
VOLUME 76, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 19 FEBRUARY 1996

ny

ms is
poles
of the

ing this
on the

1212
Excitation Energies from Time-Dependent Density-Functional Theory
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A new density-functional approach to calculate the excitation spectrum of many-electron syste
proposed. It is shown that the full linear density response of the interacting system, which has
at the exact excitation energies, can rigorously be expressed in terms of the response function
noninteracting (Kohn-Sham) system and a frequency-dependent exchange-correlation kernel. Us
expression, the poles of the full response function are obtained by systematic improvement up
poles of the Kohn-Sham response function. Numerical results are presented for atoms.

PACS numbers: 31.15.Ew, 31.50.+w, 32.30.–r
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The traditional density-functional formalism of Hohen
berg, Kohn, and Sham [1,2] is a powerful tool in predic
ing ground-state properties of many-electron syste
[3–5]. The description of excited-state properties with
density-functional theory (DFT), however, is notorious
difficult. Several extensions of ground-state DFT ha
been devised to tackle excited states. They are based e
on the Rayleigh-Ritz principle for the lowest eigenstate
each symmetry class [6–8] or on a variational princip
for ensembles [9–12]. A serious difficulty is that, until to
day, very little is known on how the exchange-correlati
(xc) energy functionals appearing in these approaches
fer from the ordinary ground-state xc energy.

In this Letter we propose a different approach to t
calculation of excitation energies which is based on
time-dependent(TD) version of DFT. TDDFT is by now
a well-established theory: Hohenberg-Kohn and Koh
Sham-type theorems have been proved [13,14] rigor
properties [15,16] and good approximations [17,18] of t
TD xc potential have been found, and the formalism h
been applied rather successfully to the linear and nonlin
photoresponse of a large variety of systems [19].

To extract excitation energies from TDDFT we explo
the fact that the frequency-dependent linear response
finite interacting system has discrete poles at the excita
energiesVm := Em 2 E0 of the unperturbed system. Th
idea is to calculate the shift of the Kohn-Sham orbi
energy differencesvjk := ej 2 ek (which are the poles
of the Kohn-Sham response function) towards the t
excitation energiesVm in a systematic fashion. To thi
end we first derive a formally exact representation of t
linear density responser1srvd in terms of the Kohn-Sham
response function and a frequency-dependent xc ker
which will then be used to calculate the shifts of the pol

We consider interacting many-electron systems sub
to external potentialsyextsrtd ­ y0srd 1 y1srtd, where
y0srd denotes the static external potential of the unp
turbed system (typically the nuclear Coulomb potenti
andy1srtd is a time-dependent external perturbation. T
unperturbed many-body state is assumed to be theground
state corresponding toy0srd. Then, trivially, the time-
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dependent densityrsrtd is a functional of the external
potentialrsrtd ­ rfyextg srtd. The fundamental one-to-
one correspondence between time-dependent densities
time-dependent potentials demonstrated by Runge a
Gross [13] guarantees that the functionalrfyextg can be
inverted, i.e.,yextsrtd ­ yextfrg srtd. In terms of the two
functionals rfyextg and yextfrg, the density-density re-
sponse function can be expressed as a functional deriva

xsrt, r0t0d ­
drfyextg srtd

dyextsr0t0d

Ç
yextfr0g

(1)

to be evaluated at thestatic external potential corre-
sponding to the unperturbed ground-state densityr0, i.e.,
yextfr0g ­ y0. The linear density responser1srtd to the
perturbationy1srtd is then given by

r1srtd ­
Z

dt0
Z

d3r 0 xsrt, r0t0dy1sr0t0d . (2)

For noninteractingparticles moving in some external po
tential yssrtd, the Runge-Gross theorem holds as we
Therefore the functionalrsrtd ­ rfysg srtd can be in-
verted,yssrtd ­ ysfrg srtd, and the Kohn-Sham respons
function, i.e., the density-density response function of no
interacting particles with unperturbed densityr0, is

xssrt, r0t0d ­
drfysg srtd

dyssr0t0d

Ç
ysfr0g

. (3)

Hence, each external potentialyext uniquely determines a
densityrfyextg which, in turn, uniquely determines anothe
potentialysfffrfyextgggg such that the density of noninteract
ing particles moving inyssrtd is identical with the density
of Coulomb-interacting particles moving in the externa
potentialyextsrtd. The potentialyssrtd corresponding to a
given yextsrtd is termed the time-dependent Kohn-Sha
potential and is usually written asyssrtd ­ yextsrtd 1

yHsrtd 1 yxcsrtd, whereyHsrtd ­
R

d3r 0 rsr0tdyjr 2 r0j

is the time-dependent Hartree potential (atomic units a
used throughout) andyxc denotes the time-dependent x
potential. Defining a time-dependent xc kernel by

fxcfrg srt, r0t0d := dyxcfrg srtdydrsr0t0d (4)
© 1996 The American Physical Society
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and employing the functional chain rule to calculate the response function (1),

xsrt, r0t0d ­
Z

d3x
Z

dt
drsrtd

dyssxtd
dyssxtd

dyextsr0t0d

Ç
yextfr0g

, (5)

one obtains, by inserting Eqs. (3) and (4), a Dyson-type equation relating the noninteracting and interacting re
functions to each other:

xsrt, r0t0d ­ xssrt, r0t0d 1
Z

d3x
Z

dt
Z

d3x0
Z

dt0 xssrt, xtd
µ

dst 2 t0d
jx 2 x0j

1 fxcfr0g sxt, x0t0d
∂

xsx0t0, r0t0d. (6)

Multiplying both sides of Eq. (6) withy1sr0t0d and integrating overr0t0 yields, by virtue of Eq. (2),

r1srtd ­
Z

dt0
Z

d3r 0 xssrt, r0t0dys,1sr0t0d , (7)

with

ys,1srtd ­ y1srtd 1
Z

d3r 0 r1sr0td
jr 2 r0j

1
Z

d3r 0
Z

dt0 fxcfr0g srt, r0t0dr1sr0t0d . (8)

We emphasize that Eqs. (7) and (8), postulated in previous work [17,20,21], constitute an exact representatio
linear density response, i.e., theexactlinear density responser1srtd of an interacting system can be written as the line
density response of anoninteractingsystem to the effective perturbationys,1srtd. Combining Eqs. (7) and (8) and taking
the Fourier transform with respect to time, theexactfrequency-dependent linear density response can be written as

r1srvd ­
Z

d3r 0 xssr, r0; vd

"
y1sr0vd 1

Z
d3x

√
1

jr0 2 xj
1 fxcfr0g sr0, x; vd

!
r1sxvd

#
. (9)

The Kohn-Sham response functionxssr, r0; vd is readily expressed in terms of the static unperturbed Kohn-Sham orb
wj . For spin-saturated unperturbed states it is given by

xssr, r0; vd ­ 2
X
j,k

snk 2 njd
w

p
ksrdwjsrdwp

j sr0dwksr0d
v 2 vjk 1 id

, (10)

wherenk , nj are the Fermi-occupation factors (1 or 0). As a function ofv, xs has poles at the Kohn-Sham orbital-energ
differencesvjk. In order to calculate the shift towards the true excitation energyV we rewrite Eq. (9) asZ

d3x

"
dsr 2 xd 2

Z
d3r 0 xssr, r0; vd

√
1

jr0 2 xj
1 fxcfr0g sr0, x; vd

!#
r1sxvd ­

Z
d3r 0 xssr, r0; vdy1sr0vd .

(11)

Since the true excitation energiesV are generally not identical with the Kohn-Sham excitation energiesvjk , the right-
hand side of Eq. (11) remains finite forv ! V. The exactdensity responser1, on the other hand, has poles at th
true excitation energiesv ­ V. Hence the integral operator acting onr1 on the left-hand side of Eq. (11) cannot b
invertible for v ! V [22]. The true excitation energiesV can therefore be characterized as those frequencies w
the eigenvalues of this integral operator vanish or, equivalently, where the eigenvalueslsvd ofZ

d3r
Z

d3r 0 xssx, r; vd

√
1

jr 2 r0j
1 fxcfr0g sr, r0; vd

!
z sr0vd ­ lsvdz sxvd (12)

satisfylsVd ­ 1. This condition rigorously determines the true excitation spectrum of the interacting system at
So far, no approximations have been made. One possibility to actually calculateV is to expand all quantities appearin
in Eq. (12) about one particular Kohn-Sham energy differencevn := vjk :

xssx, r; vd ­ 2an

FnsxdFp
nsrd

v 2 vn

1 2
X

kfin

ak

FksxdFp
ksrd

vn 2 vk 1 id
1 · · · ,

fxcfr0g sr, r0; vd ­ fxcfr0g sr, r0; vnd 1
dfxcfr0g sr, r0; vd

dv

Ç
vn

sv 2 vnd 1 · · · ,

z sxvd ­ z sxvnd 1
dz sxvd

dv

Ç
vn

sv 2 vnd 1 · · · ,
1213
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lsvd ­ Asvndysv 2 vnd 1 Bsvnd 1 · · · , (13)

where the double indexn := s j, kd labels the single-
particle transitionsk ! jd. Furthermore, we have defined
Fnsrd := wksrdpwjsrd, and an := nk 2 nj. Assuming
that the true excitation energyV is not too far away
from vn it will be sufficient to consider only the lowest-
order terms of the above Laurent expansions. Insert
the Laurent expansions ofxs, fxc, z , andl into Eq. (12),
the coefficientsA andB are readily identified asAsvnd ­
Mnnsvnd and

Bsvnd ­
dMnn

dv

Ç
vn

1
1

Mnnsvnd

3
X

kfin

MnksvndMknsvnd
vn 2 vk 1 id

, (14)

where the matrix elementsMkn are

Mknsvd ­ 2an

Z
d3r

Z
d3r 0 Fp

ksrd

3

µ
1

jr 2 r0j
1 fxcsr, r0; vd

∂
Fnsr0d . (15)

The conditionlsVd ­ 1 and its complex conjugate then
lead, in lowest order, to

V ­ vn 1 RMnn . (16)

Since B involves a summation over an infinite set o
single-particle transitions (including transitions to the co
tinuum), it is difficult to calculate this term. In order to
estimate the importance of this and higher-order con
butions, we took a different route: Rather than expres
ing all quantities by Laurent expansions, we approxima
the response functionxs by a finite sum xssx, r; vd ø
2

PK
k akFksxdFp

ksrdysv 2 vkd. This leads to aK 3 K
matrix equation whose solutions turn out to be rather clo
to the lowest-order results obtained from Eq. (16). Th
suggests that the sum of all higher-order terms of t
Laurent expansion (13) gives only a small correction.

Apart from the truncations, two further approximation
are necessary: (i) The frequency-dependent xc kernelfxc

has to be approximated. (ii) The static Kohn-Sham o
bitals entering Eq. (16) have to be calculated with anap-
proximate(static) potentialystat

xc . As a test of the method,
we have calculated the lowest excitation energies for
alkaline earth elements and the zinc series. Here,
s 1S ! p 1P transitions under consideration are threefo
degenerate in the magnetic quantum numberm of the “fi-
nal” state. In principle, for degenerate Kohn-Sham eige
valuesej or ek the expansions about the correspondin
Kohn-Sham pole yield matrix equations for the coefficien
in Eq. (13) which can lead to several different correctio
of a singlevn , thus describing the multiplet splittings. In
our case, however, the three possible corrections are id
tical, as they should be. We have performed two calcu
tions, both based on Eq. (16). The first one employs t
ordinary local density approximation (LDA) forystat

xc and
the so-called TDLDA, also known as “adiabatic” LDA [23
1214
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for fxc (both using the parametrization of Vosko, Wilk, an
Nusair [24]). The second calculation uses thex-only op-
timized effective potential (OEP) forystat

xc in the approxi-
mation of Krieger, Li, and Iafrate (KLI) [25] and forfxc

fOEP
xc fr0g sr, r0; vd ­ 2

2j
P

k nkwksrdwp
k sr0dj2

jr 2 r0jr0srdr0sr0d
. (17)

The latter is based on the recently proposed tim
dependent OEP method [18] where the xc potential is
explicit functional of time-dependent orbitals. A calcula
tion analogous to Eqs. (1)–(6) involving the derivative
dyOEP

xc ydcjsrtd shows that in the time-dependent OE
theory the crucial Eq. (6) holds for the quantityfOEP

xc
defined throughZ `

t
dt0

Z
d3r 0

X
jk

hwjsrdwp
j sr0dwksr0dwp

k srde2ivjkst2t0d

3 fnjfOEP
xc syt, r0t0d 2 gs jd

xc syt, r0t0dg 2 c.c.j ­ 0 , (18)

where

gs jd
xc syt, r0t0d ­

∑
1

2c
p
j sr0t0d

dyOEP
xc sytd

dcjsr0t0d

∏
cj std­wje2iej t

.

(19)

Equation (18) is formally identical with the integral equa
tion for the time-dependent OEP xc potential [18] wit
yOEP

xc sr0t0d and uxcjsr0t0d replaced byfOEP
xc syt, r0t0d and

gs jd
xc syt, r0t0d, respectively. A simple analytical approxi

mation toyOEP
xc is given by

yappr
xc srtd ­

X
j

jcjsrtdj2

2rsrtd
fu0

xcjsrtd 1 u0p
xcjsrtdg , (20)

whereuxcj ­ fdAxcydcjsrtdgyc
p
j srtd, with the xc part

Axc of the quantum mechanical action functional. Ap
plying this approximation to (18), i.e., setting

fappr
xc syt, r0t0d ­

X
j

jwjsrdj2

2rsrd
fgs jd

xc syt, r0t0d 1 c.c.g

(21)

and using the explicit analytical form (20) to evalua
(19), one arrives at the compact expression (17) ifAxc
is approximated by the TD Fock term (TD x-only ap-
proximation). In general, the Fourier transform of the x
kernel defined by Eq. (18) is frequency dependent (ev
in the TD x-only case), a feature which is not accounte
for in the present treatment of this equation. However, f
the special case of a two-electron system treated wit
TD x-only theory, Eqs. (17) and (20) are theexact so-
lutions of the respective integral equations, as is eas
checked.

In Table I the excitation energies calculated fro
Eq. (16) are compared with experimental values. T
OEP values are clearly superior to the LDA results and a
also better than the usualDSCF values. The unoccupied
orbitals and their energy eigenvalues are very sensitive
the behavior of the potential far from the nucleus. On
major reason for the superiority of the OEP is the fa
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TABLE I. The lowest1S ! 1P excitation energies of variou
atoms. The experimental values (first column) [30] are co
pared with results calculated from Eq. (16) within LDA an
OEP (second and third columns, respectively) and with o
nary DSCF values (fourth column). The corresponding Koh
Sham orbital-energy differencesvn are shown in the last two
columns (all values in rydbergs).

Atom Vexp VLDA VOEP VsDSCF d vLDA
n vOEP

n

Be 0.388 0.399 0.392 0.331 0.257 0.25
Mg 0.319 0.351 0.327 0.299 0.249 0.23
Ca 0.216 0.263 0.234 0.211 0.176 0.1
Zn 0.426 0.477 0.422 0.403 0.352 0.31
Sr 0.198 0.241 0.210 0.193 0.163 0.14
Cd 0.398 0.427 0.376 0.346 0.303 0.26

that it is self-interaction free and therefore has the corr
21yr tail (while the LDA potential falls off exponen
tially). An important point is that the OEP decreas
correctly for all orbitals. For this reason, thex-only OEP
is also superior to the Hartree-Fock (HF) potential wh
is self-interaction free only for the occupied orbita
but not for unoccupied ones. As a consequence,
orbital-energy differences are typically too large.

In spite of the fact that we focused on the situation
closed shells and singlet terms, the method is also cap
of describing spin-flip processes and excitations in op
shell atoms, if a spin-dependent exchange-correla
kernel [26] is used. More detailed results for atoms
well as molecules will be presented elsewhere [27].

We emphasize that the calculation of excitation e
ergies from Eq. (16) involves onlyknown ground-state
quantities, i.e., the ordinary Kohn-Sham orbitals and
corresponding Kohn-Sham eigenvalues. Thus our sch
requires only one self-consistent Kohn-Sham calculati
whereas the so-calledDSCF procedure involves linea
combinations of two or more self-consistent total energ
[7]. So far, the best results are obtained with the op
mized effective potential forystat

xc in the KLI x-only ap-
proximation. Further improvement is expected from t
inclusion of correlation terms [28,29] in the OEP. Wo
along these lines is in progress.

We thank Dr. E. Engel for supplying us with his atom
Kohn-Sham code and T. Grabo for the implementat
of the KLI potential. Many valuable discussions wi
K. Capelle, M. Lüders, and C. A. Ullrich are gratefully a
knowledged. We thank the Deutsche Forschungsgem
schaft for partial financial support.
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