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Nonlinear Dynamics of a Driven Mode near Marginal Stability
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(Received 18 September 1995)

The nonlinear dynamics of a linearly unstable mode in a driven kinetic system is investigat
determine the saturated fields near the instability threshold. To leading order, this problem re
to an integral equation with a temporally nonlocal cubic term. Its solution can exhibit self-sim
behavior with a blowup in a finite time. When blowup occurs, the mode saturates due to pl
formation arising from particle trapping in the wave. Otherwise, the simplified equation gives a re
solution that leads to a saturation scaling reflecting the closeness to the instability threshold.

PACS numbers: 52.35.Qz, 52.35.Mw, 52.40.Mj
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In previous works [1–4], we have considered the no
linear evolution of kinetic systems maintained by a ba
ance of sources and relaxation processes that give rise
distribution function with “free energy” [5,6] available to
excite waves in a background medium such as a plas
The instability mechanism is due to particles res
nantly interacting with weakly unstable discrete mode
for which the linear growth rateg is much less than
the mode frequencyv. We assume thatg ­ gL 2 gd ,
wheregL is the kinetic drive in the absence of dissipatio
andgd is the intrinsic damping rate from the backgroun
plasma. Thus instability arises whengL . gd. In anal-
ysis given in past work it was assumed thatgd ø gL.
The purpose of this Letter is to discuss the nonlinear ch
acter of this problem whengdygL , 1, with particular
emphasis given to the case near the instability thresh
whengL 2 gd ø gL.

In the presence of a wave of finite amplitudeA
resonant particles undergo nonlinear oscillations at
characteristic frequencyvB that is proportional toA1y2.
These oscillations cause mode saturation due to the ph
mixing of resonant particles that produces a local plate
in the resonance region of the distribution function as fi
discussed by Mazitov [7] and O’Neil [8]. For the specifi
one-dimensional bump-on-tail instability withgd ­ 0, it
has been found that the maximum ofvB is 3.2gL [9,10]
for the initial value problem without particle source
and sinks.

We now consider the casegdygL , 1 for the bump-on-
tail problem. The results can be readily generalized
more general kinetic systems. We restrict the discuss
to the case of isolated resonances, in whichvB is less
than the frequency separation between the resonan
For deeply trapped particles in the bump-on-tail proble
vB ­ sekÊymd1y2 whereÊ cossvt 2 kxd is the perturbing
longitudinal electric field. Using the particle simulatio
code described in Ref. [4], we have determined t
maximum of the ratiovBysgL 2 gdd as a function of
gdygL for the initial value problem and found that thi
ratio hardly changes asgdygL is varied (the ratio varies
from 3.2 to 2.9 asgdygL varies from 0 to 0.6). This result
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implies that the particle distribution in the finite amplitud
wave is only significantly altered from the unperturbe
case in a region about the separatrix width. In th
region the distribution “mixes,” causing the formation o
a plateau with the simultaneous conversion of the parti
free energy into wave energy so thatvB , g, which is
the “natural” saturation level for pulsating cases whic
arise in the presence of a source and sufficiently stro
background dissipation. However, even thoughvB , g

is a valid estimate, the simulations reveal an addition
interesting feature. This can be observed in Figs. 1
and 1(b) which show the evolution of the wave amplitu
in the initial value problem as a function of time fo
the casesgdygL ­ 0.05 and0.6, respectively. Note that
the former case can be described by a predomina
single pulse of one sign with relatively small modulation
during the decay phase of the pulse, an expected respo
However, in the casegdygL ­ 0.6 the amplitude versus
time has deep modulations and reverses sign with

FIG. 1. Time evolution of the normalized wave amplitud
Enorm ; eÊkymsgL 2 gdd2 in kinetic simulations of the
bump-on-tail instability in the presence of background dam
ing: (a) low-damping rategdygL ­ 0.05 and (b) damping rate
comparable to the kinetic growth rategdygL ­ 0.6.
© 1996 The American Physical Society
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highest maximum not immediately arising, a surprisi
result which we will discuss below.

Wheng ; gL 2 gd ø gL one can expect to develo
an analysis based on the closeness to marginal stab
For the sink that balances a constant source of parti
we choose a particle annihilation model withn the annihi-
lation rate. We will assumen , g and that the relevan
nonlinear time scalet , 1yg is shorter thanv

21
B , the

characteristic time it takes a trapped particle to comp
a period. Hence we develop a perturbative analysis ba
on small deviations of the particles from their unperturb
orbits; formally we generate an expansion in the small
rametersvBtd2. Below we show that this procedure lea
to the prediction of a steady state mode amplitude gi
by vB ­ 81y4nsgygLd1y4 which satisfies our assumptio
that vBt is small. This steady solution is only stable f
n . ncr ; 4.38g. For smallern values the amplitude is
found to oscillate in time (close to the steady state on
ncr 2 n ø ncr). However, whenn is sufficiently small,
it is found from numerical integration and verified with
self-similar solution that the solution of the perturbative
derived equations blows up in a finite time. In reali
this singular behavior leads to a level where the per
bation method fails. Saturation is then due to the natu
saturation mechanism, where the distribution function fl
tens about the separatrix whenvB rises to the level tha
it is ,g.

To begin the analysis we use a perturbative pro
dure to solve the equation for the distribution fun
tion Fsx, y, td in the presence of an electric field,E ­
Êstd cosskx 2 vt 1 ad,

≠F
≠t

1 y
≠F
≠x

1
e
m

Êstd3

cosskx 2 vt 1 ad
≠F
≠y

1 nF ­ Ssyd , (1)

wheree and m are the particle charge and mass, resp
tively, a is a phase which can be shown to remain co
stant in our problem, andSsyd the source of particles. We
will write F as a Fourier series

F ­ F0 1 f0 1
X̀
n­1

f fn expsincd 1 c.c.g , (2)

whereF0 ­ Ssydyn is the equilibrium distribution when
Ê ­ 0 andc ; kx 2 vt 1 a.

The evolution equation for the wave amplitude is d
termined by the condition that the time rate of change
wave energy≠WEy≠t is equal to the negative of the powe
dissipated into the background plasma22gdWE plus the
powerP the energetic particles transfer to the waves

P 7 2
ev

k

Z
dx dy Esx, tdFsx, y, td .

Note that for plasma waves the wave energy ta
g
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into account field energy and kinetic energy due
oscillations at the plasma frequency and is given
WE ­

R
dx E2sx, tdy4p where thex integration is over a

wavelength. Now using these relations, we obtain

≠Êstd
≠t

­ 2
4pev

k
Re

Z
f1 dy 2 gdÊstd . (3)

Thus we need to determine
R

dy f1 in terms ofÊstd from
Eq. (1) and substitute it into Eq. (3).

We assume thatF can be expressed as a power ser
in Estd and we can truncate terms at sufficiently highn
(we neglectn $ 3). With u ­ ky, the equations forfn

sn ­ 0, 1, 2d are

≠f0

≠t
1 nf0 ­ 2

v
2
B

2
≠s f1 1 fp

1 d
≠u

,

≠f1

≠t
1 iuf1 1 nf1 ­ 2

v
2
B

2
≠sF0 1 f0 1 f2d

≠u
, (4)

≠f2

≠t
1 2iuf2 1 nf2 ­ 2

v
2
B

2
≠f1

≠u
1 O sv2

Bf3d ,

where v
2
B ; ekÊstdym. These equations are integrate

iteratively, assumingF0 ¿ f1 ¿ f2, f0 with the initial
conditionF ­ F0. It turns out thatf2 does not contribute
to the final result. By performing the time integratio
of Eqs. (4) we find

R
dy f1sy, td that reduces Eq. (3) to

the form

d
dt

v2
B ­ sgL 2 gddv2

Bstd 2
gL

2

Z t

ty2
dt0 st 2 t0d2v2

Bst0d

3
Z t0

t2t0

dt1 expf2ns2t 2 t0 2 t1dg

3 v2
Bst1dv2

Bst0 1 t1 2 td , (5)

where gL ­ 2p2se2vymk2d≠F0svykdy≠y. We rescale
our variables with the transformationst ­ sgL 2 gddt,
A ­ fv2

BysgL 2 gdd2g fgLysgL 2 gddg1y2, n̂ ­ nysgL 2

gdd. Equation (5) can then be written as

dA
dt

­ Astd 2
1
2

Z ty2

0
dz z2Ast 2 zd

3
Z t22z

0
dx expf2n̂s2z 1 xdg

3 Ast 2 z 2 xdAst 2 2z 2 xd . (6)

Note that n̂ is the only parameter appearing in Eq. (6
1257
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As long as the solution to Eq. (6) remains finite, th
amplitudeA for n̂ ø 1 will be a dimensionless and scale
free number, which implies thatvBysgL 2 gdd , s1 2

gdygLd1y4, which is smaller than the natural saturatio
level if 1 2 gdygL ø 1.

We find that Eq. (6) admits a constant solutionA0 as
t ! `,

A0 ­ 2
p

2 n̂2. (7)

We examine the stability of this solution by looking fo
solutions of the form

Astd ­ A0 1 dAen̂lt , (8)

wheren̂l is the eigenvalue and instability arises if Rel .

0. Substituting Eq. (8) into Eq. (5) leads to the dispersi
relation

n̂ ­
1
l

∑
1 2

8
s1 1 ld s2 1 ld2

2
1

s1 1 ld4

∏
. (9)

Instability is found to arise when̂n , n̂cr ; 4.38 (for
n̂ ­ n̂cr , we findl ­ 60.46i).

In Fig. 2 we show numerical solutions of Eq. (6) fo
various values of̂n starting with sufficiently small values
of A so that initially the nonlinear term in Eq. (6) i
unimportant. In Fig. 2(a), witĥn ­ 5 we see thatAstd
goes to the steady state value2

p
2 n̂2. With n̂ ­ 4.3, we

see in Fig. 2(b) that the solution pulsates periodically
time around the steady state level; analytically one fin
for ncr 2 n ø ncr that

Astd ­ 2
p

2 n̂2sss1 1 msn̂cr 2 n̂d1y2

3 coshf2.01 1 bsn̂cr 2 n̂dgtjddd

with m ­ 0.76, b ­ 0.8. For n̂ ­ 3, we see in Fig. 2(c)
that the oscillation amplitude exceeds the steady le
so thatAstd even changes sign. In Fig. 2(d), we sho
results of then̂ ­ 2.5 case where the oscillations hav
become irregular, indicating bifurcations to other perio
have taken place. In Fig. 2(e), forn̂ ­ 2.4, we see that
the system breaks into oscillations with decreasing peri
and with ever increasing amplitude.

This final behavior is predicted by a self-similar sing
lar solution of Eq. (6) that blows up in a finite time. Suc
a solution needs to have an oscillatory structure forAstd
as without oscillations, it is readily demonstrated that t
cubic term will stabilize the linear terms [e.g., this occu
in obtaining the steady solution given by Eq. (7)]. As th
blowup occurs very quickly,ÙA ¿ A, so that the first term
on the right-hand side of Eq. (6) is unimportant. We th
1258
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FIG. 2. Numerical solutions of Eq. (6) forAs0d ­ 1 and
various values ofn̂: (a) n̂ ­ 5.0, (b) n̂ ­ 4.3, (c) n̂ ­ 3.0,
(d) n̂ ­ 2.5, and (e)n̂ ­ 2.4.

seek a solution of the form

Astd ­ gsssa lnst0 2 tddddyst0 2 tdp , (10)

assumingn̂st0 2 td ø 1 and wheregsxd is a periodic
function ofx. The choice of this form enables us to hav
a balance betweenÙA and the nonlinear term in Eq. (6).
In particular, observe thatst0 2 td2s p11d factors from the
quantity

ÙAstd ­
1

st0 2 tdp11

∑
pg 2 a

≠gsxd
≠x

∏
.

The choicep ­ 5y2 allows st0 2 td2s r11d to be factored
from the nonlinear term as well. Thus the problem i
reduced to finding a periodic functiongsxd. We take
n̂st0 2 td ø 1 and use the fact that the expected solutio
diverges neart ­ t0. This allows us to extend the upper
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integration limits of Eq. (6) to infinity, giving

5
2

g 2 a
≠g
≠x

­ 2
1
2

Z `

0
dj gsssx 1 a lns1 1 jdddd

3
Z `

0
dh V sj; hdgsssx 1 a lns1 1 j 1 hddddgsssx 1 a lns1 1 2j 1 hdddd , (11)

where

V sj; hd ; j2ys1 1 jd5y2s1 1 j 1 hd5y2s1 1 2j 1 hd5y2 .

We look for a Fourier solution forgsxd of the formgsxd ­
1
2

P̀
n­0

sg2n11eis2n11dx 1 c.c.d, and we attempt to solve

this equation by iteration ing2n11. If we first neglectg2n11 for n $ 1, we find thata satisfies the equation

2
2a

5
­

R
`

0 dj
R`

0 dh V sj; hd fsinsln aa
1 d 1 sinsln aa

2 d 1 sin lnsaa
3 dgR`

0 dj
R`

0 dh V sj; hd fcossln aa
1 d 1 cossln aa

1 d 1 cos lnsaa
3 dg

, (12)
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where

a1 ­
s1 1 jd s1 1 j 1 hd

1 1 2j 1 h
,

a2 ­
s1 1 jd s1 1 2j 1 hd

1 1 j 1 h
,

a3 ­
s1 1 j 1 hd s1 1 2j 1 hd

1 1 j
.

Equation (12) admits the solutiona ­ 11.67. If the
iteration is carried out to the next order, the correcti
to a is less than 0.01, which indicates that the iterati
procedure leads to a rapidly convergent series. Note
the above solution is not unique. We have found th
Eq. (11) also has another solution that contains both
and even Fourier components, so that

gsxd ­
1
2

X̀
n­0

sgneinx 1 c.c.d .

For this solution,a is close to 6.1. Depending on initia
conditions, the system may asymptote to either soluti
In our numerical simulations we find that thest0 2 td25y2

divergence is robust, and the oscillatory behavior is fit
relatively well witha 7 6.1.

We also observed that even forn̂ . n̂cr we can find
a diverging solution of Eq. (6) if the initial amplitude i
large enough.

In summary, we have completed the understand
of the wave saturation mechanisms of isolated wea
unstable modes in kinetic systems destabilized by re
nant particles. The new element in this work is t
quantitative description of the dynamics near instabil
threshold. New scaling features have been found
n
n

hat
at
dd

n.
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both steady state and pulsating solutions. Surprising
we find that the system with a sufficiently weak sour
reaches the saturation levels that are expected fr
particle trapping, vB , gL 2 gd, even though the
dimensionless scaling of the equation would indica
that the saturation level should scale asvB , sgL 2

gdd s1 2 gdygLd1y4.
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