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Measurements of Higher Order Photon Bunching of Light Beams
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A two-photon detection scheme is used to measure three- and four-photon correlations in a light beam
and study their time dependence.
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Photon correlations of light beams are intimately con-becomes especially significant for fields that exhibit large
nected to source dynamics. They are characteristic dhtensity fluctuations [5,6]. Ironically, it is precisely for
sources that produce them [1]. Thus while photons fronthis type of fields that measurements of higher order cor-
thermal sources exhibit bunching [2], those from nontherselations provide information that cannot be inferred from
mal sources may exhibit antibunching [3]. Photon correknowledge of lower order correlations.
lations are usually discussed in terms of the second order Counting experiments do not allow us to determine the
intensity correlation functiof/(¢)I(r + 7)), wherel(r) is  time dependence of intensity correlations. The time de-
the intensity of light beam and angular brackets indicatgpendence of intensity correlations is measured in delayed
averaging with respect to the state of the field. The secondoincidence experiments [7—10]. Counting experiments
order correlation function is proportional to the probabil-also require large count rates for measuring higher order
ity of detecting two photons separated by an intervallt ~ moments, whereas correlation measurements can be car-
is clear that even for uncorrelated photons there is someed out with relatively low (at least by a factor #6~2)
finite probability, proportional t@I(¢)){I(r + 7)) = (I)>,  count rates. The measurements of the time dependence
of detecting a pair of photons separated by an intervadh  of the third order correlation function were studied by sev-
measure of intrinsic two-photon bunching is therefore pro-eral workers [9,10] using single-photon detection schemes.
vided by the correlation functior,(7) = (AI(t)AI(r +  These experiments clearly underscore the increasing diffi-
) /{I)?, whereAI(r) = I(t) — (I) represents deviations culty of measuring the time dependence of intensity corre-
of light intensity from the mean. Here and in what follows lations higher than the second order by these techniques.
we assume statistically stationary light beams. Similar to In this paper we wish to describe a scheme based on
k2(7), we can introduce higher order correlation functionstwo-photon detection of light that allows us to measure
of light. third and fourth order intensity correlations. This scheme

The third order intensity correlation functigh(z)I(r +  partly overcomes dead-time limitations and involves the
m1)I(t + 71 + 72))is proportional to the probability of de- measurements of autocorrelation and cross-correlation
tecting three photons at timesr + 7, andr + 7, + 7, functions of the second harmonic and the fundamental
respectively. Coincidences of third order include effects ofield. We demonstrate our method by measuring the
three-photon chance coincidences, proportionalitgand  third and fourth order correlation functions of photons
two correlated photons in chance coincidence with a thirdn a laser near threshold. Our experiments also yield
one, proportional to{I(n)I(t + 71)){I(t + 71 + 72)), the correlation times over which three- and four-photon
etc. After subtracting these contributions, we find thecorrelations persist. The method is applicable to a wide
intrinsic third order correlations are given ly(71,7,) =  range of experiments where higher order correlations of
(AI(H)AI(t + 7)AI(t + 71 + 1))/{I)®. Similarly, the light play an important role.
intrinsic fourth order correlations are given by the function Consider the generation of second harmonic (SH) light
ka(71, 72, 73) = (AI()AI(t + 7)AI(t + 7 + 7)AI(r + from a fundamental beam. The intensity of the SH beam
71+ 72 + 13)) /D — ka(T1) K2 (73) — K2 (71 + T2) Ko (T2 + I>(z) is related to the intensit(¢) of the fundamental beam
73) — Kk2(71 + 72 + 7T3)K2(72) [4]. The zero-delay cor- by
relations «3(0,0) and «4(0,0,0) describe the degree of L(1) = constx I(t). (1)

intrinsic three- and four-photon bunching, respectively. = . ) L . )
P g b yl?Jsmg this relation in the cross-correlation functiétr) =

The zero-delay intensity correlations were measured i :
counting experiments based on single-photon detectors jf(t)l(t + 7))/{12) 1) of the second harmonic and funda-

Chang and co-workers [5]. The accuracy of these medlental light intensity, we izmmediately see that
surements of higher order correlations is limited by the Cir) — DI + 7)) 2
detector and electronic dead-time effects. This limitation (%))
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measures three-photon correlations of the fundament#beledA andB, of a digital correlator. For the measure-
beam. WritingI(r) = (I) + AI(z) in Eq. (2), and using ments of the cross-correlation functiefr) we feed sec-
the definitions of intrinsic bunching of various orders, weond harmonic pulses to inpétand fundamental pulses to

find input B. For measuring the second order intensity auto-
262(7) + K3(0, 7) correlation functions(7) or k»(7) only inputAis used. If
c(r)=C(r) — 1= T = : (3) inputAis SH we gets(r) and if it is fundamental we get
2
K2 (7).

wherek, = k>(0). This equation shows that a measure- The correlator divides time into intervals of equal du-
ment of the SH and fundamental cross-correlation functiopation A7. This time is referred to as sample time. In
c(7) yields the intrinsic three-photon correlation function gy experiments it was of the order dfus. The number
«3(0, 7). Similarly we find that the normalized second or- of pulses occurring during each sample time is counted
der miensny correlation funzctlon of second harmonic Ilghtby a shift register counter. At the end' of each 'counting
S(r) = (L()h(r + 7))/(I2)* measures four-photon cor- interval the counter shifts its contents into the first loca-
relat|0n§ of the fundam?ntal beam. In terms of |ntr|nS|Cti0n of a 128-channel store-and-shift register_ At the end
correlations it can be written as of the next counting interval the number in the first loca-
s() = S(r) — 1 tion is moved to the second location and the number in
) the counter is moved to the first location. This procedure
_ A1) + Ara(1)]” + 4r3(0,7) + ka(7) (4) s continued until all 128 channels are filled. From this
(I + K2)? ' stage on the same procedure is continued with the num-
where we have used the symmetry propetty0,7) =  ber in the last channel being discarded. Building of the
k3(7,0) and k4(1) = k4(0,7,0). Eq. (4) shows that a correlation function now begins. At the receipt of each
measurement of(r) together with the knowledge of lower Pulse at inputA (when in autocorrelation mode) or input
order correlations yields degree of intrinsic four-photonB (When in cross-correlation mode) the contents of each
bunchingk4(0, 0, 0). location in the store-shift register are added to the contents
An outline of the experimental setup is shown in Fig. 1.0f corresponding memory location in the correlator mem-
It consists of a folded standing wave single-mode He:N&@ry. Thus at the end of thah sample time in which;
laser cavity [11]. A noncritically temperature phase-counts were recorded contents of memory locafiowmill
matched rubidium dihydrogen phosphate (RDP) crystalncrease by:;n;—;. After Ny such samples the number in
placed at the beam waist inside the cavity generates Sthe jth channel will beN( jA7) = zf';l nin;—j. Inprac-
light. Cavity mirrors are highly reflectingX99%) at the tice, background light also contributes to counts in chan-
fundamental wavelength (632.8 nm) and highly transmitnelsA andB. Let 64, andfz denote the fractional signal
ting (>85%) at the second harmonic (316.4 nm). The fun-count rates in the two channels. If the sample time is short
damental and its SH leaving the cavity are orthogonallycompared to the correlation time of the light angd is
polarized. They are separated by a polarizing beam splitarge, the numbeN( jA7) in channel; is related to the
ter. The SH and the fundamental beams pass through lirerrelation function of light by
filters and fall on two separate high gain fast photomulti- . _ 2
plier tubes. The SH light is passed through a monochroma- N(jA7) = N:RsRp(A7)L + 0465A(7)].  (5)
tor to further reduce background light. The output pulsesi(r) represents the appropriate correlation function—
from the photomultiplier tubes are fed to the two inputs,x,(7), c(7), or s(7). The correlator also records numbers
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FIG. 1. An outline of the experimental setup. NLC is the nonlinear crystal, PBS is a polarizing beam splitter to separate
second harmonic from the fundamental,;LiE a line filter centered at 632.8 nm, Lk a uv line filter centered at the second
harmonic wavelength 316.4 nm, MONO is a monochromator, PMT is a photomultiplier tube, AMP-DISC represents the amplifier-
discriminator combination. Not shown are the electronic servo to stabilize the laser intensity, temperature control electronics, and
the electronics for monitoring the fundamental intensity.
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in 16 channels corresponding to delays of the order of 3
1028 A7. Since all correlations have decayed down to
zero, the average number in these channels will simply be

N = N,RsRp(AT)%. (6)

N

With the help of Egs. (4) and (5) we can extract),
s(7), and k,(7) from the experimental measurements.
Count ratesR4 and Rz were kept below 100 kHz. With
such low count rates dead-time corrections were found
to be negligible. From the measured correlation functiong
A(7) we can introduce a correlation time g
on

_ [T A
T_]O)L(O)dT’ (7) o L v v

Photon Bunching

1

whereA(r) = k»(7), c(7), ands(7) define the correlation
times T, T3, and Ty, respectively, for two-, three-, and
four-photon bunching. These times become a measure #1G. 2. Variation of the degree of three- and four-photon
the temporal extent of photon bunching of various ordersPunchingc(0) ands(0), respectively, relative to the two-photon

The measured correlation functions were fitted by oneuUnching as a function of the laser pump parameterThe

. . . points represent the experimental data and the curves are the
or two exponentials. .By extrapolatlng _these fitted func-heoretical predictions.
tions to zero delay we immediately obtain(0), c(0), and
s(0). The measured values ah(0) were used to deter-
mine the operating point of the laser characterized by thé Refs. [6,7,9]. Figure 3 shows the variation of the corre-
dimensionless pump parametef6,11]. As a check the lation times for two-, three-, and four-photon bunching as
operating point of the laser was also determined, indeper function of the operating point of the laser. In all cases
dently, by carrying out photon counting measurements ogorrelations persist longest near threshold. This behavior
the fundamental. These two determinations of the operats typical of all physical systems undergoing a phase tran-
ing point yielded consistent results. sition. Figure 2 also shows that as the order of photon

In comparing our measurements with the theoreticaPunching increases the corresponding correlation time is
predictions we have chosen to plot0) and s(0) which ~ shortened.
are related toks;(0,0) and «4(0,0,0) by Egs. (3) and To summarize, we have measured the degrees of higher
(4), respectively. Both quantities are readily computedPrder photon bunching and their time dependence for an
theoretically. From the normalization it is clear th4¢)  optical field using a two-photon detector. Several varia-
ands(0) measure excess three- and four-photon bunchin§ons of the technique described in the paper are worth
relative to the two-photon bunching. The experimental
data are compared with theoretical calculations in Fig. 2.
We see that both three- and four-photon bunching are
prominent below threshold but decrease rapidly as the
operating point of the laser increases and passes threshold. 0.13
Above threshold, both three- and four-photon bunching isg
almost entirely due to pure chance coincidences. Thu
intrinsic bunching rapidly decreases above threshold a
the laser approaches a coherent state.

A measure of how long these correlations persist in time
is provided by the correlation times introduced in Eqg. (6). - )
To avoid large uncertainties due to multiple subtractions 2 §
that are required in order to obtain intrinsic correlation  0.10 - o T, 5
times, we have chosen to compare theoretical predictions r ]
with the correlation times extracted from the data by using 008 om0l Lo b Lo L
the fitted functions in Eq. (7). Theoretical curves were ob- 2 -1 0 1 2 3 4
tained by solving the time-dependent Fokker-Planck equa- Pump Parameter a
tion [12]. To compare the experimental correlation times

with the dimensionl tim redicted by the theor FIG. 3. Variation of the correlation times for two-, three-, and
€ ensioniess €s predicted Dy the theory %ur-photon bunching as a function of the laser pump parameter

time scaling parameter was needed. This scaling paramg: The points represent the experimental data and the curves
ter was determined according to the procedure explaineakre the theoretical predictions.
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