Angular Dependence of the *c*-axis Normal State Magnetoresistance in Single Crystal Tl₂Ba₂CuO₆

N. E. Hussey,¹ J. R. Cooper,^{1,*} J. M. Wheatley,¹ I. R. Fisher,¹ A. Carrington,^{1,†} A. P. Mackenzie,¹ C. T. Lin,^{1,‡} and

O. $Milat^2$

¹Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge,

CB3 OHE, United Kingdom

²Institute of Physics of the University of Zagreb, Bijenicka 46-41000, Zagreb, Croatia

(Received 24 July 1995)

We report measurements of the normal state magnetoresistance (MR) from 30 to 340 K in fields *B* up to 13 T for single crystals of overdoped Tl₂Ba₂CuO₆ ($T_c \le 25$ K). For out-of-plane current flow, the transverse MR $\Delta \rho_c / \rho_c$ is large and positive. On rotating **B** within the *a-b* plane, $\Delta \rho_c / \rho_c$ exhibits a striking anisotropy with fourfold symmetry. The amplitude of this effect increases as B^4 and the maximum MR occurs for *B* along the [110] crystallographic directions, i.e., at 45° to the Cu-O-Cu bonds. This the first direct evidence for anisotropy of the in-plane mean free path in the cuprates.

PACS numbers: 74.25.Fy, 74.72.Fq

Understanding the unusual normal state properties of high- T_c cuprates, especially the strong variation of the Hall coefficient R_H with temperature and hole concentration p, is an important step towards the correct microscopic theory of high-temperature superconductivity [1-6]. The systematic behavior of $R_H(T, p)$ is well established experimentally, but there are at least three different theoretical approaches. The spinon-holon model [2] involves two distinct relaxation times (τ_H and t_{tr}) for momentum changes parallel and perpendicular to the Fermi surface (FS). In more conventional pictures [3,7,8], τ varies strongly around the FS, e.g., because of electronspin fluctuation scattering [8-10]. For all these models, a key quantity is the inverse Hall angle (ρ_{xx}/ρ_{xy}) or $\cot(\theta_H)$; experimentally this varies approximately as T^2 [11] and only weakly with p [10,12]. In alternative approaches [4-6], R_H itself has been considered as the primary quantity, its unusual behavior reflecting the presence of a small energy scale [4] or a change in the effective number of carriers with T [5,6].

Normal state magnetoresistance (MR) studies on single crystals should help distinguish between these different points of view. The in-plane MR $(\Delta \rho_{ab}/\rho_{ab})$ with $B \parallel c$ is small and positive and shows large deviations from Kohler's rule [13,14] in contrast to the behavior of most metals, even those with a complicated FS. The out-of-plane MR, on the other hand, is negative and has been ascribed to the *B* dependence of the normal state pseudogap [15]. However, MR studies of the out-of-plane resistivity $(\Delta \rho_c/\rho_c)$ have been confined to compounds showing nonmetallic behavior $(d\rho_c/dT < 0)$ [15], and this makes comparison with the in-plane properties difficult. A further complication is that ρ_c is often large and may well arise from incoherent interlayer hopping rather than bandlike electron motion [16,17].

Here we report the first study of in- and out-ofplane MR for overdoped crystals of the single layer Tl₂Ba₂CuO₆ compound for which $d\rho_c/dT$ is positive. For current $\mathbf{I} \parallel c$ and $\mathbf{B} \parallel ab$, the MR is positive and surprisingly large, as found for some organic conductors [18]. Within a band picture, the physical reason for this is that (a) the Lorentz force is still large (being the product of the field and the *in-plane* velocity v_{\parallel}) and (b) because of the strong anisotropy, there is no cancellation between the Lorentz force and the Hall field. Moreover, we find that, as **B** is rotated in the *a-b* plane, $\Delta \rho_c / \rho_c$ shows a striking anisotropy with a fourfold symmetry that varies as B^4 . On analyzing our results using Boltzmann transport theory, several interesting features emerge. There is evidence for a T-dependent anisotropy in the in-plane mean free path. However, the T dependence of the anisotropy is insufficient to account fully for $R_H(T)$. The c-axis MR obeys Kohler's rule up to about 200 K while there are large deviations for the *a*-*b* plane MR. Finally, there is a close relation between the *c*-axis MR and the in-plane inverse Hall angle up to 340 K.

Small $(0.3 \times 0.3 \times 0.02 \text{ mm}^3)$ single crystals were grown using a self-flux method in alumina crucibles sealed with gold foil [19]. They were annealed in flowing oxygen at 720 K for three days before making electrical contacts to 25 μ m gold wires with Dupont 6838 silver paste fired on in oxygen for 10 min at 740 K. This gave T_c values of 15–25 K. In all, MR measurements were made on 10 crystals (seven for ρ_c and three for ρ_{ab}). Crystals from all three preparations were only 10–20 μ m thick, but $\rho_c(T)$ is reliable because of the large anisotropy and because similar values were found for *a-b* plane dimensions between 150 × 180 and 300 × 300 μ m².

The lower inset to Fig. 1 shows $\rho_c(T)$ and $\rho_{ab}(T)$ in zero field, with ρ_c/ρ_{ab} rising from 1000 at 300 K to 2500 at 30 K. The residual resistivity ratio for ρ_c is invariably 2–3 times smaller than for ρ_{ab} , implying that standard Bloch-Boltzmann theory with a single τ cannot be an exact description. The top inset to Fig. 1 shows that for **I** || *c* and **B** || *ab* there is a large positive MR at low temperatures (\approx 14% at 35 K and 11 T). The MR

FIG. 1. *T* dependences of the B^2 terms $\Delta \rho^{(2)} / \rho^{(0)}$ at 10 T for *c*-axis MR (circles) and *a*-*b* plane MR (diamonds) in overdoped Tl₂Ba₂CuO₆. Data for two crystals are shown in each case. Bottom inset: Zero-field $\rho_c(T)$ and $\rho_{ab}(T)$ for the crystals shown in the main figure. Top inset: MR field sweep at 35.1 K for $\mathbf{I} \parallel c$, $\mathbf{B} \parallel ab$.

varies as $\rho = \rho^{(0)} + \Delta \rho^{(2)} - \Delta \rho^{(4)}$, where $\rho^{(0)}$ is the zero-field resistivity and $\Delta \rho^{(2)}$ and $\Delta \rho^{(4)}$ are positive B^2 and B^4 terms. Using Chambers' formula [20] for the MR of a slightly warped cylindrical FS, we can show that this $-B^4$ term is associated with the crossover from B^2 at low fields to nonsaturating |B| behavior in the high-field limit. The *T* dependences of the quadratic terms $\Delta \rho^{(2)} / \rho^{(0)}$ for **I** $\parallel c$ and **I** $\parallel ab$ are similar (Fig. 1), but the effect is 6–7 times larger for **I** $\parallel c$.

For the two *c*-axis crystals shown in Fig. 1, the angular dependence of the MR was studied as B was rotated in the *a-b* plane; significant MR anisotropy with predominantly fourfold symmetry was observed (Fig. 2). Other smaller terms exist, but for rotations of 360° or more, the data could be unambiguously fitted by $R - R_0 = R_D \phi + R_1 \cos(\phi - \phi_1) + R_2 \cos 2(\phi - \phi_1))$ ϕ_2) + $R_4 \cos 4(\phi - \phi_4)$. R_D represents a linear temperature drift term, and R_1 is a T-dependent Hall contribution (linear in B). R_2 was found to be essentially T independent and is associated with out-of-phase voltages induced by small movements of the sample or wires. R_4 dominates at low T, scales precisely as B^4 , and falls rapidly with increasing T. In making these fits, the phases ϕ_1 , ϕ_2 , and ϕ_4 were kept equal to their low T values. The crystals were oriented using a Weissenberg x-ray camera, and despite the differences in contact geometries and sample shapes, the maxima in resistance occur when **B** is aligned along the (110) or equivalent directions, i.e., at 45° to the Cu-O-Cu bonds. Thus the angular dependence is an intrinsic property of the CuO₂ planes, and we believe that

FIG. 2. Angular dependence of the *c*-axis transverse MR at various *T* for a Tl₂Ba₂CuO₆ crystal with $T_c = 25$ K. Similar results were also obtained for the second *c*-axis crystal with a similar T_c .

this is the first direct observation of such anisotropy in the transport properties of the high- T_c cuprates.

As a first step in interpreting these results, we calculated all components of the conductivity tensor σ_{ij} for an open FS with small dispersion along the *c* axis ($\epsilon_{\perp} = -2t_{\perp} \cos k_{\perp}c$, where $c \approx 11.5$ Å is the interplanar distance and t_{\perp} is the interplane overlap integral) using the relaxation time approximation and the Jones-Zener expansion to order B^4 [21]. For a FS with circular cross section, **B** in the *a-b* plane and a constant value of τ [22], this gives for the B^2 and B^4 terms, $\sigma_{cc}^{(2)}/\sigma_{cc}^{(0)} = -\Omega^2 \tau^2$ and $\sigma_{(cc)}^{(4)}/\sigma_{cc}^{(0)} = 3/2(\Omega^2 \tau^2)^2$, where the cyclotron frequency $\Omega = (e/\hbar c^*)v_{\parallel}Bc/\sqrt{2}$, *c* is the *c*-axis lattice parameter, and c^* is the velocity of light in cgs units. Inverting σ_{ij} to obtain the corresponding *c*-axis resistivity components gives

$$\Delta \rho_c^{(2)} / \rho_c^{(0)} = \Omega^2 \tau^2, \tag{1}$$

$$\Delta \rho_c^{(4)} / \rho_c^{(0)} = (\sigma_{cc}^{(2)} / \sigma_{cc}^{(0)})^2 - \sigma_{cc}^{(4)} / \sigma_{cc}^{(0)} = -1/2 (\Omega^2 \tau^2)^2.$$
(2)

From $\Delta \rho_c^{(2)} / \rho_c^{(0)}$, we obtain $\Omega \tau$ and hence a direct estimate of in-plane mean free path $l_{\parallel} = v_{\parallel} \tau$. At 100 K, $\Delta \rho_c^{(2)} / \rho_c^{(0)} \approx 0.025$ at 10 T and thus $l_{\parallel} \approx 128 \pm$

4 Å. Using the formula $\sigma_{ab} = (e^2/\hbar)k_F l/c$ for a cylindrical FS and taking $\rho_{ab}(100 \text{ K}) = 30 \ \mu\Omega \text{ cm} \pm 7\%$, we obtain $k_F \approx 0.77 \pm 0.06 \text{ Å}^{-1}$. This is in good agreement with the value determined from R_H at low T [23] and corresponds to a large FS $\approx (70 \pm 10)\%$ of the area of the Brillouin zone. Within the same model, the anisotropy ρ_c/ρ_{ab} is simply $l_{\parallel}^2/2\langle l_c^2 \rangle$, so the value of ρ_c corresponds to a small value of $\langle l_c \rangle \approx c/3$ at 100 K. Despite this fact, which seems to indicate diffusive rather than band propagation in the *c* direction, many of the features discussed below are consistent with expectations for a band of fermion quasiparticles [24].

There is no anisotropy in $\Delta \rho^{(2)}$ or $\Delta \rho^{(4)}$ within the above cylindrical FS model. For tetragonal Tl₂Ba₂CuO₆, the structure of the CuO₂ planes will introduce fourfold anisotropy in v_F , k_F , and τ . Smoothly varying anisotropies can be represented by [21] $\tau^{-1}(\theta) =$ $\tau_0^{-1}(1 + \varepsilon \cos^2 2\theta), \ k_F(\theta) = k_F(1 + \alpha \sin^2 2\theta),$ $v_F(\theta) = v_F(1 + \beta \sin^2 2\theta)$, where θ is the in-plane angle between \mathbf{k} and the \mathbf{a} axis. Using these formulas and the Jones-Zener method to calculate the B^2 and B^4 terms in $\rho_c(B)$ leads to a fourfold angular dependence in $\Delta \rho_c^{(4)}$ (proportional to B^4) but no anisotropy in $\Delta \rho_c^{(2)}$ [21]. Using typical values of $\alpha = 0.2$ and $\beta = 0.1$ compatible with band structure calculations [25], we calculated various quantities as a function of ε , the anisotropy of τ in the *a-b* plane, and compared them with the experimental results. Several, but crucially not all, of the observed features agree well with this simple model. Firstly, the maximum MR occurs for **B** \parallel (110) is $\varepsilon > 0$, and so the experimental data imply that τ is shorter along the Cu-O-Cu bond direction. As can be seen in Fig. 3, $(\Delta \rho_c^{(2)} / \rho_c^{(0)})^2$ and $\Delta \rho_c^{(4)} / \rho_c^{(0)}$ have the same T dependence with a ratio of 0.6 ± 0.1 (top inset). For the cylindrical case ($\alpha = \beta = 0$), this ratio is 0.5 [from Eqs. (1) and (2)], but it rises slowly as α and β are increased and for $\alpha = 0.2$ and $\beta = 0.1$, it agrees with experiment for a large range of ε , $0 \le \varepsilon \le 0.7$. If ε is T dependent, the ratio of the angular anisotropy $A/\rho_c^{(0)}$ (where A is the amplitude of the fourfold term in Fig. 2) to the B^4 term $\Delta \rho_c^{(4)} / \rho_c^{(0)}$ should be constant. However, the lower inset to Fig. 3 shows that their ratio falls from 0.15 at 30 K to 0.06 at 125 K. This corresponds to an increase in ε from 0.25 to 0.40 between 30 and 125 K and shows explicitly that the anisotropy in τ is T dependent. This must affect the in-plane transport properties, namely, it will cause R_H to vary with T [3] and lead to deviations from Kohler's rule in the a-b plane MR [13]. However, the detailed calculations [21] show that larger changes in ε are required to account for $R_H(T)$ and the deviations from Kohler's rule shown in Fig. 4(a) (ε needs to increase from 0.50 to 1.25 from 30 to 125 K) than those which account for the Tdependence of the MR anisotropy (ε increasing from 0.25 to 0.4). In addition, further analysis reveals that the magnitude of the *a-b* plane MR, $\Delta \rho_c^{(4)} / \rho_c^{(0)}$, is in

FIG. 3. *T* dependences of $(\Delta \rho^{(2)}/\rho^{(0)})^2$, $\Delta \rho^{(4)}/\rho^{(0)}$, and $A/\rho^{(0)}$ at 10 T for the same *c*-axis crystal as in Fig. 2. $\Delta \rho^{(4)}/\rho^{(0)}$ corresponds to the B^4 term at $\cos 4\phi = 0$ and *A* is the zero-to-peak amplitude of the fourfold symmetry term. Top inset: *T* dependence of $(\Delta \rho^{(4)}/\rho^{(0)})/(\Delta \rho^{(2)}/\rho^{(0)})^2$ for the data in the main figure. Bottom inset: *T* dependence of $A/\rho^{(0)}/(\Delta \rho^{(4)}/\rho^{(0)})$. This plot was obtained by dividing $A/\rho^{(0)}$ by $(\Delta \rho^{(2)}/\rho^{(0)})^2$ and then scaling by 1/0.6. Similar results were obtained for the second crystal.

fact anomalously large. The expected theoretical value for $\sigma_{ab}^{(2)}/\sigma_{ab}^{(0)}$ is $2/(k_Fc)^2$ (i.e., $\approx 1/28$) of $\sigma_c^{(2)}/\sigma_c^{(0)}$. However, $\Delta \rho_{ab}^{(4)}/\rho_{ab}^{(0)}$ should be even smaller than $\sigma_{ab}^{(2)}/\sigma_{ab}^{(0)}$ because of the cancellation between the Hall field and the Lorentz force in the *a-b* plane. Thus the measured value, $\Delta \rho_{ab}^{(4)}/\rho_{ab}^{(0)} \approx \frac{1}{6} (\Delta \rho_c^{(2)}/\rho_c^{(0)})$ is at least 4 and probably 10 times larger than expected from the simple band treatment.

A new ingredient may be required for a consistent explanation of all the unusual in-plane behavior. One possibility [13] is the two-lifetime model, with a transport equation of the form $g_k = \tau_{tr} e E v_k (-\partial f_0/\epsilon) \tau_H e v_k \times B(\partial g_k/\partial k)$, where $\tau_H^{-1}(T)$ follows $\cot \theta_H(T) (=A + BT^2)$ and $\tau_{tr}^{-1}(T)$ is simply proportional to $\rho_{ab}(T)$. Using the Jones-Zener expansion for g_k [13], one finds $\sigma_{ab}^{(2)} \propto \tau_{tr} \tau_H^2$ and thus $\Delta \rho_{ab}^{(2)}/\rho_{ab}^{(0)} \propto \tau_H^2$. Hence within such a model, the Kohler plot of $\Delta \rho_{ab}/\rho_{ab}^{(2)}/\rho_{ab}^{(0)}$ [Fig. 4(a)] actually represents τ_H^2/τ_{tr}^2 , and its variation with temperature reflects the different behavior of the two lifetimes. However, Kohler's rule is obeyed for the *c*-axis MR up to 200 K [see Fig. 4(b)], implying that there is only one lifetime involved in *c*-axis transport. It is not clear how to apply this to the underdoped cuprates where $\rho_c(T)$ is generally nonmetallic. Finally, as shown

FIG. 4. (a) Kohler analysis showing $\Delta \rho_{ab}^{(2)} / \rho_{ab}^{(0)}$ at 10 T for both *a-b* plane crystals shown in Fig. 1. The dashed line is $R_H(T)$ for the same crystal whose Kohler plot is shown by (\diamond). (b) $\Delta \rho_c^{(2)} / \rho_c^{(0)}$ at 10 T for both *c*-axis crystals. (c) Typical T dependences of $\cot\theta_H(\Delta)$, $\sqrt{\rho_c^{(0)}} / \Delta \rho_c^{(2)}$ (\bullet), $\sqrt{\rho_{ab}^{(0)}} / \Delta \rho_{ab}^{(2)}$ (\diamond), and ρ_c (solid line). $\sqrt{\rho_c^{(0)}} / \Delta \rho_c^{(2)}$ has been multiplied by 2.5. The dashed line is provided as a guide only.

in Fig. 4(c), another new result is that the relaxation rate determined from the *c*-axis MR, i.e., $(\sqrt{\rho_c^{(0)}}/\Delta\rho_2^{(2)})$ has a good T^2 dependence up to 340 K, similar to that of $\cot\theta_H(T)$.

In summary, we have reported several new normal state MR effects, including an unusual angular dependence, for overdoped Tl₂Ba₂CuO₆ crystals. It will be interesting to explore these systematically as a function of hole doping and in other compounds, although preliminary studies indicate smaller effects in YBa₂Cu₃O₇ and La_{2-x}Sr_xCuO₄. However, the B^4 dependence of the MR anisotropy should allow these to be observed using high magnetic field facilities. We have shown that some features, including the c-axis MR, are consistent with single-fermion quasiparticle band theory with a large FS and a smoothly varying anisotropy in τ , but detailed agreement is lacking for the in-plane properties; namely, the T dependence of the anisotropy in τ derived from the angular measurements does not account for the observation variation of $R_H(T)$. This observation is particularly significant for an overdoped cuprate, where $R_H(T)$ is much less T dependent than in optimally doped crystals. A two lifetime model can resolve some of these discrepancies, but we have provided direct evidence for in-plane anisotropy and single lifetime effects in the *c*-axis properties which still need to be incorporated into such an approach. Other modifications of the band picture should also be considered, for example, models in which the anisotropy varies *sharply* around the FS, and models in which the normal state pseudogap, or in the overdoped case a small energy scale, is k dependent [4,26].

The authors would like to thank Dr. J. W. Loram and M. J. Lercher for helpful discussions and S. E. Smith for technical assistance. This work is supported by EPSRC.

- *On leave from The Institute of Physics of the University of Zagreb, Croatia.
- [†]Present address: CEA, Department de Recherche Fondementale sur la Matière Condensée, SPSMS/LCP, 17 Rue de Martyrs, 38054 Grenoble, Cedex 9, France. [‡]Present address: Max Planck Institut, Heissenbergstr. 1, 70569 Stuttgart, Germany.
- [1] N.P. Ong, Physica (Amsterdam) 235-240C, 221 (1994).
- [2] P.W. Anderson, Phys. Rev. Lett. 67, 2092 (1991).
- [3] A. Carrington et al., Phys. Rev. Lett. 69, 2855 (1992).
- [4] H. Y. Hwang et al., Phys. Rev. Lett. 72, 2636 (1994).
- [5] T. Manako et al., Phys. Rev. B 46, 11019 (1992).
- [6] A. S. Alexandrov, A. M. Bratkovsky, and N. F. Mott, Phys. Rev. Lett. 72, 1734 (1994).
- [7] C. Kendzoria et al., Phys. Rev. B 46, 14 297 (1992).
- [8] B. P. Stojkovic and D. Pines (to be published); M. J. Lercher and J. M. Wheatley (to be published); R. Hlubina and T. M. Rice, Phys. Rev. B 51, 9253 (1995).
- [9] D. Pines, Physica (Amsterdam) 185–189C, 120 (1991).
- [10] J. R. Cooper and A. Carrington, *Advances in Superconductivity V*, edited by Y. Bando and H. Yamauchi (Springer-Verlag, Tokyo, 1992), p. 95.
- [11] T. R. Chien, Z. Z. Wang, and N. P. Ong, Phys. Rev. Lett. 67, 2088 (1991).
- [12] A. Carrington et al., Phys. Rev. B 48, 13051 (1993).
- [13] J. M. Harris et al., Phys. Rev. Lett. 75, 1391 (1995).
- [14] Y.I. Latyshev, O. Laborde, and P. Monceau, Europhys. Lett. 29, 495 (1995).
- [15] Y.F. Yan et al., Phys. Rev. B 52, R751 (1995).
- [16] N. Kumar and A. M. Jayannavar, Phys. Rev. B 45, 5001 (1992).
- [17] D. G. Clarke, S. P. Strong, and P. W. Anderson, Phys. Rev. Lett. 74, 4499 (1995).
- [18] J. R. Cooper et al., Phys. Rev. B 33, 6810 (1986).
- [19] R. S. Liu et al., Physica (Amsterdam) 198C, 203 (1992).
- [20] R.G. Chambers, Proc. Phys. Soc. A 65, 903 (1952); J.M. Wheatley and J.R. Cooper (unpublished).
- [21] J. M. Wheately (unpublished).
- [22] If there are different lifetimes τ_{ab} and τ_c for current flow in- and out-of-plane, this analysis gives $\sigma_{cc}^{(2)} \propto \tau_c \tau_{ab}^2$ and thus $\sigma_{cc}^{(2)}/\sigma_{cc}^{(0)} \propto \tau_{ab}^2$ by the same argument used later for τ_{tr} and τ_H .
- [23] A.P. Mackenzie et al. (to be published).
- [24] A similar situation was also found for the organics, see L. Forro *et al.*, Phys. Rev. B 29, 2839 (1984).
- [25] D. J. Singh and W. E. Pickett, Physica (Amsterdam) 203C, 193 (1992).
- [26] J. W. Loram et al. (to be published).