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We propose that the phonons tHe obey ag deformation of the Heisenberg algebra and we give an
algebraic interpretation for the polynomial expansion of the small momenta phonon dispersion relation.
Comparison withCy experimental data shows that our spectrum reproduces the experimental one with
a less than 5% discrepancy.
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The superfluid properties dHe [1] are well described Let us then consider the algebra generated,by’ and
by Landau theory [2]; nevertheless, even for temperaturel satisfying
as low as 1K there are still unsolved discrepancies V.at] = a [N.a] = —a
between theory and experiment. In Landau theory, the ’ ’ ’ ’ (2)
superfluidity follows from phonon and roton elementary aat — ¢ 'ata = ¢V (g ER).
excitations [3]. The anomalous dispersion of the phono
spectrum in*He, w(p) = cop(1 — yp?) (co is the sound
velocity), was theoretically derived [4] andestimated to
be positive. On the other hand, data frdide specific

rbssuming thata and ! are mutually adjoint,N =
Nt, and the spectrum is nondegenerate, the following
representations of (2) were obtained [15] foe> 1:

heat measurements were fit by a different expression for afln) = ¢"?[n + 11'"?|n + 1),

the dispersion of the phonon spectrum and give a negative — w/20, 120,

v for most values of the pressure [5,6]. Negatiye aln) = ¢ ln = 1), (3)
leads to an unstable phonon spectrum, which is confirmed Nln) = (vy + n)|n),

by experimental measurements of phonon lifetime in
scattering of neutrons [7]. In this Letter we show that
this difficulty can be overcome if we treat the phonons
as bosoniag oscillators [8]. UsingA, B, and D values
experimentally determined by fitting the low-temperature
phonon specific heat

here[n] = (¢" — ¢ ™) /(g — ¢~ ') andy, is a real free
parameter which goes to zero when (2) becomes the
usual Heisenberg algebfa — 1). Note that only when
vo = 0, N is the usual particle number operator for the
normalized vector state); otherwise, the particle number
operator isN = N — vy, and vy is a parameter that
classifies the inequivalent representations of the algebra
= AT? + BT’ + DT, 1) (2) [15-17].

Generalizing previous results obtained igr= 0 [18],
with measured specific heat data 6He [6] at the in the Fock space spanned by the vectbrs we can
temperature rang®.14 = 7 =< 0.86, our model leads express the above deformed oscillators in terms of the
to unstable phonons for all the analyzed values of thetandard bosonic ones,andbt, according to
pressure.

phonon

Cy

Bosonic q oscillators [8] are a generalization of the o IN 41— wo] I/Zb
Heisenberg algebra obtained by introducing a deformation a= N+1-—uy ’
parameterq. For ¢ > 1 [9], an ideal q gas presents [N + 1 — ] 1/2
Bose-Einstein condensation and the specific heat exhibits at q”O/sz(—()) , 4
a A-point discontinuity [10], two features connected to N+ 1-=w

superfluidity [11]. On the other hand, there have beerand it can be easily shown that
interesting indications that the continuum descriptions of _ _ _ vofn

physical quantities break down both in a convergent fluid aal = q"[N + 1=l a'a=g"IN = wl. (¥
flow [12] and, more recently, in superfluiHe [13]. whereN — vy = bth. This shows that bosonig oscil-

A similar breakdown has been observed in connectiohators, in arbitrary representationg and for realg > 1,
with deformed algebras [14], and we are led to thinkcan be reinterpreted as standard bosonic oscillators.
that they might have a role to play in the study of We propose that the phononsiHe are described by a
superfluidity. g gas. Considering that our model will be compared
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TABLE I. Values of ¢y, a, 8, and g resulting from the least-squares fits of the specific heat data with the expression
Cy = AT? + BTS + DT7 + 1PN for samples 6-9 in analysis 2 of Ref. [6]; the roton data are those of [6].

Sample A/10% B/10* D/10* v co/10% a/10% 5/10" q
(erg/molK*)  (erg/molK®)  (erg/molK?) (cm’) (cm/sed (g2cm?seéd) (g'cm'seq

6 84.42 —49.8 83 27.5790 2.2854 2.1 1.7745 3.5090

7 69.3 —36.10 67 26.9650 2.4177 2.7178 1.9361 4.3956

8 57.77 —254 49 26.4240 2.5501 3.0873 2.0134 4.8778

9 49.85 —18.8 38 25.9760 2.6625 3.3821 2.0700 5.2490

with the experimental results at the temperature rangpropose the dispersion relation
0.14 = T = 0.86 [6], where the rotons contribution is 52 p2/2m
2 = —

at most 0.5% of the total specific heat [6], they will be vo(p) = —p , (9)
0 E

treated as usual [3]. We take for the phonon gas the . ) EA

Hamiltonian with 6 an algebraic dimensional constanfs] =

g 'cm~! sec, andg = ¢?. As a consequence of the

dimensionlessness afy(p) it appears in (9) an energy
_ T N, olp _
H = Zwiai a; = Zwi([Ni] —q"C), (6) scaleE,, that we take as, = kzT,, whereT, is the
' ! temperature at which liquidHe undergoes a transition
whereC = ¢ V([N] — ata) is a Casimir operator of the and becomes superfluid. Moreover, it seems natural to
algebra (2) and in the representations (3) one has takem = msy Since we have fopy(p) the nonrelativis-
Clny = ¢"[vo]In). @) tic classical dispersion law. For small phonon momenta
; we can expand our energy-momentum relation as
In (6) a; and a; are the qnnlhll_anon_ and creation un(P)w(p) — eazpzc()p(l — ap2)
operators, respectively, of particles in leveisith energy

w; and N; is the number operator of particles in levels = cop[l = (a = 8%)p?
i . :
plus vo, which we are assuming level dependent. — (ad? - %54)[,4 —...]. (10)
As the partition function factorizes for the above system . o .
the canonical potential is We are thus presenting an algebraic interpretation to

the usuallyad hoc introduced small momenta phonon

1 o y dispersion relation [3,5,6].
Q= ) Din Y e Aedln, ) It follows from a straightforward calculation that the
ioon=0 low-temperature-phonon specific heat per mole is given
whereB = (kgT)~', with kz the Boltzmann constant. by
The phonon anomalous dispersion relatiorwisp) = Csf’lqonon — AT3 + BT’ + DT" + 6T° + ---, (1)

cop(1 — ap?), with ¢ the velocity of sound, and we1
where

4 6, _ o2 87 4 2 _ 2

T2 R3] ' m2h3c) ’ m2h3c] ’
10, 6 3 4 _ 2.2
&= 15k (—816° + 110a” + 243ad 2706 a*)V 0® (12)
2m2h3¢] ’
with V the molar volume and | and the total specific heat is

% © —y[n] Cy = Cphonon + (roton. 15

0™ — ] dy ymlzﬁx()[n]ey[n] (13) 14 V.q v (15)

n=0 €

Taking for the coefficientd, B, andD the least-squares

) . g N fits for A, B, andD in (1) [6] of the measured specific heat
po)”/2p, whereA is the energy gapp is the position of - ya15 (analysis 2 in Ref. [6]) anét = 0, we obtain forg,

the energy minimum ang. is the effective mass of the , "5 ‘and¢, the results listed in Table I. The values @f
roton; the roton contribution to the molar specific heatis 5o gerived from

ZVMI/ZP(%A2

Using its usual dispersion relatioa,(p) = A + (p —

P INg = 2mipe8%kgTy, 16
v (27T)3/2ﬁ3k11;/2T3/2 q H BLA (16)
+ - which is a consequence of (9), amrd, «, and 6 from

X [1+ kgT/A + %(kBT/A)Z]e AfksT q (9), ard,

relations (12). As the very large errors in tHg/
(14) coefficients for the samples 10-16 [6] lead to a high
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TABLE II. In the upper row, we repeat the values of Table | for sample 6. In the lower one, we have the valugsafpi,
and q obtained taking for, B, D, andG values that reproduce, within 5% accuracy, the curve resulting from least-squares fit of
Cy data [6] with the expressio@ly = AT + BT + DT’ + Cy*".

Sample  A/10* B/10* D/10* G/10* 1% co/10* a/10% 5/10" q
(erg/molK*) (erg/molK®) (erg/molK®) (erg/molK!'%) (cm®) (cm/se9 (g2cm?sed) (g~ 'cm 'seq

6 84.42 —49.8 83 0 27.5790 2.2854 2.1 1.7745 3.5090

6 80 -21 83 —67.5 27.5790 2.3209 3.4484 1.9815 4.7839

inaccuracy in the derivation of expression (16), we restrichature of the polynomial expansion of the small momenta
our analysis to the samples 6—9 [6]. phonon dispersion relation. Moreover, our estimated
In Table | we see that the values @increase with the values of ¢y are in good agreement with the directly
pressure, and that the values @fare around 4% lower measured sound velocities. To test the present model
than the directly measured sound velocities [19]. Theseve have compared it with the available experimental
results are obtained by least-squares fits of the specifidata: Our spectrum reproduces the experimental one for
heat data [6] with the expression (15), considering termshe entire0.14 = T = 0.86 range, within less than 5%
up to 77 in CPV"E“"“ Since in our model higher powers discrepancy. Finally, we would like to stress that as a
of T are relevant, in the second row of Table Il we consequence of the proposed dispersion relation (10), with
show the results obtained considering terms upTfo only two free parametersy, o) we have been able to fit

in (11) and taking A = 80 X 10* erg/molK*, B =  the experimental data with the three coefficieht®, and
—21 X 10* erg/mol K®, D = 83 X 10* erg/molK®, G in the specific heat expansion (11).
and G = —67.5 X 10* erg/molK'°.  These values The authors thank C. Tsallis for many helpful sugges-

reproduce, within 5% accuracy, the curve resu|tingti0n8 and A.C. Olinto and V. Elser for useful comments
from least-squares fit ofCy data for sample 6 [6], and references.

with Cy = AT? + BT’ + DT7 + CyY*" (see Fig. 1).
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