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Measurements of Higher Order Photon Bunching of Light Beams
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A two-photon detection scheme is used to measure three- and four-photon correlations in a ligh
and study their time dependence.
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Photon correlations of light beams are intimately co
nected to source dynamics. They are characteristic
sources that produce them [1]. Thus while photons fr
thermal sources exhibit bunching [2], those from nonth
mal sources may exhibit antibunching [3]. Photon cor
lations are usually discussed in terms of the second o
intensity correlation functionkIstdIst 1 tdl, whereIstd is
the intensity of light beam and angular brackets indic
averaging with respect to the state of the field. The sec
order correlation function is proportional to the probab
ity of detecting two photons separated by an intervalt. It
is clear that even for uncorrelated photons there is so
finite probability, proportional tokIstdl kIst 1 tdl ­ kIl2,
of detecting a pair of photons separated by an intervalt. A
measure of intrinsic two-photon bunching is therefore p
vided by the correlation functionk2std ­ kDIstdDIst 1

tdlykIl2, whereDIstd ­ Istd 2 kIl represents deviations
of light intensity from the mean. Here and in what follow
we assume statistically stationary light beams. Similar
k2std, we can introduce higher order correlation functio
of light.

The third order intensity correlation functionkIstdIst 1

t1dIst 1 t1 1 t2dl is proportional to the probability of de
tecting three photons at timest, t 1 t1, andt 1 t1 1 t2,
respectively. Coincidences of third order include effects
three-photon chance coincidences, proportional tokIl3, and
two correlated photons in chance coincidence with a th
one, proportional to kIstdIst 1 t1dl kIst 1 t1 1 t2dl,
etc. After subtracting these contributions, we find t
intrinsic third order correlations are given byk3st1, t2d ­
kDIstdDIst 1 t1dDIst 1 t1 1 t2dlykIl3. Similarly, the
intrinsic fourth order correlations are given by the functio
k4st1, t2, t3d ­ kDIstdDIst 1 t1dDIst 1 t1 1 t2dDIst 1

t1 1 t2 1 t3dlykIl4 2 k2st1dk2st3d 2 k2st1 1 t2dk2st2 1

t3d 2 k2st1 1 t2 1 t3dk2st2d [4]. The zero-delay cor-
relations k3s0, 0d and k4s0, 0, 0d describe the degree o
intrinsic three- and four-photon bunching, respective
The zero-delay intensity correlations were measured
counting experiments based on single-photon detector
Chang and co-workers [5]. The accuracy of these m
surements of higher order correlations is limited by t
detector and electronic dead-time effects. This limitati
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becomes especially significant for fields that exhibit lar
intensity fluctuations [5,6]. Ironically, it is precisely for
this type of fields that measurements of higher order c
relations provide information that cannot be inferred fro
knowledge of lower order correlations.

Counting experiments do not allow us to determine t
time dependence of intensity correlations. The time d
pendence of intensity correlations is measured in delay
coincidence experiments [7–10]. Counting experimen
also require large count rates for measuring higher or
moments, whereas correlation measurements can be
ried out with relatively low (at least by a factor of1022)
count rates. The measurements of the time depende
of the third order correlation function were studied by se
eral workers [9,10] using single-photon detection schem
These experiments clearly underscore the increasing d
culty of measuring the time dependence of intensity cor
lations higher than the second order by these technique

In this paper we wish to describe a scheme based
two-photon detection of light that allows us to measu
third and fourth order intensity correlations. This schem
partly overcomes dead-time limitations and involves t
measurements of autocorrelation and cross-correlat
functions of the second harmonic and the fundamen
field. We demonstrate our method by measuring t
third and fourth order correlation functions of photon
in a laser near threshold. Our experiments also yie
the correlation times over which three- and four-photo
correlations persist. The method is applicable to a wi
range of experiments where higher order correlations
light play an important role.

Consider the generation of second harmonic (SH) lig
from a fundamental beam. The intensity of the SH bea
I2std is related to the intensityIstd of the fundamental beam
by

I2std ­ const3 I2std . (1)

Using this relation in the cross-correlation functionCstd ­
kI2stdIst 1 tdlykI2l kIl of the second harmonic and funda
mental light intensity, we immediately see that

Cstd ­
kI2stdIst 1 tdl

kI2l kIl
(2)
© 1996 The American Physical Society
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measures three-photon correlations of the fundame
beam. WritingIstd ­ kIl 1 DIstd in Eq. (2), and using
the definitions of intrinsic bunching of various orders, w
find

cstd ; Cstd 2 1 ­
2k2std 1 k3s0, td

1 1 k2
, (3)

wherek2 ; k2s0d. This equation shows that a measur
ment of the SH and fundamental cross-correlation funct
cstd yields the intrinsic three-photon correlation functio
k3s0, td. Similarly we find that the normalized second o
der intensity correlation function of second harmonic lig
Sstd ­ kI2stdI2st 1 tdlykI2l2 measures four-photon cor
relations of the fundamental beam. In terms of intrin
correlations it can be written as

sstd ; Sstd 2 1

­
4k2std 1 2fk2stdg2 1 4k3s0, td 1 k4std

s1 1 k2d2 , (4)

where we have used the symmetry propertyk3s0, td ­
k3st, 0d and k4std ; k4s0, t, 0d. Eq. (4) shows that a
measurement ofsstd together with the knowledge of lowe
order correlations yields degree of intrinsic four-phot
bunchingk4s0, 0, 0d.

An outline of the experimental setup is shown in Fig.
It consists of a folded standing wave single-mode He:
laser cavity [11]. A noncritically temperature phas
matched rubidium dihydrogen phosphate (RDP) crys
placed at the beam waist inside the cavity generates
light. Cavity mirrors are highly reflecting (.99%) at the
fundamental wavelength (632.8 nm) and highly transm
ting (.85%) at the second harmonic (316.4 nm). The fu
damental and its SH leaving the cavity are orthogona
polarized. They are separated by a polarizing beam s
ter. The SH and the fundamental beams pass through
filters and fall on two separate high gain fast photomu
plier tubes. The SH light is passed through a monochro
tor to further reduce background light. The output puls
from the photomultiplier tubes are fed to the two inpu
tal
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labeledA andB, of a digital correlator. For the measure
ments of the cross-correlation functioncstd we feed sec-
ond harmonic pulses to inputA and fundamental pulses to
input B. For measuring the second order intensity aut
correlation functionsstd or k2std only inputA is used. If
input A is SH we getsstd and if it is fundamental we get
k2std.

The correlator divides time into intervals of equal du
ration Dt. This time is referred to as sample time. I
our experiments it was of the order of2 ms. The number
of pulses occurring during each sample time is count
by a shift register counter. At the end of each countin
interval the counter shifts its contents into the first loc
tion of a 128-channel store-and-shift register. At the e
of the next counting interval the number in the first loc
tion is moved to the second location and the number
the counter is moved to the first location. This procedu
is continued until all 128 channels are filled. From th
stage on the same procedure is continued with the nu
ber in the last channel being discarded. Building of th
correlation function now begins. At the receipt of eac
pulse at inputA (when in autocorrelation mode) or inpu
B (when in cross-correlation mode) the contents of ea
location in the store-shift register are added to the conte
of corresponding memory location in the correlator mem
ory. Thus at the end of theith sample time in whichni

counts were recorded contents of memory locationj will
increase bynini2j . After Ns such samples the number in
thejth channel will beNs jDtd ­

PNs
i­1 nini2j . In prac-

tice, background light also contributes to counts in cha
nelsA andB. Let uA anduB denote the fractional signa
count rates in the two channels. If the sample time is sh
compared to the correlation time of the light andNs is
large, the numberNs jDtd in channelj is related to the
correlation function of light by

Ns jDtd ­ NsRARBsDtd2f1 1 uAuBlstdg , (5)

lstd represents the appropriate correlation function
k2std, cstd, or sstd. The correlator also records number
parate
d
plifier-
ics, and
FIG. 1. An outline of the experimental setup. NLC is the nonlinear crystal, PBS is a polarizing beam splitter to se
second harmonic from the fundamental, LF1 is a line filter centered at 632.8 nm, LF2 is a uv line filter centered at the secon
harmonic wavelength 316.4 nm, MONO is a monochromator, PMT is a photomultiplier tube, AMP-DISC represents the am
discriminator combination. Not shown are the electronic servo to stabilize the laser intensity, temperature control electron
the electronics for monitoring the fundamental intensity.
1237
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in 16 channels corresponding to delays of the order
1028 Dt. Since all correlations have decayed down
zero, the average number in these channels will simply

N` ­ NsRARBsDtd2. (6)

With the help of Eqs. (4) and (5) we can extractcstd,
sstd, and k2std from the experimental measuremen
Count ratesRA andRB were kept below 100 kHz. With
such low count rates dead-time corrections were fou
to be negligible. From the measured correlation funct
lstd we can introduce a correlation time

T ­
Z `

0

lstd
ls0d

dt , (7)

wherelstd ­ k2std, cstd, andsstd define the correlation
times T2, T3, and T4, respectively, for two-, three-, and
four-photon bunching. These times become a measur
the temporal extent of photon bunching of various orde

The measured correlation functions were fitted by o
or two exponentials. By extrapolating these fitted fun
tions to zero delay we immediately obtaink2s0d, cs0d, and
ss0d. The measured values ofk2s0d were used to deter-
mine the operating point of the laser characterized by
dimensionless pump parametera [6,11]. As a check the
operating point of the laser was also determined, indep
dently, by carrying out photon counting measurements
the fundamental. These two determinations of the ope
ing point yielded consistent results.

In comparing our measurements with the theoreti
predictions we have chosen to plotcs0d and ss0d which
are related tok3s0, 0d and k4s0, 0, 0d by Eqs. (3) and
(4), respectively. Both quantities are readily comput
theoretically. From the normalization it is clear thatcs0d
andss0d measure excess three- and four-photon bunch
relative to the two-photon bunching. The experimen
data are compared with theoretical calculations in Fig.
We see that both three- and four-photon bunching
prominent below threshold but decrease rapidly as
operating point of the laser increases and passes thres
Above threshold, both three- and four-photon bunching
almost entirely due to pure chance coincidences. T
intrinsic bunching rapidly decreases above threshold
the laser approaches a coherent state.

A measure of how long these correlations persist in ti
is provided by the correlation times introduced in Eq. (6
To avoid large uncertainties due to multiple subtractio
that are required in order to obtain intrinsic correlatio
times, we have chosen to compare theoretical predicti
with the correlation times extracted from the data by us
the fitted functions in Eq. (7). Theoretical curves were o
tained by solving the time-dependent Fokker-Planck eq
tion [12]. To compare the experimental correlation tim
with the dimensionless times predicted by the theory
time scaling parameter was needed. This scaling para
ter was determined according to the procedure explai
1238
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FIG. 2. Variation of the degree of three- and four-photo
bunchingcs0d andss0d, respectively, relative to the two-photon
bunching as a function of the laser pump parametera. The
points represent the experimental data and the curves are
theoretical predictions.

in Refs. [6,7,9]. Figure 3 shows the variation of the corr
lation times for two-, three-, and four-photon bunching
a function of the operating point of the laser. In all cas
correlations persist longest near threshold. This behav
is typical of all physical systems undergoing a phase tr
sition. Figure 2 also shows that as the order of phot
bunching increases the corresponding correlation time
shortened.

To summarize, we have measured the degrees of hig
order photon bunching and their time dependence for
optical field using a two-photon detector. Several var
tions of the technique described in the paper are wo

FIG. 3. Variation of the correlation times for two-, three-, an
four-photon bunching as a function of the laser pump parame
a. The points represent the experimental data and the cu
are the theoretical predictions.
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mentioning. For example, using frequency mixing we c
measure the correlations of weak signals by superimpos
them with strong coherent fields. By introducing time d
lays between signals we can measure correlation functi
with multiple delays. The agreement between our me
surements and the theoretical predictions clearly dem
strates the efficacy of this scheme for studying high
order correlations of light from other sources.

This work was supported in part by the Nationa
Science Foundation.
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