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Domain Coexistence in Two-Dimensional Optical Patterns
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(Received 7 August 1995)

We give evidence of coexisting transverse patterns of different symmetry in an optical
circulating in a loop which contains a nonlinear medium. The symmetry of the patterns is controll
the azimuthal rotation introduced in the feedback loop (nonlocality), while the competition is rule
the input intensity which determines the distance from threshold (nonlinearity). Domains correspo
to patterns with different wave vectors (either different wavelength or different orientation) coe
nucleating and moving. This gives rise to a complex spatiotemporal dynamics which is charact
by means of suitable collective indicators.

PACS numbers: 42.65.Sf, 42.79.Kr, 82.40.Ck
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Preliminary experiments on pattern formation and com
petition in nonlinear optics have shown that patterns
different symmetry can alternate, either periodically
chaotically [1]. Alternation means that one pattern p
time is mainly present, with a negligible amount of mixin
with other configurations. This was explained in term
of heteroclinic cycles joining unstable fixed points corr
sponding to different configurations, with a long persi
tence time in the neighborhood of each fixed point and
fast transition from one fixed point to the other [2].

On the other hand, in the one-dimensional (1D) ca
recent evidence has been presented of the coexistenc
patterns of different symmetry in different regions of th
available domain [3,4]. The patterns can have eithe
different wave number [3] or the same wave number b
different phase [4]. In the former case the theory has
account for the formation of domain walls [5], in the latte
case the domain walls will be phase defects [4].

In the 2D case, the first evidence of coexisting patter
of different symmetries was provided in an experime
of parametrically excited surface waves [6]. In 2D th
different symmetries can be due either to selection
different wave vectors corresponding to the same wa
number or to selection of different wave numbers. In th
former case, there is a large body of experimental repo
referring to bistable situations with the coexistence, e.
of rolls and hexagons in Rayleigh-Bénard convection [
or in optical patterning [8]. More recently, 2D domai
coexistence of different patterns has been observed
large aspect ratio systems in parametrically excited surf
waves [9].

Here we report evidence of the coexistence of doma
of different wavelengths within the same 2D optica
pattern [10]. The patterns we refer to are transver
patterns in an optical system consisting of a ring cav
where an impinging optical field, dephased after crossi
a Kerr medium, modifies the properties of the sam
medium after a propagation in free space [11]. This
obtained via the use of a liquid crystal light valve (LCLV
[12] consisting of a thin layer of liquid crystal molecule
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sandwiched between two electrodes, together with
photoconductor. If the photoconductor is illuminate
most of the voltage drop is across the liquid crystal, th
providing an overall molecular alignment and hence
large Kerr effect. When the illumination is nonuniform
the pattern of the optical beam is transcribed into
dephasing pattern. The Kerr medium is thin compared
its diffusive length, hence the pattern formation is 2D,
a plane transverse to the direction of optical propagatio

The experimental setup consists of an LCLV with
front illumination via a collimated He-Ne laser beam. Th
backreflected light, Kerr dephased, undergoes diffract
and is then applied as a feedback signal on the back
(photoconductor) of the LCLV. A nonlocal feedback
provided by an image rotation introduced in the feedba
loop through a fiber bundle rotation. For different settin
of the rotation angleD  2pyN (N integer), different
types of pattern symmetries are excited, and at l
intensity one succeeds in isolating the first unstable bra
resulting from the interplay of diffraction in free spac
diffusion in the Kerr medium and nonlocal feedback [13

In the experiment reported here, we adjust the LCL
voltage at 12.3 rms and 3 kHz, the free propagation len
at L  10 cm, and the angle of rotation of the fiber a
D  2py7. Under these conditions, the linear stabili
analysis [13] predicts that, as the incident intensityI0
overcomesIth, the first unstable wave number isq2 
2p

p
3y

p
2lL. This is indeed observed experimentall

as shown in Fig. 1(a). When, however,I0 is increased
well above Ith, the predictions of the linear stability
analysis no longer hold.

Let us define a reduced pump parametere  sI0 2

IthdyIth. Experimentally, a gradual increase ofe starting
from e  0 leads initially to an increase of the amplitud
of the quasicrystalline patterns, without a scale chan
A further increase ine results in the destabilization o
a second band atq1  2py

p
2lL [Fig. 1(b)]. In this

situation the near field signal does not appear as a unif
superposition of patterns at the two different wavelengt
but rather as a collection of spatially separated domai
© 1996 The American Physical Society 1063
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FIG. 1. Near field (upper) and far field (lower) patterns observed fore  0.5 (a),(d), e  2 (b),(e), ande  4.2 (c),(f). Left
(right) column corresponds to excitation of only theq2 sq1d band, in the middle column the two bands coexist. The single w
number cases (left and right) show coexistence of many sets of2N  14 vectors.
t

e
h

)]
a
e
g
O

s
n

e
)]

g

in
v

en
e
n
v

c
na
s

a

of

a-

rier

e of

.
o

(b)
r

each one containing patterns at only one of the two spa
scales. The average size of the domains withq  q1

increases for increasinge and eventually the whole wav
front is made of domains at this wave number, while t
domains atq  q2 are completely suppressed [Fig. 1(c

For e very small, a singleq band is associated with
far field made of 2N spots (fixed orientation of the wav
vectors), and hence the near field shows mainly a sin
domain (besides some boundary perturbations) [13].
the contrary, here (rather largere) even a single band is
a collection of wave vectors with different orientation
and hence even for a single wavelength we have a ma
domain pattern, with grain boundaries separating differ
orientations. Ase is increased [Figs. 1(a) and 1(b
domains with the smaller wave numberq1 emerge at
the grain boundaries of the previousq2 multiorientation
patterns, thus showing that defects are sources that tri
the onset of theq1 patterns [14].

In Fig. 2 we report the local intensities at one po
of the near field for the three cases described abo
When the wave numberq2 is excitedse  0.2d we have
relatively slow drifts of the domain boundaries. Wh
only q1 is excitedse  4.5d the corresponding eigenvalu
l is complex [13], and thus we obtain rotating patter
The rotation gives rise to a high frequency as obser
in Fig. 2(c). Finally, in Fig. 2(b) se  1.9d the two
wave numbers coexist, and at a given pixel we have
alternation between the two regimes.

Further information about the observed phenomena
be gained from the spatial power spectra of the sig
corresponding to the far field. Typical examples of the
spectra are shown in Figs. 1(d)–1(f). In order to obt
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some global information about the temporal behavior
the signal, we define the quantityhstd  S1stdyfS1std 1

S2stdg as the fraction of the total power that instant
neously belongs to the first band. HereSjstd s j  1, 2d is
the instantaneous power radially integrated in the Fou
space over a circular corona of radiusqj. A plot of hstd
for three different values ofe is shown in Fig. 3. It is
seen here that, when the system is dominated by on
the two competing bands, the time fluctuations ofhstd are
very small. On the contrary, the range ofe for which

FIG. 2. Near field local intensity (arbitrary units) vs time
In (a) (e  0.2, q2 band) the fluctuations are due only t
domain dynamics; in (c) (e  4.5, q1 band) there is also a
fast oscillation due to the imaginary part of the eigenvalue;
(e  1.9, both q1 andq2 bands) is a superposition of the othe
two cases.
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FIG. 3. Temporal evolution of the normalized spectral pow
h on the first ring. e  1, q2 band (lower curve),e  4.1, q1
band (upper curve), ande  2.1, both q1 andq2 bands (middle
curve).

the two bands show coexistence corresponds to region
high fluctuation forhstd, meaning that there neither th
coexistence of the two bands nor the domination of o
band over the other are stable phenomena.

A quantitative measurement of the transition from t
bandq2 to the bandq1 dominated regime is given by th
behavior of the time averageh ; khstdlt and the standard
deviation s ; fkh2 2 hstd2ltg1y2 of the quantity hstd
versus the pump parametere. Plots of the results of thes
measurements are shown in Fig. 4 (left). These p
give a quantitative confirmation of the enhancement
fluctuations in the signal that accompanies the regime
competition coexistence between the two bands.

The experimental results can be described in terms
model that, though being oversimplified, retains the fu
damental mechanisms of the process under considera
At each point of real space, the local fieldEsr , td is ex-
pressed in terms of its Fourier expansion, which form
discrete set

Esr , td 
Z

dq aqsr̃deiq?r , (1)

where

aqsr̃d 
2NX

n1

andq2qnsr̃d . (2)

This means that at eachr position we have a fas
space dependence due to the phase factor, plus a
dependence due to the selection of a set of 2N vectors
fqnsr̃dg specific of that domain, and which belong to eith
the q1 or q2 rings of Fig. 1. Via a Galerkin expansion
truncated to those modes whose wave numbers lie
the rings of radiiq1 and q2, the two partial differential
equations ruling the interaction of the field with the Ke
medium [9,15] are replaced by a set of ordinary equati
describing the evolution ofaqstd, with linear terms and
leading nonlinearities due to quadratic and cubic mo
mode coupling [16,17].
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The mode coupling within one ring (at constantq
modulus) was treated in [16], and forN fi 3l (l being
a positive integer) the quadratic nonlinearity disappe
by closure considerations, thus leaving a cubic mo
coupling of the type considered in laser theory f
population coupling in the absence of phase coupling [1
This applies to our case since we have selectedN  7.

Thus far, however, no treatment has been provided
the competition between rings inq space. The data o
Fig. 1 show that a situation of almost isotropic amplitu
distribution on the two rings is easily reached. Ev
though the far field displays this isotropy, the closu
relations in building the quadratic convolution term fo
the evolution equation ofaqsr̃, td must be built with a
unique set of 2N vectors. This rules out the possibility o
havingqI

i 1 qII
i  qj (i fi j, i andj  1, 2), since with

N  7 (2N  14 points regularly spaced over each rin
and with the ratiojq2jyjq1j 

p
3, the above relations are

never satisfied. Thus also the inter-ring competitions
ruled only by cubic nonlinearities.

We find it convenient to follow the evolution o
the corresponding integrated spectral powersSi 
2pqijaqij

2 si  1, 2d. The equations forS1 andS2 are

ÙS1  m1S1 2 b1S2
1 2 g1S1S2 ,

ÙS2  m2S2 2 b2S2
2 2 g2S1S2 .

(3)

We have thus arrived at general equations analog
to those ruling the dynamics of competing populatio
[19] and already used in laser dynamics for two mo
operation [18].

Because of the saturating characteristics of the LC
[20], the linear growth ratesmi depend on the input
intensityI0. The functionmisI0d is increasing for moderate
I0 and decreasing for highI0, where saturation of LCLV
characteristic is effective. We choose as a functional fo
for misI0d a parabola, that is,mi  aiI0 2 riI

2
0 , i  1, 2.

The system admits the following four fixed points:O 
s0, 0d, F1  sm1yb1, 0d, F2  s0, m2yb2d, and C 
ssssm1b22g1m2dysb1b22g1g2d, sb1m22 g2m1dysb1b2 2

g1g2dddd. The spatial interaction neglected in Eqs. (
permits the birth of coherentF1 or F2 domain structures
nucleating from local defects. Indeed, when a sing
family locally displays a defect, this becomes a nucleat
center for the other family. Hence, the observed shar
process on the near field can be interpreted as a continu
nucleation and competition of the two coherent domai
and it can be modeled by addingm2jstd and m1jstd to
the first and second of Eqs. (3), respectively, wherejstd
is a wideband stochastic process with zero average.
noise contribution in theS1 equation has been multiplied
for m2 to account for the fact that the perturbation toS1

arises fromS2 domains nucleating from local defect
hence, it is proportional to the growth rate of the seco
family. Similar considerations hold for theS2 equation.
1065
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qs. (3)

FIG. 4. Experimental (left column) and theoretical (right column) plots ofhsed (a),(c) andssed (b),(d). Experimental error bars
are within the size of the black circles. Theoretical points (black squares) are obtained from numerical integration of E
with m1  1 2 sI0 2 5d2, m2  1 2 sI0 2 5.5d2, b1  b2  1.5, g1  g2  2.4, and the noise addition. Thex axis has been
normalized to the reduced pump parametere. In all cases, lines are just a guide connecting points.
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In Fig. 4 (right) we report the plots ofhsed and ofssed
extracted from the numerical solutions of Eqs. (3) with t
noise addition. For a suitable choice of parameters, t
are in good qualitative agreement with the experiment.

In summary, we have shown that 2D patterns of diffe
ent symmetries can coexist over different domains ev
when they belong to different wavelengths, we have
troduced global indicators characterizing this coexisten
and we have built a simple model which describes
main experimental features.
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