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Numerical Tests of the Chiral Luttinger Liquid Theory for Fractional Hall Edges
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(Received 6 September 1995)

We report on microscopic numerical studies that support the chiral Luttinger liquid theory o
the fractional Hall edge proposed by Wen. Our calculations are based in part on newly propos
and accurate many-body trial wave functions for the low-energy edge excitations of fraction
incompressible states.

PACS numbers: 73.40.Hm
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The quantum Hall effect (QHE) can occur only whe
a disorder-free two-dimensional electron system has
incompressibility, i.e., a discontinuity in the chemic
potential, at a magnetic field dependent density,npsBd.
The incompressibility implies a gap for charged and neu
excitations in the bulk of the system, but the magne
field dependence of the density at which the gap occ
requires the existence of gapless excitations localize
the edge of the system [1]. In equilibrium the curre
responsible for the orbital diamagnetism of the underly
two-dimensional electron system is carried at the edge
satisfies the thermodynamic identity,

≠I
≠m

­ c
dnpsBd

dB
. (1)

In the edge-statepicture [2], the quantum Hall effect fol
lows from Eq. (1) when local equilibria are established
uncoupled edges. For the case of bulk incompressib
ties at fractional Landau level filling factors (n), which are
of many-body origin, Wen’s chiral Luttinger liquid (CLL
theory [3,4] of the low-energy edge excitations predi
non-Fermi-liquid effects, which have recently been of gr
interest [3–5]. The simplest version of this theory, a
the one we test numerically here, applies to the edge of
incompressible ground states that occur atn ­ 1ym for
m odd [6].

The non-Fermi-liquid properties of one-dimension
fermion systems captured by the Luttinger model [7] ar
from interactions between left-going and right-going pa
cles in states close to the Fermi level. In a single-part
model, left-going and right-going states close to the Fe
energy in the QHE regime are localized on opposite ed
of a sample with Hall bar geometry, and therefore inter
weakly. However, Wen’s theory predicts that in th
fractional QHE regime, non-Fermi-liquid behavior aris
without interedge interactions.We therefore consider a
quantum Hall droplet (QHD) system for which electro
are confined to a finite area by a circularly symmet
external potential and for which a single circular edge
ists. For such a system it follows [3,8,9] directly from th
microscopic fractional QHE physics [6], which gives ris
to the chemical potential jump atn ­ 1ym, that the low-
energy neutral edge excitations for anym are in one-to-one
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correspondence with those of a chiral one-dimensio
noninteracting fermion system that has single-partic
states with only one sign of velocity. The noninteractin
fermion system can in turn be mapped [7] to a 1D syste
of noninteracting chiral bosons; the bosons are the phon
modes of the edge. The same conclusion about the neu
excitations of an ­ 1ym edge can be reached by usin
a hydrodynamic approach [3,4] to derive a low-ener
effective Hamiltonian expressed solely in terms of 1
charge densities obtained by integrating the 2D cha
density along the coordinate perpendicular to the ed
The Hamiltonian is quantized by invoking a commutatio
relation between Fourier components of the 1D char
density,

frsqd, rs2q0dg ­ n
qL
2p

dq,q0 . (2)

For n ­ 1 Eq. (2) can be derived microscopically, bu
for the fractional case it is assumed in order to satis
Eq. (1) without altering the structure of the theory. Th
seemingly innocent introduction of the factorn on the
right-hand side of Eq. (2) is responsible for the non-Ferm
liquid behavior predictions [3–5] of CLL theory. The
predictions follow from the expression for the electro
field operator, which plays a central role in the theory,
terms of boson operators. This expression, quoted bel
is the simplest choice that results in a field operator th
satisfies the correct commutation relation with the dens
operator. For the fractional case, it has not been poss
to fully justify this expression on the basis of microscop
theory. This situation motivates the extensive numeric
tests reported in this article [10]. Our findings are
complete agreement with the CLL theory.

Our numerical calculations were performed for a QH
with a parabolic confinement potential. These model sy
tems [11,12] are of direct relevance to transport [13–1
and capacitance [16] measurements in quantum dots
strong magnetic fields. Here we are interested principa
in the edge excitations of QHD’s, which are as large as p
sible in order to model the edge excitations of macrosco
incompressible states. In this model the single-partic
state with angular momentumm has energysm 1 1dV2

0,2

where V0 is the frequency characterizing the parabol
© 1995 The American Physical Society
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confining potential and, ­ sh̄cyeBd1y2 is the magnetic
length. For a QHD the angular momentum plays the r
that would be played by the linear momentum in units
2pyL in a Hall bar geometry. For this microscopic mod
system the incompressible ground statesC

m
0 sNd associated

with the n ­ 1ym fractional QHE occur [8] for total an-
gular momentumM ­ M0sm, Nd ­ mNsN 2 1dy2 with
N being the number of particles in the QHD. Them ­
1 incompressible state is a single Slater determinan
which single-particle states withm ­ 0, 1, . . . , N 2 1 are
occupied.

In the language appropriate to the QHD the princip
predictions of the CLL theory are the following: (i) Fo
M ­ M0sm, Nd 1 DM the spectrum has a low-energ
branch with many-particle eigenenergies given byE ­
E0 1

P
l nlel where

P
l lnl ­ DM and E0 is the energy

of the M0sm, Nd incompressible state. This property
expected to be accurately satisfied forDM , N1y2, since
the excitations are then well localized at the edge. Herenl

are the non-negative integers, which give the occupa
numbers for the bosonic edge-wave angular momentul
and energyel. (ii) The electron creation operator is give
by

ĉysud ­
p

z expff̂1sudg expf2f̂2sudg , (3)

where

f̂1sud ­
X

l

p
1yln fay

l expsiludg , (4)

a
y
l is a boson creation operator,z is a constant that is no

fixed in the CLL theory,f2sud ­ ff1sudgy, and for each
particle number the boson operators act on the boso
quantum numbers of the edge waves.

We first discuss our tests of the CLL theory predictio
for the bosonic nature of the excitation spectrum of t
edge of the QHD. Substantial arguments can be advan
in favor of this aspect of the CLL theory predictions fro
microscopic theory. In the case of the hard-core mode
electron-electron interactions, the low-energy portion
the spectrum has no contributions from electron-elect
interactions, the bosonization follows from analyt
arguments, andel ­ lV2

0,2 [8,9]. More generally, quali-
tative aspects of the bosonization of the low-ener
portion of the spectrum follow from the adiabatic evol
tion of the spectrum with changing model interaction
For the QHD thel ­ 1 single-boson state correspond
microscopically to an excitation of the center of ma
of all electrons fromMc.m. ­ 0 to Mc.m. ­ 1. Since
the interaction energy of the electrons is independen
the center-of-mass state [17,18], it followse1 ­ V

2
0,2,

independent of electron-electron interactions. Forl fi 1
el is interaction dependent; to test the bosonization for
physically realistic Coulomb interaction model we ha
determined the spectrum of finite-size QHD’s by exa
diagonalization of the many-particle Hamiltonian negle
ing confinement. For parabolically confined QHD’s th
eigenstates are unchanged, and the subspace spectr
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total angular momentumM shifts rigidly byMV
2
0,2 when

the confinement is introduced.
Figure 1 shows the spectra of the QHD forV0 ­ 0

as a function ofM close to M ­ M0s3, Nd and M ­
M0s1, Nd. Note that the interaction energy decreases
M increases because of the decrease in average
dimensional electron density; in the QHD case intera
tions lower the boson energies because the charge spr
out in the direction perpendicular to the edge when t
angular momentum is changed. Figure 1 shows that
bosonization law for the neutral edge-wave excitati
spectrum, which is exact for the hard-core model, is s
closely obeyed for the physically realistic Coulomb inte
actions. The bosonization is even more robust than wo
be expecteda priori since it appears to hold even wher
el ~ l fails.

FIG. 1. Low-lying excitation spectra of a six-particle QHD
neglecting confinement energies. (a)n ­ 1. The incompress-
ible ground state occurs atM ­ 15. The solid dots show the
interaction energies of the single-boson edge states,el (e1 ­ 0).
The highlighted asterisk atM ­ 19 shows the energy of the
state withn2 ­ 2. Its energy differs from2e2 by 3.3%. The
sequence of states that appear along horizontal lines in
figure corresponds microscopically to increasing values of
center-of-mass angular momentum and, in the boson pict
to increasing values ofn1. (b) n ­ 1y3. The incompressible
ground state occurs atM ­ 45. The similarity with then ­ 1
spectrum in (a) is clear despite the appearance forDM $ 3 of
other states representing bulk excitations. These states are
pected to move to relatively higher energies for largeN . If
higher LL’s were included in the calculation, the same incu
sion of bulk excitations for values ofDM nearN could occur in
then ­ 1 case at small enough values ofh̄vc. In then ­ 1y3
case the energy of the highlightedn2 ­ 2 state differs from2e2
by 0.3%.
119
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More extensive analyses of the spectrum are poss
and have been completed previouslyonly for the edge
excitations of an ­ 1 QHD where exact diagonalization
techniques can be applied for much larger numbers
electrons [19]. A set of microscopic operators ha
been proposed by Stone [19] to generate the ed
wave spectrum in then ­ 1 case: S

y
DM ­

P
mfsm 1

DMd!ym!g1y2c
y
m1DMcm where cy

m and cm are the elec-
tron creation and annihilation operators. Recent
Oaknin et al. [20] identified a modified set of operators
J

y
DM ­

P
mfm!ysm 1 DMd!g1y2c

y
m1DMcm, which, when

acting upon then ­ 1 QHD, do not alter the center
of-mass state of the electrons. It was demonstrated
Oakninet al. that their operators generate the single-bos
excitations of then ­ 1 QHD more accurately than thos
of Stone [20]. More generally we find by comparing wi
exact eigenstates that for a givenDM, the excitations with
large bosonic occupation numbers are more accura
generated by theSy operators than by theJy operators,
while the comparison is reversed for small bosonic o
cupation numbers. In the limitDM , N1y2 the states
generated by the two sets of operators become equiva

In order to access largeN for a fractional QHD, follow-
ing Ref. [8] we propose a set of microscopic many-bo
wave functions for low-lying excited states of fraction
QHD’s,

Dm21
Y

l

sJy
l dnl jC1

0sNdl , (5)

where
P

l lnl ­ DM andD is the Vandermonde determi
nant [8] Jastrow factor that relates different Laughlin QH
states [Cm

0 sNd ­ D2C
m22
0 sNd]. (As discussed above, fo

some states greater accuracy at finiteN can be achieved on
substitutingJy by Sy.) These trial wave functions hav
the following properties: (i) they have the appropria
value of the angular momentum; (ii) forDM ­ 0 they
reduce to Laughlin’s approximation for the incompres
ible state many-body wave function; (iii) they are exa
eigenstates with zero interaction energy in the case of
hard-core model Hamiltonian; and (iv) the single-bos
states are eigenstates of center-of-mass angular mom
tum with eigenvalue0 for DM fi 1 and eigenvalue 1 for
DM ­ 1. If the setSy is used instead ofJy, the final prop-
erty still holds but only in the limitDM , N1y2. Table I
shows the absolute value of the overlaps between the
single-boson state wave functions and the exact ones
then ­ 1y3 QHD for up to six particles. We see that th
excited state wave functions (DM $ 2) tend to be, if any-
thing, more accurate than the Laughlin trial wave functi
for the ground state (DM ­ 0). (The bracketed overlap
values were calculated using the Stone operators.) It is
portant to realize that the direct application of the Oakn
et al. operators to then ­ 1y3 Laughlin state would not
generate identical states sincefDm21, J

y
DMg fi 0; the re-

sulting states would lack properties (iii) and (iv) from th
list above, and they are very poor approximations to
true states. On the other hand,fDm21, S

y
DMg ­ 0.
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TABLE I. Absolute value of the overlaps between the exa
single-boson state (see text) and the trial statesD2J

y
DM jC1

0 sNdl
for up to six particles (in brackets usingS

y
DM ). The high

overlaps confirm the validity of the mapping (throughD2)
between the single-boson state excitations of an ­ 1 QHD
and those of an ­ 1y3 QHD.

DM N ­ 4 N ­ 5 N ­ 6

0 0.9788 (0.9788) 0.9850 (0.9850) 0.9819 (0.981
1 0.9788 (0.9788) 0.9850 (0.9850) 0.9819 (0.981
2 0.9768 (0.9660) 0.9715 (0.9647) 0.9790 (0.974
3 0.9906 (0.9167) 0.9736 (0.9296) 0.9725 (0.942
4 0.9940 (0.7489) 0.9970 (0.8373) 0.9701 (0.863
5 0.9862 (0.6360) 0.9819 (0.7274
6 0.9820 (0.5306)

We turn finally to our numerical tests of the less full
justified CLL theory expression for the electron fiel
operator. We report here only results for the squar
matrix elements connecting the ground state of theN
electron system with the ground state and low-lyin
bosonic states of theN 1 1 particle system atn ­ 1y3,
jkC3

hnljsN 1 1djcysud jC
3
0sNdlj2. The values predicted

for these squared matrix elements by the CLL theory c
easily be computed from Eq. (3). The predicted matr
elements forDM ­ 0, 1, 2, 3, 4 are listed in Table II
and compared with those calculated microscopically [2
for N ­ 6, 7, and 8. For each case the matrix elemen
have been normalized to the ground-state–to–grou
state matrix elementz [22]. Since the angular momentum
difference between theN and N 1 1 particle states
is M0s3, N 1 1d 1 DM 2 M0s3, Nd ­ 3N 1 DM, only
the part of the electron creation operator proportional
c

y
3N1DM contributes to the microscopic matrix elemen

The agreement between the CLL results for these ma
elements and the microscopic calculations is excelle
It appears from our extrapolation that the CLL theo
becomes exact forN ! `. The non-Fermi-liquid power
law properties predicted by the CLL theory depend bo
on the predictions for these matrix elements and on hav
dispersionless propagation of edge modes, i.e.,el ­ cl.
In that case the total spectral weight at an energycl above
the chemical potential is proportional to the sum of th
squared matrix elements forDM ­ l. It follows from
Eq. (3) that this sum equals

ADM ­ z
sDM 1 m 2 1d!
sDMd! sm 2 1d!

. (6)

For DM ¿ m 2 1 the right-hand side of Eq. (6) ap-
proachessDMdm21ysm 2 1d!. This gives the power law
dependence of the spectral weight at low energies, wh
enters into various physical properties.

In conclusion, our microscopic numerical studie
strongly support the chiral Luttinger liquid theory of th
fractional Hall edge proposed by Wen and add to t
motivation for experiments that can probe the low-ener
excitations of incompressible fractional Hall states.



VOLUME 76, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 1 JANUARY 1996

g

TABLE II. Microscopic and CLL theory spectral weights for then ­ 1y3 QHD state in
units of the ground-state–to–ground-state matrix element. Results are shown forN ­ 6, 7,
8 and are extrapolated toN ! `. The bracketed CLL theory results are forn ­ 1 where
the squared matrix elements sum to 1 for eachDM. For n ­ 1y3 each matrix element is
increased by a factor of3k where k ­

P
l nl . The increase in the spectral weights movin

away the Fermi level is due to the increasing boson occupation numbers.

jkC3
hnl jsN 1 1djcy

3N1DM jC
3
0 sNdlj2

DM hnlj N ­ 6 N ­ 7 N ­ 8 N ! ` CLL theory

0 h0000j 1.000 1.000 1.000 1.000 1 s1d
1 h1000j 2.714 2.750 2.778 2.998 3 s1d
2 h2000j 3.877 3.953 4.012 4.473 9y2 s1y2d

h0100j 1.322 1.343 1.358 1.445 3y2 s1y2d
3 h3000j 3.877 3.953 4.012 4.473 9y2 s1y6d

h1100j 3.913 3.986 4.041 4.453 9y2 s1y2d
h0010j 0.939 0.943 0.946 0.983 1 s1y3d

4 h4000j 3.047 3.088 3.121 3.360 27y8 s1y24d
h2100j 6.024 6.131 6.209 6.710 27y4 s1y4d
h1010j 2.828 2.852 2.869 2.966 3 s1y3d
h0200j 1.048 1.058 1.064 1.101 9y8 s1y8d
h0001j 0.830 0.811 0.797 0.725 3y4 s1y4d
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