range we find an almost exact Kolmogorov
Hence the whistler effect should be strongestAdr =  spectrum, as shown in Fig. 2(a). Evaluating different
1. Because of the dispersion properties EMHD cannoturbulent states we obtain the proportionality constant,
be written in terms of the whistler variables; + ki o 2/3,-5)3 e
as is done in MHD by introducing the Alfvén wave Ep = Ce"k 7, C=18=x0.1. (8)
variables;™ = ¥ * B, the so-called Elsaesser fields. In Since in the rangéd, > 1 time scales associated with the
the latter case the MHD equations show explicitly thatlinear whistler mode interaction become longer than the
only counterpropagating Alfvén waves couple, which isnonlinear eddy scrambling time, the Kolmogorov energy
the formal basis of the Alfvén effect leading to the’>  transfer process should dominate leading to the spectrum
energy spectrum [3,10].

Equations (1) and (2) are solved on a quadratic box
of size 27 X 27 with periodic boundary conditions, {g-1
using a pseudospectral method wWNR collocation points
and dealiazing by the /3 rule. N is chosen such as to
provide adequate spatial resolutioM, varying between
512 and 4096. Initial conditions aré; = exp(—k?/
2k§ + iay), or = exp(—k%/2ki + iB;), where k% =
k} + k3, key = *1,%2,..., a1, B; are random phases,
and the dominant initial wave number kg = 5. We
consider both the case of large ~ 1 and smalld, < 1.
In both cases the initial spectrum is concentrated on
the lowerk side, giving primarily rise to direct cascade
processes, though the inverse cascadd o also clearly i
visible. Concerning the dissipation operators we usually '
chooser = 3 in order to concentrate dissipation at the 10"50 : 1 2 :'3 = 10—30 0'5 1'0 s ho
smallest scales. Far = 2 results are found to be very t ’ ' B
similar, while » = 1 corresponding to a friction term at @) (b)

high & is in general not sufficient to prevent the formationFiG. 1.  Energy dissipation rates for different valuesuaf for
of singular current density gradients. details see text. (a), = 0.3; (b) d, = 0.033.

which corresponds to whistler waves coupligigand ¢,
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T T T T T TS the rangekd, < 1, where wave propagation effects are
(@) strong, they do not dominate the spectral transfer process,
though they are sufficient to establish quasiequipartition
of poloidal and axial field energies?|yi|> ~ |@|* in
this range.

The most conspicuous spatial structures are those of
and a on the dissipation scalg, < d,.. Starting from
a smooth configuration current and vorticity sheets of
length d, and width [, are generated. As discussed
in a previous paper [8] these are different from Sweet-
Parker sheets in resistive MHD; in particular, the outflow
velocity vy equals the axial current density in the sheet,
kdg =1 the change of the magnetic field across the sheet being
R T R negligible. Hence the strongly collimated outflow along
the sheet is Kelvin-Helmholtz unstable, which is the
origin of the strong turbulence in 2D EMHD. Long
sheets break up into shorter ones, thereby spinning off
monopolar vortices. The fully developed turbulence [see
Fig. 3(a)] is characterized by double layer vorticity sheets
and isolated circular monopolar vorticity eddies, both of
which are constantly annihilated and reformed. While 2D
MHD turbulence consists of microcurrent sheets alone,
2D Navier-Stokes and HM turbulence consist of isolated
vortices. Though at small scales the Lorentz force term
B - Vj in Eg. (2) is much smaller than the convective
term v - Va, it is nevertheless important as a source of
Kd. =1 yortipity. Switchir?g' off this term in the state §hown
1072 T T in Fig. 3 the vort|C|ty_ sheet_s rapidly de_cay Ieavmg_the

1 10 102 103 system in a weakly dissipative state of isolated vortices,
k which is characteristic of 2D Navier-Stokes turbulence.

In conclusion, we have presented a novel turbulence

system, that of 2D EMHD. The most important results are

107"

1072

1073

1074

T lIIII|T| LBLRRRLL I|!I|'|T[ NI . TTTTH

R RETI IR RTIT B AR NI M AR NI AT

1075 L

10 T T TTTI T IIIIII|' T TTTTT

T T TTTTT

—

o

N
[

Ek k7/3

T T
Lol

1071

IR

FIG. 2. Compensated energy spectra:k®@JE, for d, = 0.3;
(b) K3E, for d, = 0.01.

(8). It is noteworthy to point out that this spectral law
is found to be valid for the entire rand&, > 1 and not
only asymptotically forkd, > 1.
In the opposite caséd, < 1 the energy spectrum is

somewhat steeper [see Fig. 2(b)],

Ep < k™% a=225%0.1. (9)
This spectral law can be compared with theoretical
predictions. Neglecting the whistler effect we can use a
Kolmogorov-type analysis. The eddy interaction time for
eddies of scaléis 7, = I /v, ~ I*>/¢;. Hence the energy
transfer rate becomes ~ E;/1; ~ qol3/12, from which
follows E; ~ £2°k~7/3, using Ex = k2|yil® + loxl? ~
lox|?>. If on the contrary the whistler effect is dominant,
the energy transfer, consisting of many weak encounters
of oppositely traveling wave packets, is reduced leading to
a flatter spectrum, which can be obtained in the following
way. The whistler interaction time is, ~ /v, () ~ %/
d>Q,. During this time the energy change isE; ~
ei1, /7, while the energy transfer time isg ~ (E;/ Hed e
AE)’r, ~ 2d2Q,/¢}. Hencee ~ ¢2/1p ~ o} /12d2Q), | : s
and finally E; ~ (sd2Q,)"/?k2. The simulation result FiG.3. Grey-scale plots ofi for a typical fully developed
(9) tending toward the~7/3 law indicates that even in turbulent EMHD state.
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