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We construct explicit anyon fields from unitary representations of the group diffeomorphism
the plane, realizing braid group elements as paths in the plane transforming naturally under d
morphisms. The fields satisfyq-commutation relations, whereq is the anyonic phase shift.

PACS numbers: 02.20.Tw, 11.40.Ex, 74.20.Mn
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The first rigorous prediction of anyon statistics, co
firming a conjecture of Leinaas and Myrheim [1], cam
from interpreting certain representations of the group
diffeomorphisms of the plane [2]. This led to man
fundamental physical properties of anyons, and to
role of the braid group [3]. Anyon statistics find app
cation to surface phenomena, particularly the fractio
quantum Hall effect [4–6]. In this Letter we constru
creation and annihilation fieldscpsx, td and csx, td as
operatorsintertwining a hierarchyof N-anyon diffeo-
morphism group representations. These fields obeyq-
commutation relations; i.e., theq commutator become
the fundamental bracket of anyon field theory. T
bracket is not a starting assumption [7] or the result of
troducing a Chern-Simons potential into a canonical t
ory, nor do we obtain it byq-deforming Bose or Ferm
quantum mechanics. Surprisingly, it is strictly a con
quence of the group representations describing any
together with the (completely general) intertwining pro
erty of the fields. The latter property is motivated ge
metrically and entails commutator brackets only. O
development includes an interesting way to realize
braid group, with diffeomorphisms ofR2 acting on its
elements.

First we state some basic facts about the Lie a
bra of mass and momentum density operatorsrsx, td and
Jsx, td, the corresponding Lie group, and its unitary re
resentations, and propose the general formula satisfie
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intertwining fields. Fixingt, the spatially averaged opera
tors rs fd ­

R
rsxdfsxddx and Jsgd ­

R
Jsxd ? gsxddx

(for smooth functionsf and vector fieldsg) generate an
infinite-dimensional, nonrelativistic local current algebra

frs f1d, rs f2dg ­ 0, frs fd, Jsgdg ­ i"rsg ? =fd ,

fJsg1d, Jsg2dg ­ 2i"Jsfg1, g2gd , (1)

where fg1, g2g ­ g1 ? =g2 2 g2 ? =g1 is the usual Lie
bracket. Now eachg generates aflow, i.e., a one-
parameter group of diffeomorphismsf

g
s ss [ Rd. The

unitary operatorsUs fd ­ expfsiymdrs fdg andV sfg
s d ­

expfsisy"dJsgdg represent a semidirect product group,

Us f1dV sf1dUs f2dV sf2d ­ Us f1 1 f2 ± f1dVsf1f2d ,

(2)
wheref1f2 is the composition of diffeomorphisms.

In general, the manifoldM where (2) applies is
the physical spaceof the theory. UsuallyM ­ R3,
while anyons occur whenM is two dimensional. For
fixed M, inequivalent representations of (1) and (2
describe distinct systems. This perspective, establis
in our earlier work, leads to a unified description of a
astonishing variety of quantum theories: point particl
obeying Bose, Fermi, or fractional statistics, infinit
systems in the thermodynamic limit, and extended obje
such as vortex configurations [2,3,8]. Here canonic
fields c andcp do not play a fundamental role; particle
statistics, formerly described by the field algebra, is no
© 1996 The American Physical Society 1183
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described by the group representation. The case has
made that (2) defines a universal, or generic, group
local symmetries for nonrelativistic quantum theory.

Nevertheless, it is natural to ask how such fields co
be constructed, given a set of representations of (1)
(2). This question is answered next. The simplest unit
representations of (2) are theN-particle representations
The Bose (Fermi) representations form ahierarchy in an
obvious physical sense that we now make precise.
UN s fd andVN sfd be unitary representations of (2) inHN ,
describing systems ofN identical configurations. Leth [
H1, and letcpshd, cshd be intertwining operators labele
by h; cpshd : HN ! HN11 and cshd : HN11 !

HN , with cshd annihilating the vacuum stateV0 [ H0.
Thus H1 establishes the nature of the configuration th
cp creates andc annihilates, whileh describes its state
We now propose the conditions

UN11s fdcpshd ­ cpsssUN­1s fdhdddUN s fd ,

VN11sfdcpshd ­ cpsssVN­1sfdhdddVN sfd ,
(3)

where the adjoint of these equations describes the beha
of c. The geometric meaning of (3) is evident: W
think of cp as creating a configuration inM, and h as
averaging over such configurations. The first equat
in (3) states that bothU and cp act locally in M.
The second equation states that creating a single
configuration and then transforming the state vector b
diffeomorphism ofM gives the same result as transformin
M first and then creating the transformed new object, w
the transformation law for individual configurations give
by the action ofVN­1sfd.

Our general perspective is that for an indexed set
representations (2) to form a hierarchy, it is necess
and sufficient thatcp andc can be constructed obeyin
(3). We expect this general structure to occur not o
for point particles, but also for extended objects such
vortex filaments or tubes. In this case the argument
cp andc is a one-vortex Hilbert space vector, so that t
creation and annihilation fields, even before averaging,
not depend on a single point in space but on a spati
extended configuration. Onlyrsxd andJsxd always have
as their arguments individual points in space.

The bracket that the intertwining field obeys wit
elements of the Lie algebra (1) follows from (3):

frs fd, cpshdg ­ cpsssrN­1s fdhddd ,

fJsgd, cpshdg ­ cpsssJN­1sgdhddd ,
(4)

where the bracket withc is given by the adjoint equa
tions. Note thatonly commutator bracketsoccur here.

It is a straightforward, though lengthy, calculatio
to verify that canonical Bose and Fermi nonrelativis
fields satisfy (4). The interesting point is that one c
begin with theN-particle Bose or Fermi representatio
of the current algebra, andconstruct intertwining fields
that fulfill (4). It is a consequenceof this construction
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that Bose fields obey canonical, equal-time commutati
relationss1d, and Fermi fields anticommutation relation
s2d,

fcsxd, csydg6 ­ fcpsxd.cpsydg6 ­ 0 ,

fcsxd, cpsydg6 ­ dsx 2 yd .
(5)

As a further consequence of this construction, we o
tain rsxd ­ mcpsxdcsxd and Jsxd ­ s"y2id hcpsxd 3

f=csxdg 2 f=cpsxdgcsxdj, heretofore taken as the defin
ing equations for the currents. Note again that the sa
Lie algebra holds forr andJ in the Bose and Fermi cases

We now construct explicit anyon fields obeying (3
anticipating that they will satisfy different brackets from
Bose and Fermi fields. This is done as follows. Firs
we write theN-anyon representation of (3) forM ­ R2,
using the covering space ofN-particle configuration space
in the plane. Second, we make the representation conc
by introducing a way to realize an element of the coveri
space byN paths in the plane. Third, we use this t
definecp as a creation operator mappingHN to HN11.
Finally, we state our results aboutcp andc .

To write theN-anyon representation, we recall that
configuration is anunorderedset g of N distinct points
in the plane:g ­ hx1, . . . , xNj , R2; the indexing ofg
is arbitrary. The configuration spaceDN is the set of
all such g. The topology ofDN that leads to anyon
representations is described by itsfundamental group
which is the braid groupBN ; an introduction toBN in
relation to anyon physics is given in [9]. A configuratio
g together with a braidb labels an element of the
universal covering spaceof DN . We write D̃N for this
covering space, and̃g ­ sg, bd. In physical terms, theN
points of g label the positions of the anyons, while th
braid b describes exactly how many times and in wh
order these anyons may have circled each other, star
from a reference configuration. As the latter is arbitrary,
the labeling of elements of̃DN by the pairsg, bd is not
unique but conventional; giveng, the element ofD̃N

associated with the identity inBN may be selected freely.
There are two ways of writingN-anyon wave functions

so that the action of diffeomorphisms can be specifie
If one letsC depend only on theN points in g, anyon
statistics comes from an explicit phase in the operat
V sfd. Alternatively, one can introducẽC as a function
of both g andb. ThenC̃ satisfies a symmetry condition
analogous to the familiar Bose or Fermi exchange sy
metry. Also known as an equivariance condition, this ju
expresses the usual phase shift under exchange which
fines the anyon statistics. It is expressed by requiringC̃

to transform according to a representationTsbd of BN by
complex numbers of modulus 1:

C̃sg, bb0d ­ Tsb0dC̃sg, bd , (6)

where bb0 is the product of braids inBN . Elsewhere
we stress [10] that these ideas arenot restricted to
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complex-valued wave functions and one-dimensional r
resentations ofBN ; quantum theories based on highe
dimensional, non-Abelian representations permit br
parastatistics (plektons). But we limit ourselves here
the usual anyon case where, whenb is the braid for a sin-
gle, counterclockwise exchange of two particles,T sbd ­
expiu. Denote byp the projection mappsg̃d ­ g. The
obvious way that diffeomorphisms of the plane act ong,
fg ­ hfsx1d, . . . , fsxNdj, lifts uniquely to g̃ [ D̃N so
that psfg̃d ­ fpsg̃d ­ fg. Then theN-anyon repre-
sentation of (2) is given by [2,3]

UN s fdC̃sg̃d ­ expfikg̃, flgC̃sg̃d ,

VN sfdC̃sg̃d ­ C̃sfg̃d
NY

j­1

q
Jfsxjd ,

(7)

where kg̃, fl ­
P

j fsxjd when g ­ hx1, . . . , xN j, and
whereJfsxd is the Jacobian off at x.

Next we introduce a concrete realization ofg̃ that
assists in understanding the action off in D̃N . Write
x [ R2 in Cartesian coordinates assx1, x2d. Let g be
such that all thexj have distinct values of their firs
coordinates: i.e.,x1

j fi x1
k for j fi k. For suchg, consider

a setG ­ hGjj of N continuous, non-self-intersecting an
non-mutually-intersecting paths coming in from infinit
possibly circling some points, and terminating at thexj.
We take all paths at infinity to extend in the negati
x2 direction, parallel to thex2 axis. Then an elemen
g̃ can be identified with an equivalence class (homoto
class)fGg of such paths, whose set of terminal points
g. Given g, we can make acanonical choiceof g̃ by
letting all the paths be straight half lines parallel to thex2

axis. Call this particular set of pathsG
hx1,...,xN j
0 , or G

g
0 ; it

is shown in Fig. 1. We associate this set of paths with
identity braid. Since the indexing of thexj is arbitrary,
we can label the paths and their terminal points so t
x1

1 , x1
2 , · · · , x1

N with Gj terminating atxj.

FIG. 1. Forg ­ hx1, . . . , xN j, a canonical choiceG
g

0 of paths
hGjj terminating athxjj.
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The key point is that diffeomorphisms ofR2 act
not only on configurationsg, but on sets of pathsG,
since these also lie in the plane. A diffeomorphis
that is trivial at infinity respects (homotopy) equivalenc
among paths, so that it acts onfGg. Thus, for fixed
g, diffeomorphisms that leaveg unchanged (as a set
map the classesfGg of paths terminating atg into
each other. For example, take a fixed pair of poin
hx1, x2j in the plane. Consider the canonical pathsG

hx1,x2j
0

constructed as in Fig. 1, terminating athx1, x2j. Let f

be a diffeomorphism, trivial at infinity, that exchange
the points; i.e.,x2 ­ fsx1d and x1 ­ fsx2d. One way
f can act on the pair of pathsG

hx1,x2j
0 is to map them

to new paths as in Fig. 2 (imaginef moving points
only in the shaded region of the plane). Then w
associate with this diffeomorphism the generatorb12 in
the braid group for a single counterclockwise exchan
of the two points. To a diffeomorphism implementin
one clockwise exchange of the points, we assignb21

12 . A
group homomorphism is defined in this manner, from t
subgroup of diffeomorphisms that leaveg fixed as a set,
onto the braid group. We denote the homomorphism
hg , and writehgsfd ­ b for the braid associated withf.
The given realization provides a faithful mapping fro
BN to classes of pathsfGg. Whenb is the braid that takes
fGg

0 g to fGg, we can writeT sGd in place ofTsbd. Further
explanation is given in [11].

Next we use this picture to define the anyon creati
field cp. To do this we need a consistent way to ad
an anyon atx, not merely to anN-anyon configuration,
but to an element of theN-anyon covering space. Doing
this breaks equivalence among sets of paths, beca
many different points on thesN 1 1d-anyon covering
space correspond to the introduction of a new any
at x. Our procedure is shown in Fig. 3. GivenfGg

0 g,
and the additional pointx, define a new set of paths
G

hx1,...,xN j
x by placing the pointx in the plane among the

FIG. 2. A diffeomorphism implementing a counterclockwis
exchange of two points labeled originally as in Fig. 1. Mirro
image paths describe clockwise exchange.
1185



VOLUME 76, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 19 FEBRUARY 1996

t

rs

n

-
i

as
the

e
with

t

.

e
s

he

ts
ary
The

ors

n-
p
zed

d
ue,
rk
of

.

.
.

k,
J.
FIG. 3. An anyonic particle is created atx, defining the
elementG

g
x of the sN 1 1d-anyon covering space.

N paths comprisingG
g
0 , and drawing a new pathGN11

that terminates atx, and comes in from infinity to the
right of the N existing paths without intersecting them
This tells us a particular element of thesN 1 1d-anyon
covering space.

We now see from Figs. 1–3 why theq commutator
will enter. Consider two pointshx1, x2j. Creating an
anyon first atx2, we obtain the pathG1 ­ G

hx2j
0 , a vertical

straight line terminating atx2. Creating the next anyon
at x1 gives us paths in the classfGhx2j

x1 g as in Fig. 2,
corresponding tob12. But if we first create an anyon a
x1 and then atx2, we obtain the classG

hx1,x2j
0 associated

with the identity braid. The relative phaseq ­ T sb12d ­
expfiug occurs in the two products of creation operato
whereu characterizes the anyons in the hierarchy.

To describe the action of the anyon annihilation a
creation fields, letC̃ be a sequencesC̃N d of equivariant
wave functions; ifG is obtained fromG

g
0 by the braid

b ­ hgsfd, then C̃N sg, Gd ­ TsbdC̃N sg, G
g
0 d, or alter-

natively C̃Nsg, Gd ­ T sGdC̃Nsg, G
g
0 d. Then with g ­

hx1, . . . , xN j, we set

fcsxdC̃gNsg, G
g
0 d ­ C̃N11shx1, . . . , xN , xj, Gg

x d ,

fcpsxdC̃gNsg, G
g
0 d ­

NX
j­1

dsx 2 xjdC̃N21sĝj , G
ĝj

0 d (8)

3 TpsG
ĝj
x d ,

where ĝj means that the pointxj is omitted from g.
Equations (8) extend fromC̃Nsg, G

g
0 d to the (infinitely

many) values ofC̃N sg, Gd, using the equivariance prop
erty. From (7) and (8) one can check directly that (3)
satisfied. The infinitesimal generatorsr andJ obey

frs fd, cpshdg ­ cpsmfhd ,

fJsgd, cpshdg ­ cp
µ

"

2i
hg ? =h 1 = ? sghdj

∂
,

(9)
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together with the adjoint equations forc . Thesecom-
mutator brackets hold independent of whether one h
bosons, fermions, or anyons. Furthermore, we recover
operatorsrsxd andJsxd in terms of the anyon fields as th
desired expressions as in the Bose and Fermi cases,R

sC̃N , rsxdC̃N dd2x ­ Nm.
Finally, we determine straightforwardly from (8) tha

the anyon fields obeyq-commutation relations, where
q ­ T sb12d. Theq-deformed bracket isfA, Bgq ­ AB 2

qBA, whereq is here a complex number of modulus 1
Then

fcsx, td, csy , tdgq ­ fcpsx, td, cpsy , tdgq ­ 0 ,

fcsy , td, cpsx, tdgq ­ dsx 2 yd .
(10)

Note that for the first two equations of (10) to b
consistent whenq fi 61, they should be interpreted a
holding for ordered pairssx, yd in a half spaceH of
M 3 M. In the complementary half space we have t
s1yqd bracket. The equation forfcsx, csydgq is then
consistent with the equation forfcpsxd, cpsydgq, since
jqj ­ 1. The half space here is not a limitation, and i
choice has no physical consequence; it is just an arbitr
boundary between sheets in the covering space.
third equation of (10) is written as indicated forsx, yd [
H; it may be written equivalently (usingq ­ 1yq) as
fcsx, td, cpsy , tdg1yq ­ dsx 2 yd. One can also verity
that the brackets forc and cp with r and J are in
accordance with (4), using the algebraic identity

fAB, Cg2 ­ AfB, Cgq 1 qfA, Cg1yqB (11)

relating the ordinary commutator to theq commutator.
The commutators of the field operators with the generat
of the infinite-dimensional group hold for all values ofx
andy, not merely in a half space.

As noted, we expect the methods of this Letter to ge
eralize to still other hierarchies of diffeomorphism grou
representations; e.g., to extended objects like quanti
vortex loops and tubes.
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