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We construct explicit anyon fields from unitary representations of the group diffeomorphisms of
the plane, realizing braid group elements as paths in the plane transforming naturally under diffeo-
morphisms. The fields satisfcommutation relations, whegis the anyonic phase shift.
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The first rigorous prediction of anyon statistics, con-intertwining fields. Fixing, the spatially averaged opera-
firming a conjecture of Leinaas and Myrheim [1], cametors p(f) = [ p(x)f(x)dx andJ(g) = [J(x) - g(x)dx
from interpreting certain representations of the group offor smooth functionsf and vector fieldg) generate an
diffeomorphisms of the plane [2]. This led to many infinite-dimensional, nonrelativistic local current algebra,
fundamental p_hysical properties of anyons, gnd to Fhe[p(ﬂ),p(fz)] =0, [p(f),J(g)] = itp(g - VF),
role of the braid group [3]. Anyon statistics find appli-
cation to surface phenomena, particularly the fractional [V(g1),J(g2)] = —ifiJ((g1.82]), (1)
quantum Hall effect [4-6]. In this Letter we construct where[g,, g,] = g, - Vg» — g» - Vg, is the usual Lie
creation and annihilation fieldg™(x,7) and ¢(x,1) as  bracket. Now eachg generates alow, i.e., a one-
operatorsintertwining a hierarchyof N-anyon diffeo-  parameter group of diffeomorphismﬁyg (s €ER). The
morphism group representations. These fields opey unitary operatord/( ) = exp(i/m)p( f)] andV(¢§) =
commutation relations; i.e., thg commutator becomes exfd (is/h)J(g)] represent a semidirect product group,

the fundamental bracket of anyon field theory. This .
bracket is not a starting assumption [7] or the result of in-U(SOV@DU(1)V(d2) = UlS1 + f2 © 1)V($162),

troducing a Chern-Simons potential into a canonical the- (2)
ory, nor do we obtain it by-deforming Bose or Fermi where¢; ¢, is the composition of diffeomorphisms.
quantum mechanics. Surprisingly, it is strictly a conse- In general, the manifoldM where (2) applies is
quence of the group representations describing anyonthe physical spaceof the theory. UsuallyM = R3,
together with the (completely general) intertwining prop-while anyons occur wheM is two dimensional. For
erty of the fields. The latter property is motivated geo-fixed M, inequivalent representations of (1) and (2)
metrically and entails commutator brackets only. Ourdescribe distinct systems. This perspective, established
development includes an interesting way to realize thén our earlier work, leads to a unified description of an
braid group, with diffeomorphisms oR? acting on its  astonishing variety of quantum theories: point particles
elements. obeying Bose, Fermi, or fractional statistics, infinite
First we state some basic facts about the Lie algesystems in the thermodynamic limit, and extended objects
bra of mass and momentum density operagois, ) and  such as vortex configurations [2,3,8]. Here canonical
J(x, 1), the corresponding Lie group, and its unitary rep-fields ¢ and ™ do not play a fundamental role; particle
resentations, and propose the general formula satisfied Isyatistics, formerly described by the field algebra, is now
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described by the group representation. The case has betirat Bose fields obey canonical, equal-time commutation
made that (2) defines a universal, or generic, group ofelations(+), and Fermi fields anticommutation relations

local symmetries for nonrelativistic quantum theory. (=),

Nevertheless, it is natural to ask how such fields could % %
be constructed, given a set of representations of (1) and &), ¢ @] =¥ x).¢ ()] =0, (5)
(2). This question is answered next. The simplest unitary [y(x), ™ (¥)]+ = 6(x — y).

representations of (2) are thé-particle representations. . )

The Bose (Fermi) representations fornhiararchyin an ~ AS a further consequence of this construction, we ob-
obvious physical sense that we now make precise. L&fin p(x) = my~(x)¢(x) and J(x) = (-/20){§" (x) X
Un( f) andVy(¢) be unitary representations of (2)#Hy, [V¢X)] — [V¢" (x)]¢(x)}, heretofore taken as the defin-
describing systems of identical configurations. Let €  ing equations for the currents. Note again that the same
H,, and lety ™ (h), (h) be intertwining operators labeled Lie algebra holds fop andJ'lrj the Boseland Fermi cases.
by h; ¢*(h) : Hy — Hyer and ¢(h) : Hys — We now construct explicit anyon fields obeying (3),
Hy, with (k) annihilating the vacuum sta®@, € #,.  anticipating that they will satisfy different brackets from
Thus #, establishes the nature of the configuration tha0ose and Fermi fields. This is done as follows. First,
y* creates ands annihilates, whileh describes its state. We Write theN-anyon representation of (3) fod = R?,

We now propose the conditions using the covering space df-particle configuration space
* " in the plane. Second, we make the representation concrete
Unt1(N~(h) = ¢ (Un=1( ) UN(f), by introducing a way to realize an element of the covering

®3)

Vit ()0 (h) = o (Va—1 ($)1) Vi (), space bﬂyN paths in the plane. Third, we use this to
o _ _ definey™ as a creation operator mappiddy to Hy ;.

where the adjoint of these equations describes the behavqil,'na”y, we state our results abogt’ and .
of 4. The geometric meaning of (3) is evident: We  Tq write the N-anyon representation, we recall that a
think of ¢~ as creating a configuration IM, and/ as  configuration is arunorderedsety of N distinct points
averaging over such configurations. The first equation, the plane:y = {x; xy} C RZ the indexing ofy
in (3) states that both and ¢~ act locally in M. s arbitrary. The configuration spacky is the set of
The second equation states that creating a single nes| sych y. The topology ofAy that leads to anyon
configuration and then transforming the state vector by fepresentations is described by isndamental group
diffeomorphism oM gives the same result as transformingyhich is the braid groupBy; an introduction toBy in
M first and then creating the transformed new object, Withe|ation to anyon physics is given in [9]. A configuration
the transformation law for individual configurations given o together with a braids labels an element of the
by the action ofVy—i(¢). _ universal covering spacef Ay. We write Ay for this

Our general perspective is that for an indexed set Of:overing space, anil = (y,b). In physical terms, the/
representations (2) to form a hierarchy, it is necessarjoints of y label the positions of the anyons, while the
and sufficient that)™ and can be constructed obeying prajd » describes exactly how many times and in what
(3). We expect this general structure to occur not onlyprder these anyons may have circled each other, starting
for point particles, but also for extended objects such agom a reference configuration. sihe latter is arbitrary,
vortex filaments or tubes. In this case the argument ofj,e labeling of elements ok by the pair(y, b) is not

* . . ’ L
¢~ andy is a one-vortex Hilbert space vector, so that theynique but conventional; givery, the element ofAy
creation and annlhl!atlon flellds,_ even before averaging, dassociated with the identity iy may be selected freely.
not depend on a single point in space but on a spatially There are two ways of writingy-anyon wave functions
extended configuration. Only(x) andJ(x) always have gg that the action of diffeomorphisms can be specified.

as their arguments individual points in space. _If one lets¥ depend only on theV points iny, anyon
The bracket that the intertwining field obeys with gtatistics comes from an explicit phase in the operators
elements of the Lie algebra (1) follows from (3): V(). Alternatively, one can introduc# as a function
[p(£), ¢ ()] = ™ (on=1()h), of bothy andb. ThenV¥ satisfies a symmetry condition
" * (4) analogous to the familiar Bose or Fermi exchange sym-
[J(g), ¢ (W] = ¢ (Un=1(g)h), metry. Also known as an equivariance condition, this just
where the bracket withy is given by the adjoint equa- €XPresses the usual phase shift under exchange which de-
tions. Note thabnly commutator bracketsccur here. fines the anyon statistics. It is expressed by requiting

It is a straightforward, though lengthy, calculation 0 transform according to a representatitb) of By by
to verify that canonical Bose and Fermi nonrelativisticcOmplex numbers of modulus 1:
geIQS sqtlsfy (4). Th_e interesting point is that one can U (y,bb") = T(B')¥(y,b), (6)
egin with the N-particle Bose or Fermi representation
of the current algebra, ancbnstructintertwining fields where bb' is the product of braids irBy. Elsewhere
that fulfill (4). It is a consequencef this construction we stress [10] that these ideas amet restricted to
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complex-valued wave functions and one-dimensional rep- The key point is that diffeomorphisms oR? act
resentations ofBy; quantum theories based on higher-not only on configurationsgy, but on sets of pathg’,

dimensional, non-Abelian representations permit braigince these also lie in the plane.

A diffeomorphism

parastatistics (plektons). But we limit ourselves here tdhat is trivial at infinity respects (homotopy) equivalence

the usual anyon case where, whers the braid for a sin-
gle, counterclockwise exchange of two particl&sh) =
expif. Denote byp the projection map(y) = y. The
obvious way that diffeomorphisms of the plane actygn
oy = {p(x1),...,d(xy)}, lifts uniquely toy € Ay so
that p(¢¥) = ¢p(¥) = ¢y. Then theN-anyon repre-
sentation of (2) is given by [2,3]

Un( P (y) = exdi(7, HI¥ (),

N
V(@) P 3) = Uo7 [ [y Ts(x)),
j=1

where (7, f) = > ; f(x;) when y = {x,,...,xy}, and
where J, (x) is the Jacobian o atx.

Next we introduce a concrete realization §f that
assists in understanding the action ¢fin Ay. Write
x € R? in Cartesian coordinates &s!,x?). Let y be
such that all thex; have distinct values of their first
coordinates: i.ex; # x; for j # k. For suchy, consider

(7)

among paths, so that it acts dqi']. Thus, for fixed

v, diffeomorphisms that leaver unchanged (as a set)
map the classe$I'] of paths terminating aty into
each other. For example, take a fixed pair of points

{x1,X,} in the plane. Consider the canonical palts ™
constructed as in Fig. 1, terminating @at;, x,}. Let ¢

be a diffeomorphism, trivial at infinity, that exchanges
the points; i.e.x, = ¢(x1) andx; = ¢(x;). One way

¢ can act on the pair of pathE;"™ is to map them

to new paths as in Fig. 2 (imaging moving points
only in the shaded region of the plane). Then we
associate with this diffeomorphism the generakes in

the braid group for a single counterclockwise exchange
of the two points. To a diffeomorphism implementing
one clockwise exchange of the points, we asgigh. A
group homomorphism is defined in this manner, from the
subgroup of diffeomorphisms that leayefixed as a set,
onto the braid group. We denote the homomorphism by
h,, and writeh, (¢) = b for the braid associated witth.

a setl’ = {I';} of N continuous, non-self-intersecting and The given realization provides a faithful mapping from
non-mutually-intersecting paths coming in from infinity, By to classes of patHd']. Whenb is the braid that takes

possibly circling some points, and terminating at the

[[J]to[T], we can writeT (T') in place ofT(b). Further

We take all paths at infinity to extend in the negativeexplanation is given in [11].

x? direction, parallel to thex?> axis. Then an element

Next we use this picture to define the anyon creation

% can be identified with an equivalence class (homotopyield ¢*. To do this we need a consistent way to add
class)[I'] of such paths, whose set of terminal points isan anyon at, not merely to anV-anyon configuration,

v. Giveny, we can make &anonical choiceof ¥ by
letting all the paths be straight half lines parallel to e

axis. Call this particular set of patﬂé{)x' """ XN}, orI'J; it

but to an element of th&’-anyon covering space. Doing
this breaks equivalence among sets of paths, because
many different points on théN + 1)-anyon covering

is shown in Fig. 1. We associate this set of paths with théPace correspond to the introduction of a new_anyon

identity braid. Since the indexing of the; is arbitrary,

at x. Our procedure is shown in Fig. 3. Givé ],

we can label the paths and their terminal points so tha&Nd the additional poink, define a new set of paths

x; < xp < --- < xy with T; terminating atx;.

X
2 X
x10 "N
[ ]
o |
XZ e 0o 0
<
. N e e e .
FT 1HN
FIG. 1. Fory = {xi,..., xy}, a canonical choic&] of paths

{T';} terminating atx;}.

Xt by placing the point in the plane among the

or 1975

FIG. 2. A diffeomorphism implementing a counterclockwise
exchange of two points labeled originally as in Fig. 1. Mirror
image paths describe clockwise exchange.
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gmmmmmmmesesseses s~ together with the adjoint equations f@r. Thesecom-
‘ % mutator brackets hold independent of whether one has
bosons, fermions, or anyons. Furthermore, we recover the
operatorsp (x) andJ(x) in terms of the anyon fields as the
desired expressions as in the Bose and Fermi cases, with
STy, p(x)¥y)d>x = Nm.

Finally, we determine straightforwardly from (8) that
the anyon fields obey-commutation relations, where
g = T(b12). Theg-deformed bracket if4, B], = AB —
gBA, wheregq is here a complex number of modulus 1.
Then

[p(x, 1), ¢(y, 0], = [¥" (x, 1), 9™y, )], =
[ (y, ), ¢ (x,0)], = 8(x — y).

Note that for the first two equations of (10) to be
consistent whery # =1, they should be interpreted as
FIG. 3. /y—\n anyonic particle is crea_ted at, defining the holding for ordered pairdx,y) in a half spaceH of
elementl’x of the (N + 1)-anyon covering space. M X M. In the complementary half space we have the
(1/q) bracket. The equation fofy(x, ¥ (y)], is then
consistent with the equation fdws™(x), ¢*(y)],, since

lg| = 1. The half space here is not a limitation, and its
choice has no physical consequence; it is just an arbitrary
boundary between sheets in the covering space. The
third equation of (10) is written as indicated foxr,y) €

x
-

x L EEE R L L LN

0,
(10)

1—‘N+1

r r

1 N

N paths comprisind’y, and drawing a new patly
that terminates ak, and comes in from infinity to the
right of the N existing paths without intersecting them.
This tells us a particular element of ti& + 1)-anyon

covering space. _ H; it may be written equivalently (using = 1/q) as
We now see from Figs. 1-3 why thg commutator [0(x, 1), b (y, )i/, = 8(x —y). One can also verity

will enter. Consider two pointgx;,x,}. Creating an that the brackets fory and ¢* with p and J are in

. . X,} .
anyon first at,, we obtain the patli';, = I'y*", avertical  accordance with (4), using the algebraic identity
straight line terminating ak,. Creating the next anyon
[AB,C]- = A[B,C], + ¢[A,Cl,/,B (11)

. . {x, . .
at x; gives us paths in the cladd’x,”’'] as in Fig. 2, _ _
corresponding td,. But if we first create an anyon at relating the ordinary commutator to the commutator.
{x1,%:} The commutators of the field operators with the generators

x; and then ak,, we obtain the clas§ associated A ) '
with the identity braid. The relative phage= T(b,) = of the infinite-dimensional group hold for all values »f
andy, not merely in a half space.

exdif] occurs in the two products of creation operators, .
Hi0] i P As noted, we expect the methods of this Letter to gen-

where# characterizes the anyons in the hierarchy. ; i - . i X
£ralize to still other hierarchies of diffeomorphism group

To describe the action of the anyon annihilation an o i s X
creation fields, let? be a sequencéVy) of equivariant representations; e.g., to extended objects like quantized
vortex loops and tubes.
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