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Excitation Energies from Time-Dependent Density-Functional Theory
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A new density-functional approach to calculate the excitation spectrum of many-electron systems is
proposed. It is shown that the full linear density response of the interacting system, which has poles
at the exact excitation energies, can rigorously be expressed in terms of the response function of the
noninteracting (Kohn-Sham) system and a frequency-dependent exchange-correlation kernel. Using this
expression, the poles of the full response function are obtained by systematic improvement upon the
poles of the Kohn-Sham response function. Numerical results are presented for atoms.

PACS numbers: 31.15.Ew, 31.50.+w, 32.30.—r

The traditional density-functional formalism of Hohen- dependent density(rs) is a functional of the external
berg, Kohn, and Sham [1,2] is a powerful tool in predict-potential p(rt) = p[vex ] (rf). The fundamental one-to-
ing ground-state properties of many-electron systemsne correspondence between time-dependent densities and
[3-5]. The description of excited-state properties withintime-dependent potentials demonstrated by Runge and
density-functional theory (DFT), however, is notoriously Gross [13] guarantees that the functiopdqib.. ] can be
difficult. Several extensions of ground-state DFT havenverted, i.e.pex(rt) = vex[p](rt). Interms of the two
been devised to tackle excited states. They are based eitifenctionals p[vex | and vex[p], the density-density re-
on the Rayleigh-Ritz principle for the lowest eigenstate ofsponse function can be expressed as a functional derivative
each symmetry class [6—8] or on a variational principle 5 p[ven] (rt)
for ensembles [9—12]. A serious difficulty is that, until to- x(rt,r't) = pe—“” (1)
day, very little is known on how the exchange-correlation Svext (')l fpo)
(xc) energy functionals appearing in these approaches dite be evaluated at thstatic external potential corre-
fer from the ordinary ground-state xc energy. sponding to the unperturbed ground-state densityi.e.,

In this Letter we propose a different approach to thev.,,[po] = vo. The linear density respongg(rt) to the
calculation of excitation energies which is based on gerturbationv;(rt) is then given by
time-dependenfTD) version of DFT. TDDFT is by now
a well-established theory: Hohenberg-Kohn and Kohn- pi1(rt) = j d,/] & x et 't 't).  (2)
Sham-type theorems have been proved [13,14] rigorous
properties [15.'16] and good approximations [17’1‘3] of the- noninteractingparticles moving in some external po-
TD xc potential have been found, and the formalism hagepia| 4 (rf), the Runge-Gross theorem holds as well.
been applied rathersuccessfglly to the linear and nonlineaf, o afore the functionap (rt) = p[v,](rt) can be in-
photoresponse of a large variety of systems [19]. verted,v, (r1) = v,[p](r7), and the Kohn-Sham response

To extract excitation energies from TDDFT we exploit function, i.e., the density-density response function of non-

t.h‘? fa_ct that Fhe frequency-delpendent linear response inﬁteracting particles with unperturbed density, is
finite interacting system has discrete poles at the excitation o] (e1)
oplu,](re

energied},, := E,, — E, of the unperturbed system. The ®)
Sus(X't") lu,pn)

idea is to calculate the shift of the Kohn-Sham orbital
Hence, each external potentiak, uniquely determines a

energy differencesvx := €; — € (which are the poles
of the Kohn-Sham response function) towards the tru%ensityp[vext]which, in turn, uniquely determines another
otentialv,[ p[vex ]] Such that the density of noninteract-

excitation energies),, in a systematic fashion. To this
end we first derive a formally exact representation of th ng particles moving irv, (rf) is identical with the density
f Coulomb-interacting particles moving in the external

linear density responss (rw) in terms of the Kohn-Sham
otentialvex(rz). The potentiab,(rz) corresponding to a

response function and a frequency-dependent xc kern
which will then be used to calculate the shifts of the poles .. - veu(rt) is termed the time-dependent Kohn-Sham
otential and is usually written as;(rt) = vex(rr) +

xs(rt,x't’) =

We consider interacting many-electron systems subje
to external potentialwey (rt) = vo(r) + vy(rt), where N, /

; . : vu(re?) + vy (rt), wherevy(rt) = [d*r' p(x't)/Ir — r/|

vo(r) denotes the “.Q‘tat'c external potential of the UNPerss the time-dependent Hartree potential (atomic units are
turged( s;)/stem (typlézally tge nuclear Clioulomtl)) pOtent"';:l)used throughout) and,. denotes the time-dependent xc

andv,(r?) is a time-dependent external perturbation. The : - .

unperturbed many-body state is assumed to bethend potential. Defining a time-dependent xc kernel by

state corresponding tavo(r). Then, trivially, the time- Fxelplt, X'ty == vy [p](xt)/Sp(x't) 4)
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and employing the functional chain rule to calculate the response function (1),

X(rt,l'/t')=fd3x[dr Sp(rt) OSvs(xT)

OV (XT) Svey (X't

(5)

b
vexi[po]

one obtains, by inserting Egs. (3) and (4), a Dyson-type equation relating the noninteracting and interacting response
functions to each other:

x(t,r't’)y = y,(rt,x't’) —Ffd3 ]dr]d3 'fdr xs(re, xr)( |( |) Fxelpol (x7, XT'))X(X'T',r’t’). (6)

Multiplying both sides of Eq. (6) with/;(r’t') and integrating over’t’ yields, by virtue of Eq. (2),

rt)—fdt fd3r xs(rt, 't (x't), @)

with
varte) = witen + [ P [ [ fulpod e i), (®)

We emphasize that Egs. (7) and (8), postulated in previous work [17,20,21], constitute an exact representation of the
linear density response, i.e., tgactlinear density response, (r¢) of an interacting system can be written as the linear
density response ofroninteractingsystem to the effective perturbation(rz). Combining Egs. (7) and (8) and taking

the Fourier transform with respect to time, #eactfrequency-dependent linear density response can be written as

pilrw) = ] d3r’)(s(r,r’;w)[v1(r’w) + ]d3x<|r/ 1_ i fxelpo] (r’,x;w)>p1(xw)] ©)

The Kohn-Sham response functigi(r, r’; w) is readily expressed in terms of the static unperturbed Kohn-Sham orbitals
¢;. For spin-saturated unperturbed states it is given by

sok(r)qo (@)@ (r)er(r')
w — wj +i6

xs(r, ' w) = ZZ(nk — nj) , (10)
whereny, n; are the Fermi-occupation factors (1 or 0). As afunctiomofy, has poles at the Kohn-Sham orbital-energy
differencesw jx. In order to calculate the shift towards the true excitation enérgye rewrite Eq. (9) as

/ d%{a(r —x- d3r’x‘v(r,r’;w)<ﬁ +fxc[po](r',x;w))}pl(xw) ~ [ @t ome).
(11)

Since the true excitation energi€s are generally not identical with the Kohn-Sham excitation energigsthe right-

hand side of Eq. (11) remains finite far — (). The exactdensity responsg;, on the other hand, has poles at the
true excitation energie® = (). Hence the integral operator acting pn on the left-hand side of Eq. (11) cannot be
invertible forw —  [22]. The true excitation energig€3 can therefore be characterized as those frequencies where
the eigenvalues of this integral operator vanish or, equivalently, where the eigenyahiesf

e d3r’Xs(X,r;w)<|r o+ Aol (r,r';w>);<r/w> ~ A@)(x0) (12

satisfy A(2) = 1. This condition rigorously determines the true excitation spectrum of the interacting system at hand.
So far, no approximations have been made. One possibility to actually cal€uiateo expand all quantities appearing
in Eq. (12) about one particular Kohn-Sham energy differange= w j;:

) g PR D))
xs(X,r;0) = 2a, P +2K§_V o — ot 0o + o,
Frlpol (1.8 0) = fuclpol (.5 ,) + LA ELON )
{(50) = £x) + X |y
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Mo) =Alw,)/(0 — w,) + Blw,) + -, (13)  for fx. (both using the parametrization of Vosko, Wilk, and
where the double indew := (j,k) labels the single- Nusair [24]). The second calculation uses xhenly op-
particle transitior(k — j). Furthermore, we have defined timized effective potential (OEP) fary " in the approxi-
D, (r) = ¢p(r)*@;(r), and a, :=n; — n;. Assuming mation of Krieger, Li, and lafrate (KLI) [25] and fofi.
that the true excitation energ{) is not too far away OEP Lo 22 meer(m)er(e)?
from w, it will be sufficient to consider only the lowest-  Jxe [Pol(F. X5 @) = — It — rlpo(®)po(r’)
order terms of the above Laurent expansions. Insertin
the Laurent expansions gf;, fx., {, andA into Eq. (12),
the coefficientsA and B are readily identified ad(w,) =
MVV(a)V) and

(17)

%he latter is based on the recently proposed time-
dependent OEP method [18] where the xc potential is an
explicit functional of time-dependent orbitals. A calcula-

tion analogous to Egs. (1)—(6) involving the derivatives

Blw,) = dM,, 1 S5vQEP/54;(rt) shows that in the time-dependent OEP
@ do |,, M, (w,) theory the crucial Eq. (6) holds for the quantifip=?
defined through
% Z MVK(wV)MKV(wV) , (14)

F, 0w, — o+ id

R R Y O T I
t Jjk

X [ fOEP (yr,v't') — gl (yr,x't))] — c.c} = 0, (18)

XC

where the matrix elemenid,., are
= 3 3.0 *
Mnlo) = 2, [ @ [ a0 o
! 5U§’CEP(YT)}
21,0;(1'/[/) 6¢j(rlt/) ¢/(l)=¢7,’67/f/’ )

% <ﬁ + fxc(r,r’;w)>q)y(r/), (15) gD (yr,r't) = [

The conditionA(Q) = 1 and its complex conjugate then (19)
lead, in lowest order, to Equation (18) is formally identical with the integral equa-
Q=w,+RM,,. (16) tion for the time-dependent OEP xc potential [18] with

OEP (./4/ (! 4! OEP 141
Since B involves a summation over an infinite set of U?c (r't") and uxe; (r't’) replaced byf;™ (yr,r't) and

. : " , . . i) 14l i ' ' i
single-particle transitions (including transitions to the con-8xc (y7,r't), respectively. A simple analytical approxi

. o eSPe
tinuum), it is difficult to calculate this term. In order to Mation tovy™ is given by

estimate the importance of this and higher-order contri- ly;(e)|* "
butions, we took a different route: Rather than express- Vxe' () = Z 2p(r1) e (1) + thye;(X1)]. - (20)
ing all quantities by Laurent expansions, we approximate J . .
the response functioy, by a finite sum y,(x,r;w) ~  Whereuse; = [8 Axc/84;(r1)]/4; (r1), with the xc part

25K 4 @, (x)®*(r)/(w — w,). Thisleadsto & X K A, of the quantum mechanical action functional. Ap-

matrix equation whose solutions turn out to be rather clos@!Ying this approximation to (18), i.e., setting
to the lowest-order results obtained from Eq. (16). This lg,(r)]?
suggests that the sum of all higher-order terms of the [P (yr,x't') = ZT(F)
Laurent expansion (13) gives only a small correction. i ep
Apart from the truncations, two further approximations (21)
are necessary: (i) The frequency-dependent xc kefpel and using the explicit analytical form (20) to evaluate
has to be approximated. (ii) The static Kohn-Sham or{19), one arrives at the compact expression (17Jif.
bitals entering Eq. (16) have to be calculated withagn  is approximated by the TD Fock ternrTD x-only ap-
proximate(static) potentiab®'. As a test of the method, proximation). In general, the Fourier transform of the xc
we have calculated the lowest excitation energies for th&ernel defined by Eq. (18) is frequency dependent (even
alkaline earth elements and the zinc series. Here, thim the TD x-only case), a feature which is not accounted
s 'S — p 'P transitions under consideration are threefoldfor in the present treatment of this equation. However, for
degenerate in the magnetic quantum numbenf the “fi-  the special case of a two-electron system treated within
nal” state. In principle, for degenerate Kohn-Sham eigenTD x-only theory, Egs. (17) and (20) are thlxact so-
valuese; or €, the expansions about the correspondingutions of the respective integral equations, as is easily
Kohn-Sham pole yield matrix equations for the coefficientschecked.
in Eq. (13) which can lead to several different corrections In Table | the excitation energies calculated from
of a singlew,,, thus describing the multiplet splittings. In Eg. (16) are compared with experimental values. The
our case, however, the three possible corrections are ide@EP values are clearly superior to the LDA results and are
tical, as they should be. We have performed two calculaalso better than the usudlscg values. The unoccupied
tions, both based on Eg. (16). The first one employs therbitals and their energy eigenvalues are very sensitive to
ordinary local density approximation (LDA) fari*' and the behavior of the potential far from the nucleus. One
the so-called TDLDA, also known as “adiabatic” LDA [23] major reason for the superiority of the OEP is the fact
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TABLE I. The lowest'S — P excitation energies of various [3] R.G. Parr and W. YangPensity-Functional Theory of
atoms. The experimental values (first column) [30] are com- Atoms and MoleculegOxford University Press, New
pared with results calculated from Eq. (16) within LDA and York, 1989).

OEP (second and third columns, respectively) and with ordi- [4] R.M. Dreizler and E.K.U. GrossPensity Functional
nary Ascr values (fourth column). The corresponding Kohn- Theory(Springer-Verlag, Berlin, Heidelberg, 1990).
Sham orbital-energy differences, are shown in the last two [5] Density Functional Theoryedited by E.K.U. Gross and

columns (all values in rydbergs). R. M. Dreizler (Plenum Press, New York, 1995).
Atom Qg  QFPA QOB Q(Agcr) wlPA @OFP [6] O. Gunnarsson and B.I. Lundgvist, Phys. ReviB 4274

(1976).
I\B/IZ 82?98 8;’593 833372 82393; 822297 822?‘?2 [7] T. Ziegler, A. Rauk, and E. J. Baerends, Theor. Chim. Acta

43, 261 (1977).
Ca 0.216 0.263 0.234 0.211 0.176  0.157
7n 0426 0477 0422 0.403 0352 0314 [8] U. von Barth, Phys. Rev. 20, 1693 (1979).

Sr 0198 0241 0210 0193 0163 0141 [9] A.K. Theophilou, J. Phys. 12, 5419 (1979); N. Had-

jisavvas and A. Theophilou, Phys. Rev.3®, 720 (1985).
Cd 0.398 0.427 0.376 0.346 0.303 0.269 [10] W. Kohn, Phys. Rev. /84, 737 (1986).

[11] E.K.U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A

.. . . 37, 2805 (1988)37, 2809 (1988).
that it is self-interaction free and therefore has the correqtlz] L.N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. A

—1/r tail (while the LDA potential falls off exponen- 37, 2821 (1988).
tially). An important point is that the OEP decreases[13] Erich Runge and E.K.U. Gross, Phys. Rev. L&, 997
correctly for all orbitals. For this reason, theonly OEP (1984).

is also superior to the Hartree-Fock (HF) potential which[14] O.-J. Wacker, R. Kimmel, and E.K. U. Gross, Phys. Rev.
is self-interaction free only for the occupied orbitals Lett. 73, 2915 (1994).
but not for unoccupied ones. As a consequence, HES] J.F. Dobson, Phys. Rev. Leit3, 2244 (1994).
orbital-energy differences are typically too large. [16] G. Vignale, Phys. Rev. Letf74, 3233 (1995).
In spite of the fact that we focused on the situation ofl1’] Iigg:_'srgzz aEndl\gvéGKohn, Phys. Rev. Lef5, 2850
closed shells and singlet terms, the method is also capabﬂfS] ( )57, (E) ( )
n-

o T L ; C.A. Ullrich, U.J. Gossmann, and E.K.U. Gross, Phys.
of describing spin-flip processes and excitations in ope Rev. Lett.74, 872 (1995).

shell atoms, if a spin-dependgnt exchange-correlatiorlg] For a recent review, see E.K.U. Gross, C.A. Ullrich, and
kernel [26] is used. More detailed results for atoms as ~ u.J. Gossmann, in Ref. [5], p. 149ff.

well as molecules will be presented elsewhere [27]. [20] T. Ando, Z. Phys. B26, 263 (1977).

We emphasize that the calculation of excitation en{21] A. Zangwill and P. Soven, Phys. Rev.24, 1561 (1980).
ergies from Eg. (16) involves onliknown ground-state [22] If the integral operator were invertible, one could act with
quantities, i.e., the ordinary Kohn-Sham orbitals and the  the inverse operator on Eq. (11) leading tdirite result
corresponding Kohn-Sham eigenvalues. Thus our scheme ;Z::ta;h; Q ‘;2 :L‘g lré?thﬁgsgdsi(sj'geh';‘scggt;?g:t“°”Qto the
requires only one self-consistent Kohn-Sham calculation P ’ N st 22
whereas the so-calledscr procedure involves linear (23] E-K.U. Gross and W. Kohn, imdvances in Quantum

combinations of two or more self-consistent total energies fggg istry edited by S.B. Trickey (Academic, San Diego,

[7]. So far, the best results are obtained with the opti-[24] S.H. Vosko, L. Wilk, and M. Nusair, Can. J. Phy8
mized effective potential for! in the KLI x-only ap- 1200 (1980). ’ ’ '

proximation. Further improvement is expected from the[25] J.B. Krieger, Y. Li, and G.J. lafrate, Phys. Rev. 45,

inclusion of correlation terms [28,29] in the OEP. Work 101 (1992).

along these lines is in progress. [26] K.L. Liu and S.H. Vosko, Can. J. Phy87, 1015 (1989).
We thank Dr. E. Engel for supplying us with his atomic [27] M. Petersilka, U.J. Gossmann, and E.K.U. Gross (to be

Kohn-Sham code and T. Grabo for the implementation  published).

of the KLI potential. Many valuable discussions with [28] T. Grabo and E.K.U. Gross, Chem. Phys. Le#0, 141

K. Capelle, M. Liders, and C. A. Ullrich are gratefully ac- (1995); 241, 635(E) (1995).

129] E.K.U. Gross, M. Petersilka, and T. Grabo, in “Density
knowledged. 'We_ than!< the Deutsche Forschungsgemelr[lz Functional Methods in Chemistry,” edited by T. Ziegler
schatft for partial financial support.

(American Chemical Society, Washington, DC, to be

published).
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