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Estimating Model Parameters from Time Series by Autosynchronization
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Parameters of a given model describing a (chaotic) dynamical system are estimated from scalar
time series using autosynchronization where the parameter adaption process is controlled by the
synchronization of the model to the given dynamics. A practical method is presented for deriving
the necessary ordinary differential equations for the parameter controlling loop.

PACS numbers: 05.45.+b, 43.72.+q, 47.52.4j

The synchronization of (unidirectionally) coupled dy- The answer to both parts of this question is “yes.” In
namical systems and its possible applications in communierder to see that it is in principle possible to find such an
cation schemes is currently a field of great interest (seadditional controlling loop for the (unknown) parameters
[L-7] and references cited therein). In this Letter weq consider the following example that is based on the
discuss a special feature of synchronizing systems calledell-known Lorenz system [15]:
autosynchronizationvhere a system with slowly varying
parameters converges from a state of nonsynchronization
to synchronization. This adaption process is governed by X2 = p1X1 — paxa — x1x3 + p3,
additional ordinary differential equations (ODESs) for the
parameters that are controlled by the synchronization error.
A systematic way for deriving the parameter controllingwith p; = r =28, p, =1, p3 =0, 0 = 10, and b =
loop is presented and illustrated by numerical examplest/3. We assume that the time series available is given by
For the sake of brevity we consider unidirectionally cou-the observable
pled systems only, although the main ideas can in principle s = h(x) = x,. (6)
also be applied to mutually coupled synchronizing systems.

In order to indicate a possible application in nonlinear time  The model to be fitted to the data is driven dwnd is
series analysis [8] and system identification autosynchroaritten

x1 = o(x = x),

)'63 = X1X2 — b)C3, (5)

nization is discussed and used in the following for esti- yi=a(s — y1),
mating the parameters of a given model from a scalar time i
series [9-14]. Y2 = q1y1 — q2y2 — y1y3 + g3,
Let _ y3 = y1y2 — by;. (7)
x = f(x,p) 1) Using a global Lyapunov function one can show that

be the (experimental) dynamical system whose parametefsr q = p synchronization(y — x) occurs for all initial
p € R™ are to be estimated. The only information avail- conditions [6]. As ODEs for the parameter controlling
able is a time series(t) given by a (scalar) observable loop we use

s = h(x) ()
and the structure of the modé&l Furthermore, let us

assume that we are able to construct a dynamical system ~
y = g(s,y,q) (3) g3 = u3(s,y,q) = s — h(y) = x2 — y2. (8)

that synchronizesy(— x for + — =) if q = p. If the To prove that(y,q) = (x,p) is a globally staple so'lution
functional form of the vector field is known, such a ©f the response systems (7) and (8) we investigate the
system can, for example, be constructed by the subsystefiynamics of the differences =y — x andf =q — p
decomposition introduced by Pecora and Carroll [3] orWhich s given by the following set of differential equations
more generally, by an active-passive decompositioffi of ;; = — ¢, ,

[5,6]. The unidirectionally coupled systems (1) and (3).

are calleddrive and response respectively. The main €2 = 911 = P1X1 = q2y2 + pax2 = yiy3 + xix3 + f3,
question addressed in this Letter is: “Can we find a s&t; = y,y, — x;x, — bes,

of ODEs for the parameterg of system (3) .

g1 = ui(s,y,q) = [s — h(y)Iy1 = (x2 = y2)y1,
g2 = ux(s,y,q) = [s — h(y)]y2 = —(x2 — y2)y2,

; fi = —ewr,
q=u(sy.q @
such thaty, q) — (x,p) for r — =« and is there a practical J_fz R
and systematical way to derive it?” fi=—e, ©)
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where the parametepshave been assumed to be constanpractical approach for deriving the differential equations
(p = 0). The first equation in (9) implieg; — 0, i.e.,  of the parameters is desirable. Such a method will now
y1 — x;1. Forthe limitr — o the remaining equations can be presented. For the purpose of motivation we consider
therefore be written as again systems (5)—(8). To simplify graphical illustrations,
by = yift — vafa — paea — vies + f3, Peog/(\;:e/\éfgdlwe assume that only; and p, are to be

e; = yies — bes, The dynamics of the parameteys and g, is governed

by the vector fields:; andu, given in Eq. (8). Forcon-

f 1= Tens stantvalues of the parameterg andg, we can compute
fo = eys, the average controlling forcds;, (k = 1,2)
f3=—e, 10 1 (T
. /s 2. _ . (10) Up = lim —f ug dt . (11)
Since the derivative of the Lyapunov functidh = =T Jo

2 2 2 2 2 e

ey +e3 + fi + fi + f5 is for positive \2/alue520f the |n Fig. 2 the values of these forces are plotted as functions
parameterp, strictly negative,;L = —pye; — be3, the  of ¢, andg,. For(qy,g2) = (p1, p2) the functionsl/; and
response systems (7) and (8) converges globally to the pay, vanish.

rametersp of the original system (5) and synchronizes. Our goal now is to derive (optimal) differential equa-
This autosynchronization is illustrated in Fig. 1(a) for thetions for the parameterg = (g1, ¢») using as a starting
initial conditions x = (0.1,0.1,0.1), y = (=0.1,0.1,0),  point the functionsUx(¢1, ¢2) that can be computed nu-
and q = (10,10,10). For better visualization the first merically for any given model. For this purpose we first
parametei; has been divided by 10 and the dotted linescompute the gradientg® of U at (¢1,¢2) = (p1, p2).
give the exact valuep; /10 = 2.8, p, = 1, andps = 0. This can be done by fitting locally a linear map of the
In this case we have assumed that the other paramete&im U, ~ (gk,q — p) to the numerically computed val-

of the drive and the response system coincide exactly,es of U/, nearq = p. In Figs. 2(c) and 2(d) the direc-
To demonstrate the influence of discrepancies of the paions of the gradients are denoted by arrows.

rameters that are not recovered but kept fixed Fig. 1(b) Along these gradients the desired action of the parame-
shows an example where the parameter= 10 of the  ter controlling loop is easy to formulate: parameter values
drive system (5) was replaced by= 10.1 in the response 4 have to be shifted in parallel to the gradient until they
system (8). In this case the parameiginverge notex- reach the borderline between the hatched and the blank

actly but oscillate near the true valups Note that the region wheret;, = 0. This controlling strategy can be
parametel, is most sensitive to the parameter mismatch
whereasy; remains very close tp;.

This example shows that it is in principle possible @ . L
to recover several parameters of a model from a time  +3~
series using autosynchronization. In general, however, an *

analytical treatment of the problem is not possible and a =

—2

(8) 34—
2
dy 17;
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FIG. 1. Convergence of the recovered parameter values
q1/10, q2, and g3 of the response system (7) and (8) to the FIG. 2. Averaged controlling force€/; and U, [Eq. (11)]
fixed valuesp;/10 = 2.8, p, = 1, and p; = 0 of the drive  plotted vsq; and ¢,. (a),(b) Surface plots. (c),(d) Contour
(5). (a) All parameters except fey coincide exactly. (b) The plots. In the hatched regions the functiobls are negative.
parameterr equals 10 in the drive and 10.1 in the response. The arrows denote the directions of the gradiesftgk = 1,2).
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implemented most easily if the gradients coincide withwere used. The computations illustrated in Fig. 3(b) are
the axes of the parameter space. Therefore we change thased on the derived parameter ODEs given in Eq. (16).
parameter coordinate system by projecting the parametéts can be seen in particular the convergencedc= 1
vectorq onto the gradientg® = (g}, ¢5) is less erratic for the derived parameter controlling loop.
L When comparing Eq. (16) with Eq. (8) one can see that
r = (”1> - (85 g%><611) — Aq. (12) the ODE for g, differs more than that for;. Since
r 81 & /\42 the derived ODEs Eq. (16) are in some sense optimal,
this gives some explanation for the different convergence
roperties ofy, observed in Fig. 3.
The crucial point of this approach is the proper selec-
tion of the functionsy; defining the controlling forces. Of
o= —U,. (13)  course, these functions have to vanish(ferq) = (x,p).
This can be achieved by a product ansajz= [s —
Expressed in the origingl-coordinate system the control- p(y)] - @, with i, = @ik (s,y,q). Furthermore, the aver-
ling equations are given by aged controlling forced/; should be smooth functions
C e ~1 of the parameterg nearp changing their signs along a
q=4T=-4"U. (14) (smooth) curve passing through(compare Fig. 2).
If the parameter variations are much slower than the time In the last example we have used this strategy to es-
scale of the (chaotic) dynamics, the temporal averdges tablish parameter ODEs for the three original parameters

can be replaced by the functiong and we obtain q = (o, r,b) of the Lorenz model. The resulting equa-
tions are

g1 = 0.07(—0.786u; + 11.2uy + 59.2u3),

In the newr-coordinate system of the parameter spac
the dynamics for the desired parameter correction may b
written as

q = aBu, (15)

where B= —A"! and « is a free parameter that has .
been added to control the speed ofpconvergence. In our g2 = 0.07(4.05u; — 87.0uz — 26lus),
example the gradients are given lgy = (—2.24,2.08) g3 = 0.07(—=0.518u; + 12.3u; + 36.4us3), (17)
and g? = (2.91, —6.70) and the resulting ODEs for the .
parameterg; andg, are with

g1 = 0.748(s — y2)yr — 0.232(s — y2)ya, w =0 =y,

g2 = 0.325(s — y2)y1 — 0.250(s — y2)y2, (16) 1y = (s — y;) —2 5,

10 + y2

where we used = 1. Figure 3 shows a comparison of
the convergence properties @f and ¢, in the case that us; = (s — yo) Y2 5. (18)
the parametewr of the response is 1% larger than the 10 + yi

value o = 10 of the drive [compare Fig. 1(b)]. Forthe  Figure 4 shows the convergence of the three parameters
results shown in Fig. 3(a) the first two ODEs of Egs. (8)4, /10 = ¢/10, ¢,/10 = r/10, andg; = b, where again
g1 andg, are rescaled by 10 for better visualization.
(8) 3o — In this Letter we have shown that it is possible to de-

] sign dynamical systems that are able to adapt to a given
2 time series by parameter variations that are controlled by
e 13 the synchronization error of the system with respect to the
O;) © 50 100 150
: ° 34
(b) 2.5
Qe 27
Ak 1.9
_ 14
0 T T T T 50 T T T '160' T r '150 T T T T | T T T T l T T T T | T T T T

o

100 200 300 400

FIG. 3. Convergence of the recovered parametgrgl0 t

and g, of the response system (7) and (8) to the fixedFIG. 4. Convergence of the recovered Lorenz parameters to
values p; /10 = 2.8 and p, = 1 of the drive (5). (a) Using the true valuep;/10 = ¢ /10 = 1, p,/10 = r/10 = 2.8, and

the parameter ODEs (8). (b) Using the derived parametep; = b = 8/3. For the parameter controlling loop the ODEs
ODEs (16). (17) have been used.
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