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Estimating Model Parameters from Time Series by Autosynchronization
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Parameters of a given model describing a (chaotic) dynamical system are estimated from scalar
time series using autosynchronization where the parameter adaption process is controlled by the
synchronization of the model to the given dynamics. A practical method is presented for deriving
the necessary ordinary differential equations for the parameter controlling loop.

PACS numbers: 05.45.+b, 43.72.+q, 47.52.+j
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The synchronization of (unidirectionally) coupled dy
namical systems and its possible applications in commu
cation schemes is currently a field of great interest (
[1–7] and references cited therein). In this Letter w
discuss a special feature of synchronizing systems ca
autosynchronizationwhere a system with slowly varying
parameters converges from a state of nonsynchroniza
to synchronization. This adaption process is governed
additional ordinary differential equations (ODEs) for th
parameters that are controlled by the synchronization er
A systematic way for deriving the parameter controllin
loop is presented and illustrated by numerical examp
For the sake of brevity we consider unidirectionally co
pled systems only, although the main ideas can in princ
also be applied to mutually coupled synchronizing syste
In order to indicate a possible application in nonlinear tim
series analysis [8] and system identification autosynch
nization is discussed and used in the following for es
mating the parameters of a given model from a scalar ti
series [9–14].

Let

Ùx ­ fsx, pd (1)

be the (experimental) dynamical system whose parame
p [ Rm are to be estimated. The only information ava
able is a time seriessstd given by a (scalar) observable

s ­ hsxd (2)

and the structure of the modelf. Furthermore, let us
assume that we are able to construct a dynamical syst

Ùy ­ gss, y , qd (3)

that synchronizes (y ! x for t ! `) if q ­ p. If the
functional form of the vector fieldf is known, such a
system can, for example, be constructed by the subsys
decomposition introduced by Pecora and Carroll [3]
more generally, by an active-passive decomposition of
[5,6]. The unidirectionally coupled systems (1) and (
are calleddrive and response,respectively. The main
question addressed in this Letter is: “Can we find a
of ODEs for the parametersq of system (3)

Ùq ­ uss, y , qd (4)

such thatsy , qd ! sx, pd for t ! ` and is there a practica
and systematical way to derive it?”
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The answer to both parts of this question is “yes.”
order to see that it is in principle possible to find such
additional controlling loop for the (unknown) paramete
q consider the following example that is based on t
well-known Lorenz system [15]:

Ùx1 ­ ssx2 2 x1d ,

Ùx2 ­ p1x1 2 p2x2 2 x1x3 1 p3 ,

Ùx3 ­ x1x2 2 bx3 , (5)

with p1 ­ r ­ 28, p2 ­ 1, p3 ­ 0, s ­ 10, and b ­
8y3. We assume that the time series available is given
the observable

s ­ hsxd ­ x2 . (6)

The model to be fitted to the data is driven bys and is
written

Ùy1 ­ sss 2 y1d ,

Ùy2 ­ q1y1 2 q2y2 2 y1y3 1 q3 ,

Ùy3 ­ y1y2 2 by3 . (7)

Using a global Lyapunov function one can show th
for q ­ p synchronizations y ! xd occurs for all initial
conditions [6]. As ODEs for the parameter controllin
loop we use

Ùq1 ­ u1ss, y , qd ­ fs 2 hs ydgy1 ­ sx2 2 y2dy1 ,

Ùq2 ­ u2ss, y , qd ­ fs 2 hs ydgy2 ­ 2sx2 2 y2dy2 ,

Ùq3 ­ u3ss, y , qd ­ s 2 hs yd ­ x2 2 y2 . (8)

To prove thats y , qd ­ sx, pd is a globally stable solution
of the response systems (7) and (8) we investigate
dynamics of the differencese ­ y 2 x and f ­ q 2 p
which is given by the following set of differential equation

Ùe1 ­ 2se1 ,

Ùe2 ­ q1y1 2 p1x1 2 q2y2 1 p2x2 2 y1y3 1 x1x3 1 f3 ,

Ùe3 ­ y1y2 2 x1x2 2 be3 ,

Ùf1 ­ 2e2y1 ,

Ùf2 ­ e2y2 ,

Ùf3 ­ 2e2 , (9)
© 1996 The American Physical Society
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where the parametersp have been assumed to be consta
( Ùp ­ 0). The first equation in (9) impliese1 ! 0, i.e.,
y1 ! x1. For the limitt ! ` the remaining equations ca
therefore be written as

Ùe2 ­ y1f1 2 y2f2 2 p2e2 2 y1e3 1 f3 ,

Ùe3 ­ y1e2 2 be3 ,

Ùf1 ­ 2e2y1 ,

Ùf2 ­ e2y2 ,

Ùf3 ­ 2e2 , (10)

Since the derivative of the Lyapunov functionL ­
e2

2 1 e2
3 1 f2

1 1 f2
2 1 f2

3 is for positive values of the
parameterp2 strictly negative,1

2
ÙL ­ 2p2e2

2 2 be2
3, the

response systems (7) and (8) converges globally to the
rametersp of the original system (5) and synchronize
This autosynchronization is illustrated in Fig. 1(a) for th
initial conditions x ­ s0.1, 0.1, 0.1d, y ­ s20.1, 0.1, 0d,
and q ­ s10, 10, 10d. For better visualization the firs
parameterq1 has been divided by 10 and the dotted lin
give the exact valuesp1y10 ­ 2.8, p2 ­ 1, andp3 ­ 0.
In this case we have assumed that the other parame
of the drive and the response system coincide exac
To demonstrate the influence of discrepancies of the
rameters that are not recovered but kept fixed Fig. 1
shows an example where the parameters ­ 10 of the
drive system (5) was replaced bys ­ 10.1 in the response
system (8). In this case the parametersq converge not ex-
actly but oscillate near the true valuesp. Note that the
parameterq2 is most sensitive to the parameter mismat
whereasq1 remains very close top1.

This example shows that it is in principle possib
to recover several parameters of a model from a ti
series using autosynchronization. In general, however
analytical treatment of the problem is not possible an

FIG. 1. Convergence of the recovered parameter val
q1y10, q2, and q3 of the response system (7) and (8) to th
fixed valuesp1y10 ­ 2.8, p2 ­ 1, and p3 ­ 0 of the drive
(5). (a) All parameters except forq coincide exactly. (b) The
parameters equals 10 in the drive and 10.1 in the response.
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practical approach for deriving the differential equatio
of the parameters is desirable. Such a method will n
be presented. For the purpose of motivation we consi
again systems (5)–(8). To simplify graphical illustration
however, we assume that onlyp1 and p2 are to be
recovered.

The dynamics of the parametersq1 andq2 is governed
by the vector fieldsu1 andu2 given in Eq. (8). Forcon-
stantvalues of the parametersq1 andq2 we can compute
the average controlling forcesUk (k ­ 1, 2)

Uk ­ lim
T!`

1
T

Z T

0
uk dt . (11)

In Fig. 2 the values of these forces are plotted as functio
of q1 andq2. Forsq1, q2d ­ sp1, p2d the functionsU1 and
U2 vanish.

Our goal now is to derive (optimal) differential equa
tions for the parametersq ­ sq1, q2d using as a starting
point the functionsUksq1, q2d that can be computed nu
merically for any given model. For this purpose we fir
compute the gradientsgk of Uk at sq1, q2d ­ sp1, p2d.
This can be done by fitting locally a linear map of th
form Uk ø kgk, q 2 pl to the numerically computed val-
ues ofUk nearq ­ p. In Figs. 2(c) and 2(d) the direc-
tions of the gradients are denoted by arrows.

Along these gradients the desired action of the param
ter controlling loop is easy to formulate: parameter valu
q have to be shifted in parallel to the gradient until the
reach the borderline between the hatched and the bl
region whereUk ­ 0. This controlling strategy can be

FIG. 2. Averaged controlling forcesU1 and U2 [Eq. (11)]
plotted vsq1 and q2. (a),(b) Surface plots. (c),(d) Contou
plots. In the hatched regions the functionsUk are negative.
The arrows denote the directions of the gradientsgk (k ­ 1, 2).
1233
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implemented most easily if the gradients coincide wi
the axes of the parameter space. Therefore we change
parameter coordinate system by projecting the parame
vectorq onto the gradientsgk ­ sgk

1 , gk
2 d

r ­

√
r1

r2

!
­

√
g1

1 g1
2

g2
1 g2

2

! √
q1

q2

!
­ Aq . (12)

In the newr-coordinate system of the parameter spa
the dynamics for the desired parameter correction may
written as

Ùrk ­ 2Uk . (13)

Expressed in the originalq-coordinate system the control
ling equations are given by

Ùq ­ A21 Ùr ­ 2A21U . (14)

If the parameter variations are much slower than the tim
scale of the (chaotic) dynamics, the temporal averagesUk

can be replaced by the functionsuk and we obtain

Ùq ­ aBu , (15)

where B ­ 2A21 and a is a free parameter that ha
been added to control the speed of convergence. In
example the gradients are given byg1 ­ s22.24, 2.08d
and g2 ­ s2.91, 26.70d and the resulting ODEs for the
parametersq1 andq2 are

Ùq1 ­ 0.748ss 2 y2dy1 2 0.232ss 2 y2dy2 ,

Ùq2 ­ 0.325ss 2 y2dy1 2 0.250ss 2 y2dy2 , (16)

where we useda ­ 1. Figure 3 shows a comparison o
the convergence properties ofq1 and q2 in the case that
the parameters of the response is 1% larger than th
value s ­ 10 of the drive [compare Fig. 1(b)]. For the
results shown in Fig. 3(a) the first two ODEs of Eqs. (

FIG. 3. Convergence of the recovered parametersq1y10
and q2 of the response system (7) and (8) to the fixe
valuesp1y10 ­ 2.8 and p2 ­ 1 of the drive (5). (a) Using
the parameter ODEs (8). (b) Using the derived parame
ODEs (16).
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were used. The computations illustrated in Fig. 3(b) a
based on the derived parameter ODEs given in Eq. (1
As can be seen in particular the convergence top2 ­ 1
is less erratic for the derived parameter controlling loo
When comparing Eq. (16) with Eq. (8) one can see th
the ODE for q2 differs more than that forq1. Since
the derived ODEs Eq. (16) are in some sense optim
this gives some explanation for the different convergen
properties ofq2 observed in Fig. 3.

The crucial point of this approach is the proper sele
tion of the functionsuk defining the controlling forces. Of
course, these functions have to vanish fors y , qd ­ sx, pd.
This can be achieved by a product ansatzuk ­ fs 2

hs ydg ? ũk with ũk ­ ũkss, y , qd. Furthermore, the aver-
aged controlling forcesUk should be smooth functions
of the parametersq nearp changing their signs along a
(smooth) curve passing throughp (compare Fig. 2).

In the last example we have used this strategy to
tablish parameter ODEs for the three original paramet
q ­ ss, r , bd of the Lorenz model. The resulting equa
tions are

Ùq1 ­ 0.07s20.786u1 1 11.2u2 1 59.2u3d ,

Ùq2 ­ 0.07s4.05u1 2 87.0u2 2 261u3d ,

Ùq3 ­ 0.07s20.518u1 1 12.3u2 1 36.4u3d , (17)

with

u1 ­ ss 2 y2dy2 ,

u2 ­ ss 2 y2d
y1

10 1 y2
2

,

u3 ­ ss 2 y2d
y2

10 1 y2
1

. (18)

Figure 4 shows the convergence of the three parame
q1y10 ­ sy10, q2y10 ­ ry10, andq3 ­ b, where again
q1 andq2 are rescaled by 10 for better visualization.

In this Letter we have shown that it is possible to d
sign dynamical systems that are able to adapt to a giv
time series by parameter variations that are controlled
the synchronization error of the system with respect to t

FIG. 4. Convergence of the recovered Lorenz parameters
the true valuesp1y10 ­ sy10 ­ 1, p2y10 ­ ry10 ­ 2.8, and
p3 ­ b ­ 8y3. For the parameter controlling loop the ODE
(17) have been used.
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time series. The method has also been tested for its
bustness with respect to additive noise simulating the ca
that a noisy time series has been measured. As long as
synchronization is not completely destroyed the recover
parameters fluctuate around their true values. The a
plitude of these fluctuations can be reduced by decre
ing the convergence parametera in Eq. (15), which of
course also reduces the speed of convergence. An imp
tant task for future research is a systematic comparis
with other methods for parameter estimation [9–14]. A
advantage of the method presented here is the fact t
once the parameter ODEs have been derived the com
tation of the parameters requires no CPU time or stora
intensive arithmetics and may even be implemented a
realtime algorithm and/or using analog computers or ele
tronic circuits [16]. Furthermore, the autosynchronizatio
process cannot only be used for estimating the parame
of a given model from a time series but offers various p
tential applications. For example, the parameters of t
drive may be modulated slowly in order to encode a me
sage [4–6] that consists of different information signal
At the response system the corresponding parameters
low this modulation and in this way several informatio
signals can be decoded from asingle chaotic signal that
is transmitted from the drive (transmitter) to the respon
(receiver) [16]. Other possible applications include mon
toring of technical devices [17] or the development o
measurement techniques based on sensitive depend
on parameters.

The author thanks L. Kocarev, M. Wiesenfeldt, W. Lau
terborn, and U. Dressler for stimulating discussions a
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