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Aharonov-Bohm Oscillations and Resonant Tunneling in Strongly Correlated Quantum Dots
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We investigate Aharonov-Bohm oscillations of the current through a strongly correlated quantum dot
embedded in an arbitrary scattering geometry. Resonant-tunneling processes lead to a flux-dependent
renormalization of the dot level. As a consequence, we obtain a fine structure of the current oscillations,
which is controlled by quantum fluctuations. Strong Coulomb repulsion leads to a continuous bias
voltage dependent phase shift and, in the nonlinear response regime, destroys the symmetry of the
differential conductance under a sign change of the external flux.

PACS numbers: 73.40.Gk

Phase-sensitive transport properties of interactin@rbitrary scattering geometry. For simplicity we start
mesoscopic systems are important for several reasonaith the case of one-channel leads. The system without
The small size of the samples gives rise to capacitancdbe quantum dot is described by scattering waves with
of order 10~ F, which induce Coulomb blockade zero boundary conditions at the tunneling barriers of the
effects [1] and demand the necessity to generalize thdot. Thus, in energy representation, this part of the
Landauer-Buttiker formalism [2] to systems with strongHamiltonian is given byds = >, [de €a} (€)ans(€),
interactions. Furthermore, the investigation of Aharonovawherea! (e) creates an incoming scattering wave in probe
Bohm oscillations through quantum dots with stronge with spin o and total energy. The isolated dot is
Coulomb repulsion might give further experimental described byHp = Y, €,did, + U i nyne With
evidence for resonant tunneling and Kondo phenomena isingle particle energies, and on-site repulsio®. The
nonequilibrium systems [3-5]. position of the dot levels are controlled by an external

Interference effects in the Coulomb blockade regimegate voltage, and ~ 1-5 K corresponds to the charging
have been measured by Yacobyal. [6] by studying a energy [11].
quantum dot embedded in an Aharonov-Bohm ring. This The tunneling of the electrons into or out of the dot is
experiment demonstrates that phase-coherent transpaktscribed by
through quantum dots is possible in realistic experiments
and is not destroyed by inelastic interactions. Recent Hy = Zf dé{ta(f)alg(é)dg + H.c}. (1)
theoretical work on Aharonov-Bohm oscillations in a ac
mesoscopic ring with a quantum dot [7,8] uses a nonintergere, 7, (e) = >.i—i/r ti{aelx;) are the tunneling ma-
acting model. Using the symmetry of the current undetyix elements in energy representation, wherare real
a sign change of the external flux in the linear responsguantities and(x|a€) is the spin-independent scattering
regime [9,10], it was shown in Ref. [7] that the phasewave from reservoira with energy e at position x.
of the Aharonov-Bohm oscillations can only take twoBy y;, i = L R, we denote an arbitrary point in the
possible values as a function of the gate voltage on the dogne-dimensional left or right lead that is connected to
However, the experiment of Yacotst al.is performed the dot [12]. Because of zero boundary conditions we
in the Coulomb blockade regime where interaction effecthave (x;|ae) = p(€)'/2Al (¢) siMk(e)x;] with the one-
are important. In this Letter we will take such correla- dimensional density of statgs(e) = 1/m/iv(e) and en-
tions into account by setting up a complete and generalygy ¢ — 72k(¢)?/2m = Lmu(e?. The coefficientst’,
theory for interference phenomena in strongly interacting
quantum dots embedded in an arbitrary noninteracting
multiprobe and multichannel scattering structure. As a
consequence, we will show that the symmetry under sign
change of the external flux is broken in the nonlinear
response regime and that the phase can change continu-
ously as a function of the bias voltage. Furthermore,
we will analyze in detail the current oscillations as a

function of the gate voltage caused by the ﬂux_mOdmmeq:IG. 1. Geometry of the model system studied here. Leads

renormalization of _the local energy Ieyel of the dot. 1 and 2 connect to the left and right reservoirs (shaded). The
To have a specific example, we will study the systenying is connected to a quantum dot via high tunneling barriers.
shown in Fig. 1, although our formalism is valid for an @ is the flux penetrating the ring.
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depend on the detailed scattering problem under considrectors with a channel index. Equivalently, the matrix
eration. We have chosen the tunneling matrix elementslementss,g andA, g have to be treated lik&, X Zg

t; as real parameters, which means that we shift the conmatrices wheré&,, is the number of transverse channels in
plete flux dependence to the scattering Hamiltorfigrvia  leada. The final formula for the current is then exactly

a standard gauge transformation. like Eq. (3) except that we have to take the trace of the
Following Buttiker [13], we will use the following matrix muItipIicationsZBsayAyﬁ.
representation of the current operator in prebe The scattering matrices in Eg. (3) can be found by

R e , ; , ; , straightforward quantum-mechanical considerations de-

o = Z] dede Z[aaa(f)“«w(f)_ bly(€)bas(€)], pending on the specific geometry. For the Green’s
7 o) functions of the dot we will use a real-time technique

. developed in Ref. [17], which has been applied to a

where baq(€) = X sap(€)ags(€) annihilates an out-  guantum dot in Ref. [4]. For a degenerate dot level (i.e.,

going carrier in probea and s is the scattering ma- ¢ = ¢, independent of spin) and in thE =  limit,

trix of the system without the dot. To calculate the gne obtaingG /> (E) = 2mwiy*(E) |[E — €4 — o (E)| 2.

average currentl, = (I,) in the stationary limit we Here,

need the stationary real-time Green'’s functiGn (E) = e o

[ dt ¢'E'G=(¢) in Fourier space of two scattering field op- o (E) = ] Jg' MY (E") + y (E) @)

erators:G oy oo (€, €5 1) = i{al (€, )aq(€')). Using E — E' + i0*

the matrix notation

has the form of a self-energy that describes the renor-
G — <GR GZ) malization and broadening of the dot lewel, y=(E) =
0 6%/ o ltaE)Pf3(E) = (1/4m) Y0 Aaa(E)f5 (E) is  the
whereGR andGA are the retarded and advanced Green'<$lassical rate for a particle tunneling into or out of the dot,
functions, and applying the Keldysh technique [14], weandf, = fo while f, = 1R_ fa- The ritarded<Green’s
can express the Green’s functiéh,, ., exactly by the ~function follows from InG* = (1/2i)(G~ — G~), and
local Green’s functiorG,, of the dot,Guy oo (€, €/; E) =  the real part is obtained from the Kramers-Kronig
ga(f;E)éa,a’5(e - El) + ta(e)ta’(e/)*Aa(E;E)Ga'(E) X relation. .. , .
2./(€'; E), where we have already used spin conservation. _The explicit res_ult for the Green’s functions tpgether
The Green’s functiong, correspond to the Hamiltonian With the expression (3) for the current constitutes a
Hy and are given by®/A(e; E) = (E — € += i07)~! and complete theory of interference effects in mesoscopic
¢S (e E) = 27rifa(E)a5(E — €) where £, is the Fermi Scattering geometries with an interacting part given by
distribution function of reservoitr. Using this result in @ guantum dot with one degenerate level. Our result
calculating the average current, inserting the form of thesatisfies current conservation, /, = 0, and all currents
tunneling matrix elements, and performing the energy’an'Sh in equilibrium. Furthermore, for the special case

integrations [15], we obtain M = 1 where the Coulomb interaction does not play any
role, our result is exact and can be shown to agree with
I, =19 + £ ReZZ] dE SZBSQYA'}’B the Landauer-Biittiker formalism.
h o By The real part of the self-energy describes the

i o, R renormalization of the dot level. If we neglect the energy
EGU +ifgGs ), () dependence ofi,, at the Fermi level, we obtain from

where 1”9 is the current without the dot (given by Eq. (4) for a two-terminal system

the usual Landauer-Bittiker formula) and,. = M -1
i o) aa Reor = Reo + A+ A +
(T )24 AL with T(e) = 2 p(€)r?. : [(An + 42) 0 + x2)
Equation (3) is the first central result of this paper. It + (A — A») Gn — x2)],
relates the current in prohe exactly to the local Green’s 5)

functions of the dot and the scattering properties of the

noninteracting medium surrounding the dot. This formulaWhere o is the self-energy folM = 1 and x.(E) =

is a natural generalization of the Landauer-Biittiker for-Re [ dE' fo(E")/(E — E' + i07). Using a Lorentzian
mula to an interacting quantum dot. Furthermore, it gencutoff at D (which will be of the order of the Coulomb
eralizes current formulas through quantum dots connecte@pulsion U), we obtain x.(E) = (3 + D/27T) —

to two leads without any possibility of a direct transition Re;y(% + i(E — uq)/27T), where ¢ is the digamma
between the probes [16]. Here we are able to accourfunction andu, the chemical potential of reservoir.
for such transitions opening the possibility to study inter-o; is always a symmetric function of the external flux
ference phenomena in the presence of locally interactind. Furthermore, for a spatially symmetric situation as in
subsystems. The generalization of Eq. (3) to multichanFig. 1,A;; = Ay is an even (odd) function of the phase
nel leads is straightforward. Again following Ref. [13] ¢ = 27® /P, (o being the flux quantum). Because
the field operators:,, in Eq. (2) have to be treated as of Reo; the level position of the dot will oscillate with
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¢ with an amplitude of the order of and phase O or
. ForM > 1, there can be logarithmic corrections in ,
temperature and bias voltage for the amplitase phase 10t
of this oscillation due to they, functions. The latter — ¢,=0.05
terms usually lead to Kondo-like correlations [3,4]. e gg=-0.04

To exhibit the consequences of the oscillation of the T §=0.08
renormalized dot level we will now apply our results o 2"::8:8?
to the specific scattering geometry of Fig. 1, which 1.0 | |- e:=o.
corresponds to the experimental setup of Ref. [6]. For - &= 0.01
simplicity we assume a one-dimensional structure, and we >
use the same scattering matrice€s for the incoming
and outgoing junctions as in Ref. [9]. The scattering
matrix of the upper arm (including the flux and the phases 08 |
accumulated by free motion) is written in the form

T r te '¢
5= p(te“" ¥ >’

where p = ¢ is the phase acquired by free motion ,
through the upper arm. Furthermore, we take the length o 0 T
of the leads connected to the quantum dofas- Ix = ¢
%l, and we assume a symmetric quantum dot With=" FiG. 2. Linear conductance (in units ef/4) as a function of
I'r =T. magnetic flux for various positions of the level in the dft€

We will look explicitly at two cases, viz., perfect trans- I' = 0.01, M = 2). We have assumed perfect transmission
mission through the upper arm given by= 0, r = 1, through the upper arm of the system as in the experiment by
or weak transmission described by= —1, 1 = ||  Yacobyetal.[6]

In the first case we obtain after a straightforward calcu-

lation sq; =sp = %p(p — 1), sple) =s(—¢)= isindependent of temperature and is given by the intrinsic

%p(p + 1)eie, Ak = AR = %i\/ﬁ(z — p), and Ak (p) = paralr'rt1e(';erl“.f tI;or hlgherttempltler?turesbwte tfk|1nd a slr?aftl_ler

AR(—¢) = —%ip\/ﬁei“’. In the second case one obtains 2MP'tUde of the current osciliations, but the quaiitative
1. i AL picture remains. For weak transmission, the results are

SibT SR TP SlZ(f) N SZl(;qo) - Ellfltle AT = similar, but the scale is given by

Ay =i/p, and Ai(e) = Ar(=¢) = 3[pyp /(1 + We will now turn to the nonlinear conductance. Fig-

p)lltle’#. The phasep cannot be determined and will yre 3 depicts the differential conductance for weak trans-
have some specific value in the experiment. We assumgijssion as a function af for different voltages and level
here always to be in the quantum region; i.e., the lengthpositions = 10I" = 0.1). For V = 0, the differential
associated with temperature, bias voltage, &hdhould  conductance is symmetric arougd= 0, in the nonlinear
exceed the system length, so that we can neglect thesponse case, this symmetry is absent due to the last term
energy dependence gf. In the perfect transmission in Eq. (5). The behavior of the differential conductance
case we choosg = i and get Re; = —31'(3 + cosp),  at the origin changes from a minimum to a maximum as a
Ay + Ay = T'(3 + cosp), andA;; — Ap = —2I'sing.  function of the level positior,, this time rather abruptly
For weak transmission we take = 1 and obtain (energy scalel’). The asymmetry of the conductance
Reo; = —éItII‘ cosp, Ay + Ay =2I', and Ay — curves for finite voltages is a genuine interaction effect; it
Ary = —|t|T sing. disappears fod = 1. Furthermore, we observe a con-
In Fig. 2 we show the linear conductance for perfecttinuous phase shift of the current oscillations as a function
transmission an@ = I" = 0.01 (in units of the cutoffD)  of the bias voltage, which again is absent#6r= 1. Itis
for various positions of the dot level. We have assumedietermined by the last term in Eqg. (5) as well as bygsin
M = 2, i.e., the interacting case. The linear conductancéerms occurring explicitly in the current formula (3) via
is symmetric under a sign change of the flux since thehe A,z matrices. Note that the temperature is 1 order
sing term is absent in Eq. (5) foy; = x». Ifthe position  of magnitude larger tha' in this figure; i.e., an inter-
of the dot level is belowe; = —0.02, the current has a ference experiment of this type might yield information
maximum aroundey = 0. For higher values ok,;, the  about correlation effects at temperatures that are accessi-
current has a minimum ap = 0. Although this looks ble in experiments [18].
similar to the abrupt phase change of described in Finally we want to comment on the influence of
Ref. [6], Fig. 2 shows that the response of the systennteractions on the relative phase of the Aharonov-Bohm
cannot be described by the concept of a “phase shift.bscillations at successive peaks in the linear conductance
What happens instead is that the current (as a function a&fs a function of the gate voltage. In a noninteracting
¢) changes its functional form. The scale of the transitiormodel two adjacent peaks correspond to transport through
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. change cannot be interpreted as a phase shift. On the other
0.0715 [77 : : :
hand, we have shown that in the nonlinear response regime
< 00710 correlation effects break the symmetry under sign change
= 00705 | of the external flux and lead to a real continuous phase shift
© as a function of the bias voltage.
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