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Numerical Tests of the Chiral Luttinger Liquid Theory for Fractional Hall Edges
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We report on microscopic numerical studies that support the chiral Luttinger liquid theory of
the fractional Hall edge proposed by Wen. Our calculations are based in part on newly proposed
and accurate many-body trial wave functions for the low-energy edge excitations of fractional
incompressible states.

PACS numbers: 73.40.Hm

The quantum Hall effect (QHE) can occur only whencorrespondence with those of a chiral one-dimensional
a disorder-free two-dimensional electron system has anoninteracting fermion system that has single-particle
incompressibility, i.e., a discontinuity in the chemical states with only one sign of velocity. The noninteracting
potential, at a magnetic field dependent densitiy(8).  fermion system can in turn be mapped [7] to a 1D system
The incompressibility implies a gap for charged and neutrabf noninteracting chiral bosons; the bosons are the phonon
excitations in the bulk of the system, but the magnetionodes of the edge. The same conclusion about the neutral
field dependence of the density at which the gap occurexcitations of av = 1/m edge can be reached by using
requires the existence of gapless excitations localized @& hydrodynamic approach [3,4] to derive a low-energy
the edge of the system [1]. In equilibrium the currenteffective Hamiltonian expressed solely in terms of 1D
responsible for the orbital diamagnetism of the underlyingcharge densities obtained by integrating the 2D charge
two-dimensional electron system is carried at the edge andensity along the coordinate perpendicular to the edge.

satisfies the thermodynamic identity, The Hamiltonian is quantized by invoking a commutation
ol dn*(B) relation between Fourier components of the 1D charge
— =c—. 1 [
on ¢ 4B (1)  density,

In the edge-statepicture [2], the quantum Hall effect fol- [p(q),p(=¢")] = % 844 2

lows from Eq. (1) when local equilibria are established on
uncoupled edges. For the case of bulk incompressibiliFor » = 1 Eq. (2) can be derived microscopically, but
ties at fractional Landau level filling factorg), which are  for the fractional case it is assumed in order to satisfy
of many-body origin, Wen’s chiral Luttinger liquid (CLL) Eg. (1) without altering the structure of the theory. This
theory [3,4] of the low-energy edge excitations predictsseemingly innocent introduction of the facter on the
non-Fermi-liquid effects, which have recently been of greatight-hand side of Eq. (2) is responsible for the non-Fermi-
interest [3—5]. The simplest version of this theory, andliquid behavior predictions [3-5] of CLL theory. The
the one we test numerically here, applies to the edge of theredictions follow from the expression for the electron
incompressible ground states that occuwat 1/m for  field operator, which plays a central role in the theory, in
m odd [6]. terms of boson operators. This expression, quoted below,
The non-Fermi-liquid properties of one-dimensionalis the simplest choice that results in a field operator that
fermion systems captured by the Luttinger model [7] arisesatisfies the correct commutation relation with the density
from interactions between left-going and right-going parti-operator. For the fractional case, it has not been possible
cles in states close to the Fermi level. In a single-particlgo fully justify this expression on the basis of microscopic
model, left-going and right-going states close to the Fermtheory. This situation motivates the extensive numerical
energy in the QHE regime are localized on opposite edge®sts reported in this article [10]. Our findings are in
of a sample with Hall bar geometry, and therefore interactomplete agreement with the CLL theory.
weakly. However, Wen’'s theory predicts that in the Our numerical calculations were performed for a QHD
fractional QHE regime, non-Fermi-liquid behavior ariseswith a parabolic confinement potential. These model sys-
without interedge interactionsWe therefore consider a tems [11,12] are of direct relevance to transport [13—15]
guantum Hall droplet (QHD) system for which electronsand capacitance [16] measurements in quantum dots in
are confined to a finite area by a circularly symmetricstrong magnetic fields. Here we are interested principally
external potential and for which a single circular edge exdin the edge excitations of QHD’s, which are as large as pos-
ists. For such a system it follows [3,8,9] directly from the sible in order to model the edge excitations of macroscopic
microscopic fractional QHE physics [6], which gives rise incompressible states. In this model the single-particle
to the chemical potential jump at = 1/m, that the low-  state with angular momentum has energym + 1)Q;¢>
energy neutral edge excitations for anyare in one-to-one where () is the frequency characterizing the parabolic
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confining potential and = (fic/eB)"/? is the magnetic total angular momentum shifts rigidly by M Q3 €2 when

length. For a QHD the angular momentum plays the rolghe confinement is introduced.

that would be played by the linear momentum in units of Figure 1 shows the spectra of the QHD O = 0

27r/L in a Hall bar geometry. For this microscopic modelas a function ofM close toM = My(3,N) and M =

system the incompressible ground stal§4N) associated My(1, N). Note that the interaction energy decreases as

with the » = 1/m fractional QHE occur [8] for total an- M increases because of the decrease in average two-

gular momentumM = My(m,N) = mN(N — 1)/2 with  dimensional electron density; in the QHD case interac-

N being the number of particles in the QHD. The= tions lower the boson energies because the charge spreads

1 incompressible state is a single Slater determinant iout in the direction perpendicular to the edge when the

which single-particle states with = 0,1,...,N — 1 are  angular momentum is changed. Figure 1 shows that the

occupied. bosonization law for the neutral edge-wave excitation
In the language appropriate to the QHD the principalspectrum, which is exact for the hard-core model, is still

predictions of the CLL theory are the following: (i) For closely obeyed for the physically realistic Coulomb inter-

M = My(m,N) + AM the spectrum has a low-energy actions. The bosonization is even more robust than would

branch with many-particle eigenenergies given By=  be expected priori since it appears to hold even where

Eo + > nie; where); In; = AM andE, is the energy e; « [ fails.

of the My(m, N) incompressible state. This property is

expected to be accurately satisfied fo¥/ < N'/2, since ‘

the excitations are then well localized at the edge. Here ° ° * * %

+ 4

are the non-negative integers, which give the occupatior
numbers for the bosonic edge-wave angular momeritum 41 h ° * * * - 1
and energy;. (ii) The electron creation operator is given N%\ ° ¥~ 1 t
by A A A § 46 . t 1
J1(0) = Vz exd b+ (6)] exd — - (6)], 3 & ¢ T I

where 44 | + 1

~ t (a) N

$+(0) = D N1/lv[a] explilo)], (4) PP

Ji 14 15 16 17 18 19 20 21 22

a;r is a boson creation operatarjs a constant that is not ' ‘ ' + § ' '
fixed in the CLL theoryg _(0) = [¢+(8)]t, and for each ¢ o * i
particle number the boson operators act on the bosonit T . * * %
quantum numbers of the edge waves. S - *—

We first discuss our tests of the CLL theory predictions s , 4| o 4 I
for the bosonic nature of the excitation spectrum of the 8 * $ +
edge of the QHD. Substantial arguments can be advance 5 ° * 1 T
in favor of this aspect of the CLL theory predictions from + T
microscopic theory. In the case of the hard-core model of 4 " L

(b)

electron-electron interactions, the low-energy portion of . . \ . ‘ ' + L
the spectrum has no contributions from electron-electron 274 a5 a6 47 48 49 50 51 52
interactions, the bosonization follows from analytic M

arguments, and;, = 10362 [8,9]. More generally, quali- FIG. 1. Low-lying excitation spectra of a six-particle QHD
tative aspects of the bosonization of the low-energyneglecting confinement energies. ¢a)= 1. The incompress-
portion of the spectrum follow from the adiabatic evolu- IPlé ground state occurs & = 15. The solid dots show the

. . . . . interaction energies of the single-boson edge staigs; = 0).
tion of the spectrum with changing model interactions.tyq ignhiighted asterisk a = 19 shows the energy of the

For the QHD thel/ = 1 single-boson state correspondssiate withn, = 2. Its energy differs fron2e, by 3.3%. The
microscopically to an excitation of the center of masssequence of states that appear along horizontal lines in this
of all electrons fromM,.,, =0 to M., = 1. Since figure corresponds microscopically to increasing values of the
the interaction energy of the electrons is independent ofénter-of-mass angular momentum and, in the boson picture,
the center-of-mass state [17,18], it follows = 022 to increasing values of;. (b) » = 1/3. The incompressible

h =0 : 0% s ground state occurs & = 45. The similarity with they = 1
independent of electron-electron interactions. Fet 1 spectrum in (a) is clear despite the appearance\fir = 3 of

e; is interaction dependent; to test the bosonization for thether states representing bulk excitations. These states are ex-
physically realistic Coulomb interaction model we havepected to move to relatively higher energies for large If
determined the spectrum of finite-size QHD’s by exacth'gher LL's were included in the calculation, the same incur-

diagonalization of the manv-particle Hamiltonian ne Iect_sion of bulk excitations for values @M nearN could occur in
g y-p 9 thev = 1 case at small enough values/ib.. Intherv = 1/3

ing confinement. For parabolically confined QHD’s the case the energy of the highlightesl = 2 state differs fronRe,
eigenstates are unchanged, and the subspace spectrunbya.3%.
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More extensive analyses of the spectrum are possiblEABLE I.

and have been completed previouslgly for the edge

Absolute value of the overlaps between the exact
single-boson state (see text) and the trial stmésZMl\Ifé(N))

excitations of av = 1 QHD where exact diagonalization for up to six particles (in brackets usingZM). The high
techniques can be applied for much larger numbers ofverlaps confirm the validity of the mapping (throughr)

electrons [19].
been proposed by Stone [19] to generate the edg

A set of microscopic operators haveletween the single-boson state excitations of & 1 QHD
P P ea_nd those of & = 1/3 QHD.

wave spectrum in thev = 1 case: SlM => [m+ AM

N =4

N=5

N=6

AM)!/m!]l/Zc,LAMcm where ¢} and c,, are the elec- 0
tron creation and annihilation operators. Recently, 1
Oakninet al.[20] identified a modified set of operators, 2

Iy =3 [m!/(m + AM)Y2¢) | em, which, when

0.9788 (0.9788)
0.9788 (0.9788)
0.9768 (0.9660)
0.9906 (0.9167)
0.9940 (0.7489)

0.9850 (0.9850)
0.9850 (0.9850)
0.9715 (0.9647)
0.9736 (0.9296)
0.9970 (0.8373)

0.9819 (0.9819)
0.9819 (0.9819)
0.9790 (0.9743)
0.9725 (0.9429)
0.9701 (0.8637)

acting upon ther = 1 QHD, do not alter the center-
of-mass state of the electrons. It was demonstrated byg
Oakninet al. that their operators generate the single-bosos
excitations of thewr = 1 QHD more accurately than those
of Stone [20]. More generally we find by comparing with  \ye tym finally to our numerical tests of the less fully
exact eigenstates that for a giva/, the excitations with  ; \«tified CLL theory expression for the electron field
large bosonic occupation numbers are more accurate perator. We report here only results for the squared
generated by thé™ operators than by the' operators, mapix elements connecting the ground state of the
while the comparison is reversed for small bosonic OCwlectron system with the ground state and low-lying
cupation numbers. In the limiAM < N'/2 the states bosonic states of th&/ + 1 particle system at = 1/3,
generated by the two sets of operators become equivalelTE\I,sn}(N + DIyt o) [ WI(N))2. The values predicted

In order to access large for a fractional QHD, follow- ¢ thage squared matrix elements by the CLL theory can

ing Ref. [8] we propose a set of microscopic m""m"b()dyeasily be computed from Eq. (3). The predicted matrix
wave functions for low-lying excited states of fractional oo ments forAM = 0. 1. 2. 3. 4 are listed in Table II

QHD's, and compared with those calculated microscopically [21]
pml l_[(JzT)"’l‘I’é(N)% (5) forN =6,7, and 8. For each case the matrix elements
/ have been normalized to the ground-state—to—ground-
where; in; = AM andD is the Vandermonde determi- state matrix element[22]. Since the angular momentum
nant [8] Jastrow factor that relates different Laughlin QHDdifference between theV and N + 1 particle states
states (' (N) = D>W{ 2(N)]. (As discussed above, for is My(3,N + 1) + AM — My(3,N) = 3N + AM, only
some states greater accuracy at finitean be achieved on the part of the electron creation operator proportional to
substituting/ " by s*.) These trial wave functions have .f . = contributes to the microscopic matrix element.
the following properties: (i) they have the appropriateThe agreement between the CLL results for these matrix
value of the angular momentum; (ii) fakM = 0 they  elements and the microscopic calculations is excellent.
reduce to Laughlin’s approximation for the incompress-it appears from our extrapolation that the CLL theory
ible state many-body wave function; (iii) they are exactpecomes exact faN — . The non-Fermi-liquid power
eigenstates with zero interaction energy in the case of thgy, properties predicted by the CLL theory depend both
hard-core model Hamiltonian; and (iv) the single-bosorgn the predictions for these matrix elements and on having
states are eigenstates of center-of-mass angular momedispersionless propagation of edge modes, ée= cl.
tum with eigenvalud for AM # 1 and eigenvalue 1 for |n that case the total spectral weight at an enefiggbove
AM = 1. Ifthe setST is used instead off, the final prop-  the chemical potential is proportional to the sum of the

erty still holds but only in the limia M < N'/2. Table |  squared matrix elements faxM = /. It follows from
shows the absolute value of the overlaps between the triglg. (3) that this sum equals

single-boson state wave functions and the exact ones for
thev = 1/3 QHD for up to six particles. We see that the Aay = 2 AM +m — 1) ) (6)
excited state wave functiond{/ = 2) tend to be, if any- (AM)! (m — 1!

thing, more accurate than the Laughlin trial wave function=gr Aas s> m — 1 the right-hand side of Eq. (6) ap-
for the ground stateAM = 0). (The bracketed overlap proachedAM)"~'/(m — 1)!. This gives the power law

values were ca}lculated using the Stone operators.) Itis i_”Hependence of the spectral weight at low energies, which
portant to realize that the direct application of the Oakningniers into various physical properties.

et al. operators to thes = 1/3 Laughlin state would not |5 ¢onclusion, our microscopic numerical studies
generate identical states sing@” ', 71,/ # 0; the re- strongly support the chiral Luttinger liquid theory of the

sulting states would lack properties (i) and (iv) from the fractional Hall edge proposed by Wen and add to the
list above, and they are very poor approximations to thenotivation for experiments that can probe the low-energy
true states. On the other harﬁm’"*l,SlM] = 0. excitations of incompressible fractional Hall states.
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0.9862 (0.6360)  0.9819 (0.7274)

0.9820 (0.5306)
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TABLE Il. Microscopic and CLL theory spectral weights for the= 1/3 QHD state in
units of the ground-state—to—ground-state matrix element. Results are shown=fos, 7,

8 and are extrapolated t§ — . The bracketed CLL theory results are for= 1 where
the squared matrix elements sum to 1 for edat. For v = 1/3 each matrix element is
increased by a factor di* wherek = >, n;. The increase in the spectral weights moving
away the Fermi level is due to the increasing boson occupation numbers.

(W3, (N + Dledysan TSN

AM {n;} N=6 N=17 N=28 N — x CLL theory

0 {0000} 1.000 1.000 1.000 1.000 1(1)

1 {1000} 2.714 2.750 2.778 2.998 3(1)

2 {2000} 3.877 3.953 4.012 4473 9/2 (1/2)
{0100} 1.322 1.343 1.358 1.445 3/2(1/2)

3 {3000} 3.877 3.953 4.012 4473 9/2 (1/6)
{1100} 3.913 3.986 4.041 4.453 9/2 (1/2)
{0010} 0.939 0.943 0.946 0.983 1(1/3)

4 {4000} 3.047 3.088 3.121 3.360 27/8 (1/24)
{2100} 6.024 6.131 6.209 6.710 27/4 (1/4)
{1010} 2.828 2.852 2.869 2.966 3(1/3)
{0200} 1.048 1.058 1.064 1.101 9/8 (1/8)
{ooo1} 0.830 0.811 0.797 0.725 3/4 (1/4)
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