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Unitary Evolution between Pure and Mixed States
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We propose an extended quantum mechanical formalism that is based on a wave @pevdtmh
is related to the ordinary density matrix via= ¢9*t. This formalism allows a (generalized) unitary
evolution between pure and mixed states. It also preserves much of the connection between symmetries
and conservation laws. The new formalism is illustrated for the case of a two-level system.

PACS numbers: 03.65.Bz

Several proposals motivated by various considerationsome extent, due to non-quantum-mechanical corrections.
for generalizing the quantum mechanical formalism haveRelated modifications were also proposed in connection
been made to date. In these programs one disposegth the “measurement problem,” in order to generate a
of a fundamental quantum mechanical principle such agson Neumann reduction for macroscopic systems [11,12].
linearity, locality, or unitarity. Weinberg suggested a In what follows, we propose a different approach. It
nonlinear generalization, and proposed precision tests @$ also based on the Liouville equation but not for the
nonlinear corrections to quantum mechanics [1]. Mo-ordinary density matrix. It constitutes a linear, local,
tivated by the apparent breakdown of unitarity in theand unitary extension of quantum mechanics. To this
black-hole evaporation process, Hawking proposed that and, consider the density matrix in ordinary quantum
synthesis of quantum mechanics and general relativity renechanics and focus first on the case of a pure state. By
quires giving up unitarity [2], and to some extent local- analogy with the relatiorp = |¢) (|, let us define the
ity [3]. A model which gives up both properties was operatorp by [13]
constructed by Marinov [4]. As a linear and local phe- p=pot. )
nomenological implementation of Hawking's proposal
Ellis, Hagelin, Nanopoulos, and Srednicki (EHNS) [5], R N
and Banks, Peskin, and Susskind (BPS) [6] suggested a iho,0 =[H,Q], 3)
modified Liouville equation for the density matrix it is easy to see that the density matgix= 9001 also

In particular, BPS showed that the requirements of lin-satisfies a Liouville equation with the same Hamiltonian.
earity, locality in time, and conservation of probabilities The initial condition may be specified in terms of the
lead to a modified equation with a “generic form”: “square root operatorp

'If ¢ satisfies a Liouville equation

0, rather thanp. Thus, if the
iha,p = [H,p] system is determined at= 7y by an ordinary complete
! ’ set of measurements to be in the stéfg) (or p =

n l.z B (OmOnp + pOmOn — 2020 Om) . lpo) (bol), this sets the initial condition for Eq. (3),
1) &(t = 10) = lyo) (wol . (4)

Here, O, are any Hermitian operators, arig,, is a c-

number Hermitian matrix. A sufficient but not necessary

condition ensuring the positivity o is that the matrix

h is positive. Equation (1) does not preservye’tr Thus

pure states can indeed evolve to mixed states [7].
Similar equations can be obtained from ordinary quan

tum mechanics for a subsystem interacting with an envi- (A) = trAp _ trAQ (5)

ronment [8]. Nevertheless, when gravity is involved, one trp tro

can argue that the relevant “microenvironment” is hidden ) )

by black-hole horizons and is principle unobservable. H€nce Egs. (2)—(5) are equivalent to ordinary quantum

This would render Eq. (1) a fundamental modification ofMechanics [14]. _ ,

guantum mechanics, rather than an artifact of interactin% It is therefore interesting to question whether Eqg. (3)

with an environment. an now be used as a new starting point for. a quantum
Modified evolutions such as (1) were applied in variousM&chanical extension. We shall assume t@ais from

cases. EHNS proposed that the corrections induceOW ©n @ general operator (not necessarily a projector)

might be observed in the ultrasensitivg-K, system. still obeying the |n|t|_al condition (4), and that expectation

Furthermore, Ellis, Mavromatos, and Nanopolous [9]’values are still obtained by the standard expression

and Huet and Peskin [10] examined the possibility that (A = trAp (©6)

the observedCP violation in the Ky-K, system is, to trp

Now we observe that (2) and (4) implg(r = 1) =

0(r = 1y), and since both quantities obey the same
equation of motion, this relation holds at any subsequent
time. The expectation values of any observabldas
obtained by the standard expression
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The density matrix, however, is from now on obtained viaEq. (7) in the Hilbert space. For simplicity, let us
p=00". consider a system with a finitd\-dimensional Hilbert

The Hermiticity and positivity ofp is automatically en- space and perform the extension described above. The ex-
suredbyp = 9o1t. The modified equation must conserve tended,N2-dimensional Hilbert spacé can be spanned
probabilities, i.e.,0,trp = a,tro 91 = 0, but not neces- by a Hermitian basis oN?> — 1 SU(N) matrices and the
sarily purity. The most general linear [15] and local gen-unit operator,

eralization of Eq. (3) which satisfies this condition can be R 1
written as ¢=5 (0ol + 0:Ty), (12)

70,0 = 0]+ Lo + OR + g;;Ki0K!.

19,0 [H’Q/] Le QR__ 8iKi@Kj. (7) whereT; are SUN) generators an@, are N> complex
Here L, R,K;, andK; are any Hermitian operatorg;; ar¢  numbers. In this basis, the generalized inner product
real coefficients, and the summation convention was use@etveen any two solutions is given by an ordinary vector

Equation (7) implies that the density matrix obeys  product in anv2-dimensional Hilbert space,

. A A N2—1
ihap = [H + Lp] + gi(KieKje! = He). (8) @100 = > 0u02 (13)
The “primary” objectd cannot be eliminated from Eg. (8) a=0

which therefore cannot be rephrased in termgadnly.  \ye can also express Eq. (7) in this basis as a Schrodinger-
Thus unlike the case of Eq. (1p plays here the role | e equation

of a “secondary” object. Equation (8) also indicates that (qm)
the termL9 in Eq. (7) gives rise to a redefinition of the ih0:00 = Hap0p = (Hap  + 8Haw)op.  (14)

Hamiltonian, and that the tern@R can be eliminated. The condition for conservation of probabilities (and uni-

Indeed, the gauge transformatign— o U, whereU is  tarity) is simply that the generalized Hamiltonid, is

a unitary operator, does not a_ffect expectation values andermitian. The deceptive similarity of Eq. (14) and the

can be used to recast Eq. (7) into the form ordinary quantum mechanics Schrédinger equation in an
R . . N2-dimensional space notwithstanding, we emphasize that
iho,¢ = He + gi;KiCK;, ©)  the only relevant, physical degrees of freedom are in those

where H=H+L, K = UK,’-U‘I, and © = o©ftheoriginal (\l-dimensional) Hilbert space.

exd—i ['(R — H)d'). Without the last term this Next, we would like to express the observablgsas

o g : : Hermitian operators it . In general, we have iff N*-

is simply a Schrodinger-like equation for the operator . o .
To frl)J?f[her analyzegEq. ) V\?e construct a H”F:)er?space!ndependent Hermitian operators. Therefore the mapping,

It is defined as the linear spad® = {9} of solutions of Ai— A, €0y, (15)

Eq. (7) with all possible initial conditions at amy. With

- ) o
the inner product defined as of the original (N*) observablesA; into the set of

Hermitian operatordD, in £ is not one-to-one. This
AooAN _aata mapping is constrained by demanding that

, tr , 10
(01, 02) = 0y 02 (10) s
L becomes a Hilbert space. It follows from Eq. (7) that ra;00t = > D 0u(A)wes, (16)
this inner product is conserved, and hence the generalized a=0 b=0
dynamics suggested here manifestsfin as a unitary _ L . )
evolution. The inner product (10) may be regarded €~ that{A) is expressible inL as a“stan(Ijard EX-
as an extension of the ordinary quantum mechanicdfectation value with respect to the “"amplitudegs.
inner product. If the corrections induced after 7, by V€ @lso require that the mapping (15) preserves com-

the new terms in the evolution equation (7) are smallmutation refations. Therefore,.Mdimeripnal repre-
(01,02) = (1 1)I>. Note also that expression (6) for sentation of SUY) is mapped into anV--dimensional

the expectation value of an observablean be now re- 'epresentation of SW) in Or, 7; — T;. The linear
expressed as transformation maps a general observaldle= c¢;o1 +

(0,A0) ciaT, t0 A; = ciol + >, ciuT,. The operatorA; €
(A) = W (11) O still has the same eigenvalues as the original operator
' A;. However, all the eigenvalues are ndwfold degen-

Equations (7), (9), (10), and (11) suggest thaghould erate. Another set of operators, denoted By, which
be interpreted as a generalized “wave operator.” Theemove the degeneracy ofl; do not correspond to ob-
new feature here, however, is thgbtr=tr(9 0 T)? is not  servables. It can be shown that the role of the new terms
conserved. This manifests the new aspects of our unitaryp Eq. (7) or8H in Eq. (14) is to generate correlations
evolution as a transition between pure and mixed densitpetweenA; andD;, which in turn induces the transition
matrices p). to a mixed density matrix.

The generalized unitarity, namely, the conservation of It was noted by Gross [16] and by Ellist al.[5]
the inner product (10), can be clarified by rewritingthat linear modifications of the evolution laws for the
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density matrix [e.g., Eq. (1)] generally breaks the one-to- The present model differs qualitatively from the model
one correspondence between symmetries and conservatiohBPS or EHNS: While Eq. (1) yields, in general, expo-
laws. We now show that in the present formalism thisnentially decaying (or exponentially increasing) solutions,
correspondence is partially restored. An observaBles  our modifications are oscillatory. Indeed the general so-
O that is a constant of motion satisfiel, H ] = 0.  lution of Eq. (14) is
Hence the unitary operat@r = exp(—ie A /h) commutes .
with the unitary evolution operatot/ = exp(itH /h), 0u= D Culua EXH—ilat), (22)
and A generates a symmetry if. The converse is n=03
not generally true. Since is N> dimensional, not all where A, and g,, are the (real) eigenvalues and eigen-
the Hermitian operators i@, may be mapped back to vectors, respectively, af,;.
Hermitian operators in the origin&l-dimensional Hilbert As an example, consider the special case where only
space. Therefore, if some Hermitian operajogenerates A in Eq. (20) is nonvanishing, and the spin is found
a symmetry inf and its expectation valug; (1)G.»05(f)  att = ty in the state|yy) = codn/2)| 1 :) + sin(n/2)
is conserved, it still may not correspond to an observablex | | ;). The solution in this case is given by

To illustrate the general discussion above let us con- (/M- L -
sider as an example the simple two-level system (e.g., ap () = ( Fos (n/2)e 2 S.In(n)e , ) (23)
spin half particle in a constant magnetic field). The map- 3 Sin(n)e’ @V sin(n/2)e” M
ping between the original 2D Hilbert space and the 4D
Hilbert spaceL will be spelled out in detail. Let the The resulting density matrip = 00, oscillates period-

“free” Hamiltonian be given by ically between a pure and mixed state. For example, in
1 the simple casg = 7 /2
H=FE +5hwo;. a7)
—iwt
We have seen that the termi® and 9R in Eqg. (7) can p(t) = l( it 15(2A ) € 0105(2)‘1)>, (24)
be absorbed by a redefinition BfandK;. Therefore, the 2\ CoRM

modified equation will be taken as 1

and tp? = 5 + 3 coS(2A1).
ih9,0 = [H,0] + KOK/, (18)  Observable effects due to these modifications can,
in principle, be searched for in neutron interferometry
where K and K’ are functions of the Pauli matrices, experiments [17]. In such interference experiments, one
and will be assumed to be time independent. Energyypically measures an observable of the form

conservation, d(H)/dt = a0, HQ)/{0,0))/dr = 0, 1 1 el?
implies that[o3, K] = 0, henceK = o3. This leaves A) = 5 <e—i6 1 > (25)
three unknown parameters which determifle

;L where 6 is determined by the experimental setup. The
K'=aoy + Boz + Aos. (19) expectation value oA is given in our case by
When re-expressed in the four-dimensional Hilbert

spaceL the modified dynamics corresponds to Eq. (14) {A) = 5 (1 + sinp{cos(n/2) cof(w + 2A)t + 6]

with A B —ia 0 + sirt(n/2) cod(w — 22 + 61}). (26)
SH = ;i’g _O)l _O)l Z . (20)  The correction is indeed oscillatory. This should be
0 o B A contrasted with the exponential éxf2Agnnst) decay of

the interference obtained by EHNS.

What are the present experimental bounds pertinent
to the three new parameters of the two-level system?
We can use the two slit experiments of Zeilinger

%Uk — (S = %(50/(5[70 + 8a00p + i€ay). (21) €t al.[18] with a 20 A neutron beam, and the analysis

of Pearle [19], to constrain the generic parameteto
The S; are a four-dimensional representation of SU(2),A ~ 10 sec’! ~ 1072 GeV. The constraint of the same
preserving the commutation relatidiy;, S;] = i€;xSx.  experiment on the corresponding parameters in the EHNS
The mapping (21) was constructed so as to satisfynodel is~100 times strongef~10"25 GeV). The ex-
Eqg. (16). The operator®; which remove the degeneracy ponential factor modifies the interference contrast during
of S; have also been explicitly constructed. The latterthe short flight time £, = 1072 sec) by(1 — 2Agunsto).
indeed do not correspond to observables. In the present case the extra oscillation can be subsumed

It can now be verified thaf; is a constant of motion, into slow “beating”~cog2Az) = 1 — 2(Azy)?, causing a
e, [S;, Hem + 6H] = 0. We also notice that since much weaker reduction of the contrast in the interference
the energy operatorEgl + fiwS;, is not the mapped pattern.
original Hamiltonian,(H 4"),, = ilhiwe€.p;, H ™ does We found that our modification inducés, Ks mixing
not correspond to an observableAn generatingCP violation in the two-levelKy-K, system in
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a similar fashion as in the EHNS model. However, this [6] T. Banks, L. Susskind, and M.E. Peskin, Nucl. Phys.
mixing predicts a phase of th€P violating parameter B244, 125 (1984). . .
€, which is of 77/2 just as in the case of the EHNS [7] BPS (Ref. [6] above) used this model to examine Hawk-
model [10]. Hence our modification can account for only ~ ing’s proposal. They concluded that in a local field the-
a small part of theCP violation observed in theKo-Ko o;y such a model will imply large observable (\1/I0|alI0nS
. . or energy momentum conservation. For recent discussions
Sflls(tﬁrlg'e-g?/ls :cetr;l]ds f: theo %angzL/jg;er k::?u;:d oflé)rder of this issue, see M. Srednicki, Nucl. PhyB410, 143
» OF IN€ same order a¥ /M, which cou (1993); W.G. Unruh and R.M. Wald, Phys. Rev. 2,
be expected on dimensional groundsGP and/or CPT 2176 (1995).
violations are due to effects of quantum gravity. The 100- [8] For early derivation of Eq. (1), see, for example, Y.R.
fold larger parameter allowed by the neutron interference  Shen, Phys. Revl55 921 (1967); A.S. Davydov and
experiment in our model could be important. In particular, A.A. Serikov, Phys. Status Solidi (b%1, 57 (1972).
this renders smaller, yet experimentally detectallB;T Equ_ation (1) can b_e derived for the case of a “Markovian”
violations more likely in the present framework. environment: G. Lindblad, Commun. Math. Phy8, 119
We have constructed a formalism based on an operator (1976). For detailed derivation for the case of an oscillator
generalization of the wave function which is linear, lo- ;"Upl'(e‘jp;o aRsca'E[of'igj;fiZs\g'G' Unruh and W.H.
cal, and unitary. As a consistency check of this proposal urek, Fnys. Kev. 145, (1989).
. ] J. Ellis, N. E. Mavromatos, and D.V. Nanopoulos, Phys.
we note that to some extent the proposed formalism can[

. - Lett. B 293 142 (1992);293 37 (1992).
be embedded in the framework of ordinary quantum ME[10] P. Huet aﬁd M. E( pes)kin 3’Nucl.( Phy?»)434 3 (1995).

chanics. We can interpr@t¢ and 09 as the reduced [11] G.cC. Ghirardi, A. Rimini, and T. Weber, Phys. Rev38,
density matrices of a subsystem and an environment, re- = 470 (1986).
spectively. The generalized Hamiltonidd,;, in Eq. (14)  [12] J. Ellis, S. Mohanty, and D. V. Nanopoulos, Phys. Lett. B
and the amplitudep, can then be interpreted as the 221, 113 (1989);235 305 (1989).
Hamiltonian and wave function of the total system, while[13] A similar formal relation as in Eq. (2) was found in
the new terms in Egs. (7), (9), or (14) as describing an ~ B. Reznik and Y. Aharonov [Phys. Rev. A2 2538
interaction between the subsystem and the environment.  (1995)]. However, in that article the operat@r played
Therefore, the consistency of the proposed equation of he d'ffel'rert‘.t role gf a ttWOI St?te which is determined by
motion follows from quantum mechanicsNevertheless, a preselection and postselection. .
A . s [14] This procedure is not uniquely defined since we could
postulate (4)0 (r = to) = o) (ol, which sets the initial . oennet sie
. . have postulated the initial conditiof(r = 1) = ) (ul,
condltlon for Eq. (7) goes beyond any ordlnary quantum  \yhere|u) is some arbitrary fixed state.
mechanical scheme. It would amount in quantum megis) |t is interesting to note that (nonlinear) odd power of
chanics to an additional requirement that, after carrying = 6 can stil be added to Eq.(7), which still allows
a complete set of measurements on the subsystem, the conservation of probability. For example, the most general
wave function of the environment becomes identical to cubic term with such property has the fort® Bo B C
that of the system. This additional constraint is not satis- ~ whereA, B, C, are Hermitian operators. However, such
fied in quantum mechanics. Therefore the predictions of ~ terms no longer conserve the inner product equation (10)
this formalism will generally differ from that of a quan- 6] g”g Sga” nOthe |dIFS’f]u;§2egaﬂg;[lgeE.l983)
tum mechanical system with an environment [20]. +o. ross, Nucl. Fhy '
Finally, we note that the proposed formalism may[17] R. Colellaé A.W.Zngrhauser, and S.A. Werner, Phys.
Iso be relevant to the information problem in black- Rev. Lett.34, 1472 (1975) :
a . !;‘18] A. Zeilinger, R. Gaehler, C.G. Shull, and W. Treimer,
hole evaporation and to the measurement problem. 1IN~ i, Neutron Scatteringedited by J. Faber, Jr., AIP Conf.
the latter case, for large systems the modified evolution  proc. No. 89 (AIP, New York, 1982); A. Zeilinger, M. A.
might, under appropriate conditions, give rise to loss of  Horne, and C.G. Shull, iProceedings of the Symposium
coherence which amounts to a measurement.
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chanics spin-half subsystem which is coupled to another
spin half (the environment). The interaction term is then
given by Hi,, = Acolo?. Assuming thae priori no infor-
mation about the initial state @f? is known, we find that
guantum mechanics yields a prediction which is identical
to (A) in Eq. (26) only in the special cases gf= n/2.
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