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Unitary Evolution between Pure and Mixed States
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We propose an extended quantum mechanical formalism that is based on a wave operator%̂ , which
is related to the ordinary density matrix viar ­ %̂ %̂y. This formalism allows a (generalized) unitary
evolution between pure and mixed states. It also preserves much of the connection between symmetries
and conservation laws. The new formalism is illustrated for the case of a two-level system.
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Several proposals motivated by various considerati
for generalizing the quantum mechanical formalism ha
been made to date. In these programs one dispo
of a fundamental quantum mechanical principle such
linearity, locality, or unitarity. Weinberg suggested
nonlinear generalization, and proposed precision test
nonlinear corrections to quantum mechanics [1]. M
tivated by the apparent breakdown of unitarity in th
black-hole evaporation process, Hawking proposed th
synthesis of quantum mechanics and general relativity
quires giving up unitarity [2], and to some extent loca
ity [3]. A model which gives up both properties wa
constructed by Marinov [4]. As a linear and local ph
nomenological implementation of Hawking’s proposa
Ellis, Hagelin, Nanopoulos, and Srednicki (EHNS) [5
and Banks, Peskin, and Susskind (BPS) [6] suggeste
modified Liouville equation for the density matrixr.

In particular, BPS showed that the requirements of l
earity, locality in time, and conservation of probabilitie
lead to a modified equation with a “generic form”:

ih̄≠tr ­ fH, rg

1 i
X
n,m

hnmsQmQnr 1 rQmQn 2 2QnrQmd .

(1)

Here, Qn are any Hermitian operators, andhnm, is a c-
number Hermitian matrix. A sufficient but not necessa
condition ensuring the positivity ofr is that the matrix
h is positive. Equation (1) does not preserve trr2. Thus
pure states can indeed evolve to mixed states [7].

Similar equations can be obtained from ordinary qua
tum mechanics for a subsystem interacting with an en
ronment [8]. Nevertheless, when gravity is involved, o
can argue that the relevant “microenvironment” is hidd
by black-hole horizons and isin principle unobservable.
This would render Eq. (1) a fundamental modification
quantum mechanics, rather than an artifact of interact
with an environment.

Modified evolutions such as (1) were applied in vario
cases. EHNS proposed that the corrections indu
might be observed in the ultrasensitiveK0-K0 system.
Furthermore, Ellis, Mavromatos, and Nanopolous [
and Huet and Peskin [10] examined the possibility th
the observedCP violation in the K0-K0 system is, to
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some extent, due to non-quantum-mechanical correctio
Related modifications were also proposed in connecti
with the “measurement problem,” in order to generate
von Neumann reduction for macroscopic systems [11,1

In what follows, we propose a different approach.
is also based on the Liouville equation but not for th
ordinary density matrix. It constitutes a linear, loca
and unitary extension of quantum mechanics. To th
end, consider the density matrix in ordinary quantu
mechanics and focus first on the case of a pure state.
analogy with the relationr ­ jcl kcj, let us define the
operator%̂ by [13]

r ­ %̂ %̂y. (2)

If %̂ satisfies a Liouville equation

ih̄≠t%̂ ­ fH, %̂g , (3)

it is easy to see that the density matrixr ­ %̂ %̂y also
satisfies a Liouville equation with the same Hamiltonia
The initial condition may be specified in terms of th
“square root operator”%̂ , rather thanr. Thus, if the
system is determined att ­ t0 by an ordinary complete
set of measurements to be in the statejc0l (or r ­
jc0l kc0j), this sets the initial condition for Eq. (3),

%̂st ­ t0d ­ jc0l kc0j . (4)

Now we observe that (2) and (4) implyrst ­ t0d ­
%̂st ­ t0d, and since both quantities obey the sam
equation of motion, this relation holds at any subseque
time. The expectation values of any observableA is
obtained by the standard expression

kAl ­
trAr

trr
­

trA%̂

tr%̂
. (5)

Hence Eqs. (2)–(5) are equivalent to ordinary quantu
mechanics [14].

It is therefore interesting to question whether Eq. (
can now be used as a new starting point for a quantu
mechanical extension. We shall assume that%̂ is from
now on a general operator (not necessarily a project
still obeying the initial condition (4), and that expectatio
values are still obtained by the standard expression

kAl ­
trAr

trr
. (6)
© 1996 The American Physical Society
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The density matrix, however, is from now on obtained v
r ­ %̂ %̂y.

The Hermiticity and positivity ofr is automatically en-
sured byr ­ %̂ %̂y. The modified equation must conserv
probabilities, i.e.,≠t trr ­ ≠t tr%̂ %̂y ­ 0, but not neces-
sarily purity. The most general linear [15] and local gen
eralization of Eq. (3) which satisfies this condition can b
written as

ih̄≠t%̂ ­ fH, %̂g 1 L%̂ 1 %̂R 1 gijKi%̂K 0
j . (7)

Here,L, R,Ki , andK 0
j are any Hermitian operators,gij are

real coefficients, and the summation convention was us
Equation (7) implies that the density matrix obeys

ih̄≠tr ­ fH 1 L, rg 1 gijsKi%̂K 0
j%̂

y 2 H.c.d . (8)

The “primary” object%̂ cannot be eliminated from Eq. (8)
which therefore cannot be rephrased in terms ofr only.
Thus unlike the case of Eq. (1),r plays here the role
of a “secondary” object. Equation (8) also indicates th
the termL%̂ in Eq. (7) gives rise to a redefinition of the
Hamiltonian, and that the term̂%R can be eliminated.
Indeed, the gauge transformation̂% ! %̂U, where U is
a unitary operator, does not affect expectation values a
can be used to recast Eq. (7) into the form

ih̄≠t%̂ ­ H̃%̂ 1 gijKi%̂K̃j , (9)

where H̃ ­ H 1 L, K̃j ­ UK 0
jU21, and U ­

expf2i
RtsR 2 Hd dt0g. Without the last term this

is simply a Schrödinger-like equation for the operator%̂ .
To further analyze Eq. (7) we construct a Hilbert spac

It is defined as the linear spaceL ; h%̂j of solutions of
Eq. (7) with all possible initial conditions at anyt0. With
the inner product defined as

k%̂1, %̂2l ­ tr%̂
y
1 %̂2 , (10)

L becomes a Hilbert space. It follows from Eq. (7) tha
this inner product is conserved, and hence the generali
dynamics suggested here manifests inL as a unitary
evolution. The inner product (10) may be regarde
as an extension of the ordinary quantum mechanic
inner product. If the corrections induced aftert ­ t0 by
the new terms in the evolution equation (7) are sma
k%̂1, %̂2l . jkc1jc2lj2. Note also that expression (6) for
the expectation value of an observableA can be now re-
expressed as

kAl ­
k%̂ , A%̂ l
k%̂ , %̂l

. (11)

Equations (7), (9), (10), and (11) suggest that%̂ should
be interpreted as a generalized “wave operator.” T
new feature here, however, is that trr2 ­ trs%̂ %̂yd2 is not
conserved. This manifests the new aspects of our unit
evolution as a transition between pure and mixed dens
matrices (r).

The generalized unitarity, namely, the conservation
the inner product (10), can be clarified by rewritin
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Eq. (7) in the Hilbert spaceL . For simplicity, let us
consider a system with a finite,N-dimensional Hilbert
space and perform the extension described above. The
tended,N2-dimensional Hilbert spaceL can be spanned
by a Hermitian basis ofN2 2 1 SUsNd matrices and the
unit operator,

%̂ ­
1

p
2

s%01 1 %iTid , (12)

whereTi are SUsNd generators and%a are N2 complex
numbers. In this basis, the generalized inner prod
between any two solutions is given by an ordinary vect
product in anN2-dimensional Hilbert space,

k%̂1, %̂2l ­
N221X
a­0

% p
1a%2a . (13)

We can also express Eq. (7) in this basis as a Schröding
like equation,

ih̄≠t%a ­ Hab%b ­ sH sqmd
ab 1 dHabd%b . (14)

The condition for conservation of probabilities (and un
tarity) is simply that the generalized HamiltonianHab is
Hermitian. The deceptive similarity of Eq. (14) and th
ordinary quantum mechanics Schrödinger equation in
N2-dimensional space notwithstanding, we emphasize t
the only relevant, physical degrees of freedom are in tho
of the original (N-dimensional) Hilbert space.

Next, we would like to express the observablesAi as
Hermitian operators inL . In general, we have inL N4-
independent Hermitian operators. Therefore the mappi

Ai °! Ai [ OL , (15)

of the original sN2d observablesAi into the set of
Hermitian operatorsOL in L is not one-to-one. This
mapping is constrained by demanding that

trAi%̂ %̂y ­
N221X
a­0

N221X
b­0

%asAidab%b , (16)

i.e., that kAl is expressible inL as a “standard” ex-
pectation value with respect to the “amplitudes”%̂a.
We also require that the mapping (15) preserves co
mutation relations. Therefore, anN-dimensional repre-
sentation of SU(N) is mapped into anN2-dimensional
representation of SU(N) in OL , Ti ! Ti. The linear
transformation maps a general observableAi ­ ci01 1

ciaTa to Ai ­ ci0I 1
P

a ciaTa. The operatorAi [
OL still has the same eigenvalues as the original opera
Ai. However, all the eigenvalues are nowN-fold degen-
erate. Another set of operators, denoted byDj , which
remove the degeneracy ofAi do not correspond to ob-
servables. It can be shown that the role of the new ter
in Eq. (7) ordH in Eq. (14) is to generate correlation
betweenAi andDj , which in turn induces the transition
to a mixed density matrix.

It was noted by Gross [16] and by Elliset al. [5]
that linear modifications of the evolution laws for th
1193
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density matrix [e.g., Eq. (1)] generally breaks the one-
one correspondence between symmetries and conserv
laws. We now show that in the present formalism th
correspondence is partially restored. An observableA [
OL that is a constant of motion satisfiesfA, H g ­ 0.
Hence the unitary operatorT ­ exps2ieAyh̄d commutes
with the unitary evolution operatorU ­ expsitH yh̄d,
and A generates a symmetry inL . The converse is
not generally true. SinceL is N2 dimensional, not all
the Hermitian operators inOL may be mapped back to
Hermitian operators in the originalN-dimensional Hilbert
space. Therefore, if some Hermitian operatorG generates
a symmetry inL and its expectation value%p

a stdGab%bstd
is conserved, it still may not correspond to an observab

To illustrate the general discussion above let us c
sider as an example the simple two-level system (e.g
spin half particle in a constant magnetic field). The ma
ping between the original 2D Hilbert space and the 4
Hilbert spaceL will be spelled out in detail. Let the
“free” Hamiltonian be given by

H ­ E0 1
1
2 h̄vs3 . (17)

We have seen that the termsL%̂ and %̂R in Eq. (7) can
be absorbed by a redefinition ofH andK 0

j. Therefore, the
modified equation will be taken as

ih̄≠t%̂ ­ fH, %̂g 1 K%̂K 0, (18)

where K and K 0 are functions of the Pauli matrices
and will be assumed to be time independent. Ene
conservation, ≠kHly≠t ­ ≠sk%̂ , H%̂ lyk%̂ , %̂ldy≠t ­ 0,
implies that fs3, Kg ­ 0, henceK ­ s3. This leaves
three unknown parameters which determineK 0:

K 0 ­ as1 1 bs2 1 ls3 . (19)

When re-expressed in the four-dimensional Hilbe
spaceL the modified dynamics corresponds to Eq. (1
with

dH ­

0BBB@
l ib 2ia 0

2ib 2l 0 a

1ia 0 2l b

0 a b l

1CCCA . (20)

The observables in this model are combinations ofsi

and the unit operator. The mappingsi ! Si [ OL is

1
2 sk °! sSkdab ­

1
2 sdakdb0 1 da0dbk 1 ieabkd . (21)

The Si are a four-dimensional representation of SU(
preserving the commutation relationfSi , Sjg ­ ieijkSk .
The mapping (21) was constructed so as to sati
Eq. (16). The operatorsDj which remove the degenerac
of Si have also been explicitly constructed. The lat
indeed do not correspond to observables.

It can now be verified thatS3 is a constant of motion,
i.e., fS3, H qm 1 dH g ­ 0. We also notice that since
the energy operator,E01 1 h̄vS3, is not the mapped
original Hamiltonian,sH qmdab ­ ih̄veab3, H qm does
not correspond to an observable inL .
1194
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The present model differs qualitatively from the mod
of BPS or EHNS: While Eq. (1) yields, in general, expo
nentially decaying (or exponentially increasing) solution
our modifications are oscillatory. Indeed the general s
lution of Eq. (14) is

%a ­
X

m­0,3

cm%ma exps2ilatd , (22)

wherela and %aa are the (real) eigenvalues and eige
vectors, respectively, ofHab.

As an example, consider the special case where o
l in Eq. (20) is nonvanishing, and the spin is foun
at t ­ t0 in the statejc0l ­ cosshy2d j " ẑl 1 sinshy2d
3 j # ẑl. The solution in this case is given by

%̂std ­

√
cos2shy2de2ilt 1

2 sinshde2isv2ldt

1
2 sinshdeisv1ldt sin2shy2de2ilt

!
. (23)

The resulting density matrix,r ­ %̂ %̂y, oscillates period-
ically between a pure and mixed state. For example,
the simple caseh ­ py2

rstd ­
1
2

µ
1 e2ivt coss2ltd

eivt coss2ltd 1

∂
, (24)

and trr2 ­
1
2 1

1
2 cos2s2ltd.

Observable effects due to these modifications ca
in principle, be searched for in neutron interferomet
experiments [17]. In such interference experiments, o
typically measures an observable of the form

Asud ­
1
2

µ
1 eiu

e2iu 1

∂
, (25)

where u is determined by the experimental setup. Th
expectation value ofA is given in our case by

kAl ­
1
2 sss1 1 sinhhcos2shy2d cosfsv 1 2ldt 1 ug

1 sin2shy2d cosfsv 2 2ldt 1 ugjddd . (26)

The correction is indeed oscillatory. This should b
contrasted with the exponential exps22lENHStd decay of
the interference obtained by EHNS.

What are the present experimental bounds pertin
to the three new parameters of the two-level syste
We can use the two slit experiments of Zeilinge
et al. [18] with a 20 Å neutron beam, and the analys
of Pearle [19], to constrain the generic parameterl to
l , 10 sec21 , 10223 GeV. The constraint of the same
experiment on the corresponding parameters in the EH
model is,100 times strongers,10225 GeVd. The ex-
ponential factor modifies the interference contrast duri
the short flight time (t0 . 1022 sec) bys1 2 2lEHNSt0d.
In the present case the extra oscillation can be subsum
into slow “beating”,coss2lt0d . 1 2 2slt0d2, causing a
much weaker reduction of the contrast in the interferen
pattern.

We found that our modification inducesKLKS mixing
generatingCP violation in the two-levelK0-K0 system in
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a similar fashion as in the EHNS model. However, th
mixing predicts a phase of theCP violating parameter
e, which is of py2 just as in the case of the EHNS
model [10]. Hence our modification can account for on
a small part of theCP violation observed in theK0-K0

system. This leads to the generic upper bound of or
,10219 GeV, of the same order asM2

KyMpl which could
be expected on dimensional grounds ifCP and/or CPT
violations are due to effects of quantum gravity. The 10
fold larger parameter allowed by the neutron interferen
experiment in our model could be important. In particula
this renders smaller, yet experimentally detectable,CPT
violations more likely in the present framework.

We have constructed a formalism based on an oper
generalization of the wave function which is linear, l
cal, and unitary. As a consistency check of this propo
we note that to some extent the proposed formalism
be embedded in the framework of ordinary quantum m
chanics. We can interpret̂%%̂y and %̂y%̂ as the reduced
density matrices of a subsystem and an environment,
spectively. The generalized HamiltonianHab in Eq. (14)
and the amplitudes%a can then be interpreted as th
Hamiltonian and wave function of the total system, wh
the new terms in Eqs. (7), (9), or (14) as describing
interaction between the subsystem and the environm
Therefore, the consistency of the proposed equation
motion follows from quantum mechanics.Nevertheless,
postulate (4),̂% st ­ t0d ­ jc0l kc0j, which sets the initial
condition for Eq. (7) goes beyond any ordinary quantu
mechanical scheme. It would amount in quantum m
chanics to an additional requirement that, after carry
a complete set of measurements on the subsystem,
wave function of the environment becomes identical
that of the system. This additional constraint is not sa
fied in quantum mechanics. Therefore the predictions
this formalism will generally differ from that of a quan
tum mechanical system with an environment [20].

Finally, we note that the proposed formalism m
also be relevant to the information problem in blac
hole evaporation and to the measurement problem.
the latter case, for large systems the modified evolut
might, under appropriate conditions, give rise to loss
coherence which amounts to a measurement.

I have benefited from discussions with and help
comments of Y. Aharonov, A. Casher, S. Colema
P. Huet, S. Nussinov, S. Popescu, W. G. Unruh, a
N. Weiss.
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