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Aharonov-Bohm Oscillations and Resonant Tunneling in Strongly Correlated Quantum Dots
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We investigate Aharonov-Bohm oscillations of the current through a strongly correlated quantum dot
embedded in an arbitrary scattering geometry. Resonant-tunneling processes lead to a flux-dependent
renormalization of the dot level. As a consequence, we obtain a fine structure of the current oscillations,
which is controlled by quantum fluctuations. Strong Coulomb repulsion leads to a continuous bias
voltage dependent phase shift and, in the nonlinear response regime, destroys the symmetry of the
differential conductance under a sign change of the external flux.

PACS numbers: 73.40.Gk
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Phase-sensitive transport properties of interact
mesoscopic systems are important for several reas
The small size of the samples gives rise to capacitan
of order 10215 F, which induce Coulomb blockad
effects [1] and demand the necessity to generalize
Landauer-Büttiker formalism [2] to systems with stron
interactions. Furthermore, the investigation of Aharono
Bohm oscillations through quantum dots with stron
Coulomb repulsion might give further experiment
evidence for resonant tunneling and Kondo phenomen
nonequilibrium systems [3–5].

Interference effects in the Coulomb blockade regim
have been measured by Yacobyet al. [6] by studying a
quantum dot embedded in an Aharonov-Bohm ring. T
experiment demonstrates that phase-coherent trans
through quantum dots is possible in realistic experime
and is not destroyed by inelastic interactions. Rec
theoretical work on Aharonov-Bohm oscillations in
mesoscopic ring with a quantum dot [7,8] uses a nonin
acting model. Using the symmetry of the current und
a sign change of the external flux in the linear respon
regime [9,10], it was shown in Ref. [7] that the pha
of the Aharonov-Bohm oscillations can only take tw
possible values as a function of the gate voltage on the
However, the experiment of Yacobyet al. is performed
in the Coulomb blockade regime where interaction effe
are important. In this Letter we will take such correl
tions into account by setting up a complete and gene
theory for interference phenomena in strongly interact
quantum dots embedded in an arbitrary noninteract
multiprobe and multichannel scattering structure. As
consequence, we will show that the symmetry under s
change of the external flux is broken in the nonline
response regime and that the phase can change con
ously as a function of the bias voltage. Furthermo
we will analyze in detail the current oscillations as
function of the gate voltage caused by the flux-modula
renormalization of the local energy level of the dot.

To have a specific example, we will study the syste
shown in Fig. 1, although our formalism is valid for a
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arbitrary scattering geometry. For simplicity we sta
with the case of one-channel leads. The system with
the quantum dot is described by scattering waves w
zero boundary conditions at the tunneling barriers of t
dot. Thus, in energy representation, this part of t
Hamiltonian is given byHS ­

P
as

R
de eay

assedaassed,
whereay

assed creates an incoming scattering wave in pro
a with spin s and total energye. The isolated dot is
described byHD ­

P
s esdy

sds 1 U
P

s,s0 nsns0 with
single particle energieses and on-site repulsionU. The
position of the dot levels are controlled by an extern
gate voltage, andU , 1 5 K corresponds to the charging
energy [11].

The tunneling of the electrons into or out of the dot
described by

HT ­
X
as

Z
de htaseday

assedds 1 H.c.j . (1)

Here, tased ­
P

i­LyR tikaejxil are the tunneling ma-
trix elements in energy representation, whereti are real
quantities andkxjael is the spin-independent scatterin
wave from reservoira with energy e at position x.
By xi, i ­ L, R, we denote an arbitrary point in the
one-dimensional left or right lead that is connected
the dot [12]. Because of zero boundary conditions w
have kxijael ­ rsed1y2Ai

ased sinfksedxig with the one-
dimensional density of statesrsed ­ 1yp h̄ysed and en-
ergy e ­ h̄2ksed2y2m ­

1
2 mysed2. The coefficientsAi

a

FIG. 1. Geometry of the model system studied here. Lea
1 and 2 connect to the left and right reservoirs (shaded). T
ring is connected to a quantum dot via high tunneling barrie
F is the flux penetrating the ring.
© 1995 The American Physical Society
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depend on the detailed scattering problem under con
eration. We have chosen the tunneling matrix eleme
ti as real parameters, which means that we shift the c
plete flux dependence to the scattering HamiltonianHS via
a standard gauge transformation.

Following Büttiker [13], we will use the following
representation of the current operator in probea:

Îa ­
e
h

Z
de de0

X
s

fay
assedaasse0d 2 by

assedbasse0dg ,

(2)

where bassed ­
P

b sabsedabssed annihilates an out-
going carrier in probea and s is the scattering ma
trix of the system without the dot. To calculate th
average currentIa ­ kÎal in the stationary limit we
need the stationary real-time Green’s functionG,sEd ­R

dt eiEtG,std in Fourier space of two scattering field op
erators:G,

as,a0s0 se, e0; td ­ ikay
asse, tdaa0s0 se0dl. Using

the matrix notation

Ĝ ­

µ
GR G,

0 GA

∂
,

whereGR andGA are the retarded and advanced Gree
functions, and applying the Keldysh technique [14], w
can express the Green’s function̂Gas,a0s exactly by the
local Green’s function̂Gs of the dot,Ĝas,a0sse, e0; Ed ­
ĝase; Edda,a0dse 2 e0d 1 tasedta0se0dpĝase; EdĜssEd 3

ĝa0 se0; Ed, where we have already used spin conservat
The Green’s functionŝga correspond to the Hamiltonia
HS and are given bygRyA

a se; Ed ­ sE 2 e 6 i01d21 and
g,

a se; Ed ­ 2pifasEddsE 2 ed where fa is the Fermi
distribution function of reservoira. Using this result in
calculating the average current, inserting the form of
tunneling matrix elements, and performing the ene
integrations [15], we obtain

Ia ­ I s0d
a 1

e
h

Re
X
s

X
bg

Z
dE s

y
absagAgb

3

µ
i
2

G,
s 1 ifbGR

s

∂
, (3)

where I s0d
a is the current without the dot (given b

the usual Landauer-Büttiker formula) andAaa0 ­P
ijsGiGjd1y2Aip

a A
j
a0 with Gised ­ 2prsedt2

i .
Equation (3) is the first central result of this paper.

relates the current in probea exactly to the local Green’s
functions of the dot and the scattering properties of
noninteracting medium surrounding the dot. This formu
is a natural generalization of the Landauer-Büttiker f
mula to an interacting quantum dot. Furthermore, it g
eralizes current formulas through quantum dots conne
to two leads without any possibility of a direct transitio
between the probes [16]. Here we are able to acco
for such transitions opening the possibility to study int
ference phenomena in the presence of locally interac
subsystems. The generalization of Eq. (3) to multich
nel leads is straightforward. Again following Ref. [13
the field operatorsaas in Eq. (2) have to be treated a
id-
ts
m-

’s
e

n.

e
y

t

e
a
-
-

ed

nt
-
g
-

vectors with a channel indexn. Equivalently, the matrix
elementssab and Aab have to be treated likeZa 3 Zb

matrices whereZa is the number of transverse channels
leada. The final formula for the current is then exactl
like Eq. (3) except that we have to take the trace of t
matrix multiplicationsy

absagAgb .
The scattering matrices in Eq. (3) can be found b

straightforward quantum-mechanical considerations d
pending on the specific geometry. For the Green
functions of the dot we will use a real-time techniqu
developed in Ref. [17], which has been applied to
quantum dot in Ref. [4]. For a degenerate dot level (i.e
es ­ ed independent of spin) and in theU ­ ` limit,
one obtainsG,y.

s sEd ­ 2pig6sEd jE 2 ed 2 ssEdj22.
Here,

ssEd ­
Z

dE0 Mg1sE0d 1 g2sE0d
E 2 E0 1 i01

(4)

has the form of a self-energy that describes the ren
malization and broadening of the dot leveled, g6sEd ­P

a jtasEdj2f6
a sEd ­ s1y4pd

P
a AaasEdf6

a sEd is the
classical rate for a particle tunneling into or out of the do
andf1

a ­ fa while f2
a ­ 1 2 fa. The retarded Green’s

function follows from ImGR ­ s1y2id sG. 2 G,d, and
the real part is obtained from the Kramers-Kroni
relation.

The explicit result for the Green’s functions togethe
with the expression (3) for the current constitutes
complete theory of interference effects in mesoscop
scattering geometries with an interacting part given b
a quantum dot with one degenerate level. Our res
satisfies current conservation

P
a Ia ­ 0, and all currents

vanish in equilibrium. Furthermore, for the special cas
M ­ 1 where the Coulomb interaction does not play an
role, our result is exact and can be shown to agree w
the Landauer-Büttiker formalism.

The real part of the self-energys describes the
renormalization of the dot level. If we neglect the energ
dependence ofAaa at the Fermi level, we obtain from
Eq. (4) for a two-terminal system

Res ­ Res1 1
M 2 1

8p
fsA11 1 A22d sx1 1 x2d

1 sA11 2 A22d sx1 2 x2dg ,
(5)

where s1 is the self-energy forM ­ 1 and xasEd ­
Re

R
dE0 fasE0dysE 2 E0 1 i01d. Using a Lorentzian

cutoff at D (which will be of the order of the Coulomb
repulsion U), we obtain xasEd ­ cs 1

2 1 Dy2pT d 2

Recsss 1
2 1 isE 2 mady2pT ddd, where c is the digamma

function andma the chemical potential of reservoira.
s1 is always a symmetric function of the external flu
F. Furthermore, for a spatially symmetric situation as
Fig. 1, A11 6 A22 is an even (odd) function of the phas
w ­ 2pFyF0 (F0 being the flux quantum). Because
of Res1 the level position of the dot will oscillate with
115
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w with an amplitude of the order ofG and phase 0 or
p . For M . 1, there can be logarithmic corrections i
temperature and bias voltage for the amplitudeand phase
of this oscillation due to thexa functions. The latter
terms usually lead to Kondo-like correlations [3,4].

To exhibit the consequences of the oscillation of th
renormalized dot level we will now apply our result
to the specific scattering geometry of Fig. 1, whic
corresponds to the experimental setup of Ref. [6]. F
simplicity we assume a one-dimensional structure, and
use the same scattering matricessi,o for the incoming
and outgoing junctions as in Ref. [9]. The scatterin
matrix of the upper arm (including the flux and the phas
accumulated by free motion) is written in the form

sT ­ p

µ
r te2iw

teiw r

∂
,

where p ­ eikl is the phase acquired by free motio
through the upper arm. Furthermore, we take the len
of the leads connected to the quantum dot aslL ­ lR ­
1
2 l, and we assume a symmetric quantum dot withGL ­
GR ­ G.

We will look explicitly at two cases, viz., perfect trans
mission through the upper arm given byr ­ 0, t ­ 1,
or weak transmission described byr ­ 21, t ­ ijtj.
In the first case we obtain after a straightforward calc
lation s11 ­ s22 ­

1
2 psp 2 1d, s12swd ­ s21s2wd ­

1
2 psp 1 1deiw , AL

1 ­ AR
2 ­

1
2 i

p
p s2 2 pd, and AL

1 swd ­
AR

2 s2wd ­ 2
1
2 ip

p
p eiw. In the second case one obtain

s11 ­ s22 ­ 2p, s12swd ­ s21s2wd ­
1
2 ipjtjeiw , AL

1 ­
AR

2 ­ i
p

p, and AL
1 swd ­ AR

2 s2wd ­
1
2 fp

p
p ys1 1

pdg jtjeiw . The phasep cannot be determined and wil
have some specific value in the experiment. We assu
here always to be in the quantum region; i.e., the leng
associated with temperature, bias voltage, andG should
exceed the system length, so that we can neglect
energy dependence ofp. In the perfect transmission
case we choosep ­ i and get Res1 ­ 2

1
4 Gs3 1 coswd,

A11 1 A22 ­ Gs3 1 coswd, andA11 2 A22 ­ 22G sinw.
For weak transmission we takep ­ 1 and obtain
Res1 ­ 2

1
8 jtjG cosw, A11 1 A22 ­ 2G, and A11 2

A22 ­ 2jtjG sinw.
In Fig. 2 we show the linear conductance for perfe

transmission andT ­ G ­ 0.01 (in units of the cutoffD)
for various positions of the dot level. We have assum
M ­ 2, i.e., the interacting case. The linear conductan
is symmetric under a sign change of the flux since t
sinw term is absent in Eq. (5) forx1 ­ x2. If the position
of the dot level is belowed ø 20.02, the current has a
maximum aroundw ­ 0. For higher values ofed, the
current has a minimum atw ­ 0. Although this looks
similar to the abrupt phase change ofp described in
Ref. [6], Fig. 2 shows that the response of the syste
cannot be described by the concept of a “phase shi
What happens instead is that the current (as a function
w) changes its functional form. The scale of the transitio
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FIG. 2. Linear conductance (in units ofe2yh) as a function of
magnetic flux for various positions of the level in the dot (T ­
G ­ 0.01, M ­ 2). We have assumed perfect transmissi
through the upper arm of the system as in the experiment
Yacobyet al. [6].

is independent of temperature and is given by the intrin
parameterG. For higher temperatures we find a small
amplitude of the current oscillations, but the qualitativ
picture remains. For weak transmission, the results
similar, but the scale is given bytG.

We will now turn to the nonlinear conductance. Fig
ure 3 depicts the differential conductance for weak tra
mission as a function ofw for different voltages and leve
positions (T ­ 10G ­ 0.1). For V ­ 0, the differential
conductance is symmetric aroundw ­ 0, in the nonlinear
response case, this symmetry is absent due to the last
in Eq. (5). The behavior of the differential conductan
at the origin changes from a minimum to a maximum as
function of the level positioned , this time rather abruptly
(energy scaletG). The asymmetry of the conductanc
curves for finite voltages is a genuine interaction effect
disappears forM ­ 1. Furthermore, we observe a con
tinuous phase shift of the current oscillations as a funct
of the bias voltage, which again is absent forM ­ 1. It is
determined by the last term in Eq. (5) as well as by sinw

terms occurring explicitly in the current formula (3) vi
the Agb matrices. Note that the temperature is 1 ord
of magnitude larger thanG in this figure; i.e., an inter-
ference experiment of this type might yield informatio
about correlation effects at temperatures that are acce
ble in experiments [18].

Finally we want to comment on the influence o
interactions on the relative phase of the Aharonov-Boh
oscillations at successive peaks in the linear conducta
as a function of the gate voltage. In a noninteracti
model two adjacent peaks correspond to transport thro
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FIG. 3. Differential conductance (in units ofe2yh) for the
case of weak transmission (t ­ 0.1) as a function of magnetic
flux for various voltages and positions of the level in the d
(T ­ 10G ­ 0.1, M ­ 2). Note that the linear conductanc
(V ­ 0) is symmetric aroundw ­ 0, whereas there is no suc
symmetry in the nonlinear response case.

two different energy levels of the dot that have differe
parity. Thus the relative sign oftL and tR would change
from one level to the next, and consequently one expe
a phase shift ofp . However, in the experiment o
Yacoby et al. no phase shift was measured. In additi
to the discussion of Ref. [7], a strong Coulomb repulsi
on the quantum dot could be an explanation for th
observation. If there areN states on the dot that lie
close together in energy but with the same parity
longitudinal direction (e.g., spin degenerate states or st
differing in the transverse channel number), there wo
be N adjacent Coulomb peaks with the same phase
the Aharonov-Bohm oscillations. The distance of the
Coulomb peaks is given by the charging energyU,
whereas in the noninteracting case all these peaks wo
fall together into one single peak. Therefore we conclu
that in the presence of interactions the parity of the ene
levels contributing to the transport at adjacent Coulom
peaks can be the same, which provides an explanation
Yacoby’s experiment.

In conclusion, we have presented a complete theory
interference phenomena in strongly correlated quant
dots embedded in a scattering geometry. On one ha
we have found that the functional form ofdIswdydV is
changing with the gate voltage on the scale of temperatu
independent intrinsic parameters. In linear response
t

t

cts

n
n
is

in
tes
ld
of
e

uld
e

gy
b
for

for
m

nd,

re-
his

change cannot be interpreted as a phase shift. On the o
hand, we have shown that in the nonlinear response reg
correlation effects break the symmetry under sign chan
of the external flux and lead to a real continuous phase s
as a function of the bias voltage.
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