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Nonlinear Dynamics of a Driven Mode near Marginal Stability

H.L. Berk, B. N. Breizman,* and M. Pekker
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(Received 18 September 1995

The nonlinear dynamics of a linearly unstable mode in a driven kinetic system is investigated to
determine the saturated fields near the instability threshold. To leading order, this problem reduces
to an integral equation with a temporally nonlocal cubic term. Its solution can exhibit self-similar
behavior with a blowup in a finite time. When blowup occurs, the mode saturates due to plateau
formation arising from particle trapping in the wave. Otherwise, the simplified equation gives a regular
solution that leads to a saturation scaling reflecting the closeness to the instability threshold.

PACS numbers: 52.35.Qz, 52.35.Mw, 52.40.Mj

In previous works [1—4], we have considered the nonimplies that the particle distribution in the finite amplitude
linear evolution of kinetic systems maintained by a bal-wave is only significantly altered from the unperturbed
ance of sources and relaxation processes that give rise tacase in a region about the separatrix width. In this
distribution function with “free energy” [5,6] available to region the distribution “mixes,” causing the formation of
excite waves in a background medium such as a plasma.plateau with the simultaneous conversion of the particle
The instability mechanism is due to particles reso-free energy into wave energy so thag ~ vy, which is
nantly interacting with weakly unstable discrete modesthe “natural” saturation level for pulsating cases which
for which the linear growth ratey is much less than arise in the presence of a source and sufficiently strong
the mode frequencw. We assume thay = y; — y,, background dissipation. However, even though~ v
wherey; is the kinetic drive in the absence of dissipation,is a valid estimate, the simulations reveal an additional
and y, is the intrinsic damping rate from the backgroundinteresting feature. This can be observed in Figs. 1(a)
plasma. Thus instability arises when > y,. In anal- and 1(b) which show the evolution of the wave amplitude
ysis given in past work it was assumed that < y,. in the initial value problem as a function of time for
The purpose of this Letter is to discuss the nonlinear charthe cases,/y; = 0.05 and0.6, respectively. Note that
acter of this problem when,/y; ~ 1, with particular the former case can be described by a predominantly
emphasis given to the case near the instability thresholgingle pulse of one sign with relatively small modulations
wheny, — y; < yr. during the decay phase of the pulse, an expected response.

In the presence of a wave of finite amplitude However, in the case,/y; = 0.6 the amplitude versus
resonant particles undergo nonlinear oscillations at ame has deep modulations and reverses sign with the
characteristic frequency; that is proportional taa!/2.

These oscillations cause mode saturation due to the phase

mixing of resonant particles that produces a local plateau ¢ '2 Fr——T 7T T T T 77T (a)

in the resonance region of the distribution function as first
discussed by Mazitov [7] and O’Neil [8]. For the specific
one-dimensional bump-on-tail instability with; =0, it
has been found that the maximum @f is 3.2y, [9,10]

for th.e initial value problem without particle sources O T T T te 20 21 25 am 36
and sinks. AL

We now consider the casg;/y; ~ 1 for the bump-on-
tail problem. The results can be readily generalized to
more general kinetic systems. We restrict the discussion
to the case of isolated resonances, in whigch is less
than the frequency separation between the resonances. \\/
For deeply trapped particles in the bump-on-tail problem,
wp = (ekE/m)'/> whereE cogwt — kx) is the perturbing 0
longitudinal electric field. Using the particle simulation -yt
code described in Ref. [4], we have determined the

; ; _ ; FIG. 1. Time evolution of the normalized wave amplitude
maX|mL;m t?]f thgt_r?tloTB/(yL bl Ya) asd? fur:jcttlr(])nt ?k]: Enomm = e¢Ek/m(y, — y4)* in kinetic simulations of the
Vd_/n or the iniial value problem and found that this bump-on-tail instability in the presence of background damp-
ratio hardly changes ag;/y. is varied (the ratio varies ing: (a) low-damping ratev,/y; = 0.05 and (b) damping rate
from 3.2t0 2.9 ag/,/y; varies from 0 to 0.6). This result comparable to the kinetic growth ratg/y; = 0.6.
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highest maximum not immediately arising, a surprisinginto account field energy and kinetic energy due to

result which we will discuss below. oscillations at the plasma frequency and is given by
Wheny = y;, — y4 < y. one can expect to develop WE = [ dx E*(x,t)/47 where thex integration is over a

an analysis based on the closeness to marginal stabilitwavelength. Now using these relations, we obtain

For the sink that balances a constant source of particles

we choose a particle annihilation model witlthe annihi- IE(r)

lation rate. We will assume ~ y and that the relevant

nonlinear time scale ~ 1/y is shorter thanwz!, the

characteristic time it takes a trapped particle to complete

a period. Hence we develop a perturbative analysis baserhus we need to determinﬁdu fl in terms OfE‘([) from

on small deviations of the particles from their unperturbedeq. (1) and substitute it into Eq. (3).

orbits; formally we generate an expansion in the small pa- \We assume thak can be expressed as a power series

rameter(wp7)*. Below we show that this procedure leadsin E(r) and we can truncate terms at sufficiently high

to the prediction of a Steady state mode amplitude givef(ivve neg|ectn > 3) With u = kv, the equations fofn

by wg = 84 (y/y,)"/* which satisfies our assumption (, = 0, 1,2) are

thatwp7 is small. This steady solution is only stable for

v > v = 4.38y. For smallerv values the amplitude is

dTew n
0 T ke [ i - vk @)

found to oscillate in time (close to the steady state one if 9fo +oufy = — w_%e I(f1 + f1)

vee — ¥ K v). However, wherv is sufficiently small, ot 0 2 ou ’

it is found from numerical integration and verified with a )

self-similar solution that the solution of the perturbatively 9f1 +iuf + v = — wp I(Fo + fo + fZ)’ 4
derived equations blows up in a finite time. In reality 9¢ 2 du

this singular behavior leads to a level where the pertur- f w} of

bation method fails. Saturation is then due to the natural=2 + 2iuf, + vf, = — TB a—ul + O(wif3),

saturation mechanism, where the distribution function flat- ot

tens about the separatrix whery rises to the level that

itis ~y. _ _ where wj = ekE(1)/m. These equations are integrated
To begin the analysis we use a perturbative procejteratively, assuming?y > f1 > f», fo with the initial

dure to solve the equation for the distribution func-gconditionF = F,. It turns out thatf, does not contribute

tion F(x,v,t) in the presence of an electric fielé, = o the final result. By performing the time integration
E(t)cogkx — wt + a), of Egs. (4) we find[ dv f1(v, 1) that reduces Eq. (3) to
the form
21 L Eyx
ot 0x m

d t
. - wk = (yL — ya)wi(t) — % f dr' (t — ')’ wi(t)
cogkx — wt + a)a— + vF = S(v), (1) 12

v

t!
, X f dty exd—v(2t —t' — )]
wheree andm are the particle charge and mass, respec- 1
tively, a is a phase which can be shown to remain con- ) y
stant in our problem, an§i(v) the source of particles. We X op(t)opt’ +1 —1), (5)
will write F as a Fourier series

o where y; = 27%(e*w /mk*)dFy(w/k)/dv. We rescale
F=Fy+ fo+ Z[fn exp(iny) + c.c], (2) our variables with the transformations= (y; — y4)t,
n=1 A=[ws/(ye = vy /(ye = ya)1'2, p=v/(yL -

whereF = S(v)/v is the equilibrium distribution when va). Equation (5) can then be written as

E=0andy = kx — ot + «a.

The evolution equation for the wave amplitude is de- dA 1 (72 5
termined by the condition that the time rate of change of ;- ~— Alr) = 2 Jo dzz"A(T = 2)
wave energy WE/dt is equal to the negative of the power R
dissipated into the background plasmay,WE plus the [7_ ¢ R
power P the energetic particles transfer to the waves X dx exf =p(2z + )]

P#—QfdxdvE(x HF(x,v,1) XA =z = 0Ar =2z = x). (6)
p , LU, ).

Note that for plasma waves the wave energy takedlote thatp is the only parameter appearing in Eq. (6).
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As long as the solution to Eg. (6) remains finite, the 100 — T T (a)
amplitudeA for # < 1 will be a dimensionless and scale- 75 A J
free number, which implies thabg/(y, — y4) ~ (1 —

. . . 50 | -
va/ve)'*, which is smaller than the natural saturation

level if 1 — y,/yL < 1. 2 r <]
We find that Eqg. (6) admits a constant solutidp as 0 2 P TP I
T 80
A T T T v T ¥ T ¥ T T (b)
Ag = 2V2 9. ) T I
40 |
We examine the stability of this solution by looking for 20 | -
solutions of the form okt v v, T

70
A(t) = Ay + 8Ae™T, (8) 35

0
where? A is the eigenvalue and instability arises if Re> .35
0. Substituting Eq. (8) into Eq. (5) leads to the dispersion
relation

-70

70 (d)
. l _ 8 _ 1 35
v A[l 1+ @2+ A2 (1+/\)4] © 0

-35
Instability is found to arise whew < .. = 4.38 (for 70 b P R R——

P = b, we findA = +0.46i).

In Fig. 2 we show numerical solutions of Eq. (6) for
various values ob starting with sufficiently small values 500
of A so that initially the nonlinear term in Eq. (6) is 0
unimportant. In Fig. 2(a), withh = 5 we see that(r)
goes to the steady state vald2 2. With # = 4.3, we
see in Fig. 2(b) that the solution pulsates periodically in  ~'°%° 5 o s 20 28 30
time around the steady state level; analytically one find§_|G_ 2. Numerical solutions of Eq. (6) for(0) = 1 and
for ver — v < v, that various values of: (a) # = 5.0, (b) » = 4.3, (¢c) » = 3.0,

(d) » = 2.5, and (e)p? = 2.4.

1000

-500

Al = 2V20%2( + w(be — 9)'V?

X cog[2.01 + B(Per — P)]t})
seek a solution of the form

with w = 0.76, B = 0.8. For# = 3, we see in Fig. 2(c) A(t) = g(aln(ty — 1)/(tg — )P, (10)
that the oscillation amplitude exceeds the steady level

so thatA(#) even changes sign. In Fig. 2(d), we showassuming# (s, — ) < 1 and whereg(y) is a periodic
results of thep = 2.5 case where the oscillations have function of y. The choice of this form enables us to have
become irregular, indicating bifurcations to other periodsy palance between and the nonlinear term in Eq. (6).

have taken place. In Fig. 2(e), fér = 2.4, we see that |n particular, observe thdt, — r)~(?*1 factors from the
the system breaks into oscillations with decreasing periodguantity

and with ever increasing amplitude.

This final behavior is predicted by a self-similar singu- Alr) =
lar solution of Eq. (6) that blows up in a finite time. Such
a solution needs to have an oscillatory structureAGam
as without oscillations, it is readily demonstrated that theThe choicep = 5/2 allows (1, — t)~(»*V to be factored
cubic term will stabilize the linear terms [e.g., this occursfrom the nonlinear term as well. Thus the problem is
in obtaining the steady solution given by Eq. (7)]. As thereduced to finding a periodic functiog(y). We take
blowup occurs very quicklyd > A, so that the firstterm #(zp — 1) < 1 and use the fact that the expected solution
on the right-hand side of Eqg. (6) is unimportant. We thendiverges near = ¢y. This allows us to extend the upper
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integration limits of Eq. (6) to infinity, giving

5 ag

e
Je-agt = 3]0 dé gy + aln(l + &)

xﬁ:mvwmmu+amu+§+mmu+ama+%+n», (1)

where
V(Em) = €3/ + &P + & + )1 + 2¢ + )2,

We look for a Fourier solution fog(y) of the formg(y) = % > (gan+1€'@ VX + c.c), and we attempt to solve
=0
this equation by iteration ig,,+;. If we first neglectg,,+ for n = 1, we find thata satisfies the equation

2a  [odé [5dn V(& n)[sin(naf) + sin(nas) + sinin(a$)]

5 Jodé [5dnV(é n)[codinat) + codinaf) + coslnas)]’ (12)
where | both steady state and pulsating solutions. Surprisingly,
we find that the system with a sufficiently weak source
1+&8A+&+m) reaches the saturation levels that are expected from

- 1+2&+ 7 ’ particle trapping, wg ~ v, — y4, even though the

dimensionless scaling of the equation would indicate

4 — 1+ &0 +28+ 1) that the saturation level should scale ag ~ (y, —

2 1+ €&+ 7 : va) (1 = ya/y )4
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