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Arbitrary Control of a Quantum Electromagnetic Field
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We present a cavity QED interaction which forces the ground state of a cavity field mode to evo
into anarbitrary quantum state at a prechosen timetp. This method does not involve either atom-field
state entanglement or the projections characteristic of quantum measurement.

PACS numbers: 42.50.Dv, 03.65.Bz, 42.50.Lc
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Controlling the time evolution of quantum systems
an interesting subject that can lead to many useful ap
cations. Generally, we may vary certain time-depend
parameters of a system in order to maximize the ove
between a final state and a desirable quantum state (ta
state). A fundamental restriction comes from the fact t
final states to which an initial state can have access
limited by the Hamiltonian of the system. Therefore
important question is whether we can design a realistic
teraction Hamiltonian in order to attain an arbitrary targ
state at a specific (target) timetp.

The question of creating arbitrary quantum states
a cavity field has been discussed in the literature [1–
There are two types of difficulties. First, the quantu
states of the sources of radiation (i.e., atomic states) h
to be manipulated in an arbitrarily controllable mann
Second, we have to design a mechanism so that
source can “teach” the field to evolve toward a desira
quantum state. These difficulties have been approac
from different points of view. The methods proposed
Vogel, Akulin, and Schleich [1] and Garrawayet al. [2]
adopt a micromaser-type system in which a two-le
atomic beam is used as a radiation source. They as
each atom in the atomic beam a specific state be
entering the cavity. After interacting with the field, th
quantum states of the atoms are measured. The qua
projection associated with this measurement ensures
the purity of the field state can be maintained. Recen
a scheme has been suggested by Parkinset al. [3] which
can avoid the uncontrollable (statistical) outcomes of p
forming these successive quantum measurements. In
method, coherence of Zeeman levels can be mapped
a cavity field directly via an adiabatic passage mechani
A basic requirement is that the Zeeman levels have to
initially prepared in prescribed superposition stat
Therefore, different target field states need differ
superpositions of Zeeman levels, and the number
Zeeman levels that is available limits the photon num
achievable in the target state.

In this paper, we present a new approach to con
quantum states of a cavity field. The major differen
between our approach and previous work is that quan
states of the atom (source) are manipulatedduring the
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atom-field interaction process, i.e., inside the cavi
Therefore we can createall target states from the sam
initial state. The highest Fock state is not limited b
the number of atomic levels, but is limited by values
coupling strengths. Furthermore, we know in advance
specific timetp at which the target state is created. Lik
the method developed by Parkinset al. [3], our model
does not involve projections characteristic of quantu
measurement, and a single atom is sufficient to serve
our purpose. The atom in our approach consists of t
effective levels as in the scheme of Vogel, Akulin, an
Schleich [1], but we find a significant advantage in a tw
channel approach.

We consider a system which consists of a quantiz
cavity field interacting with a driven quantum system
which we will refer to as an atom, but could also b
a trapped ion, for example. We shall show how ato
field interactions can force the vacuum state of the fi
to evolve into any prespecified superposition of Fo
states of finite photon numbers. In other words, gene
quantum states of the field can be created,

jctargetl ­
MX

n­0

cnjnl . (1)

Here thecn are arbitrary complex amplitudes andM is a
prechosen integer which determines the highest Fock s
in (1).

The Hamiltonian of our model is given by

Hstd ­ vcaya 1
1
2 v0sz 1 frstde2ivLt 1 gstdags1

1 frpstdeivLt 1 gpstdaygs2 , (2)

whereay anda are creation and annihilation operators
a cavity field of frequencyvc. The s’s describe a two-
level atom in the usual Pauli matrix notation. As indicat
in Fig. 1, the atom can make transitions between the t
levels through two channels. One channel correspo
to the interaction between the atom and an exter
driving field of frequencyvL and adjustable amplitude
The coupling strength of this channel is characteriz
by a complex functionrstd. The second channel is th
interaction between the atom and the quantized ca
field, and the corresponding coupling is determined
a complex functiongstd. Unlike previous studies of the
© 1996 The American Physical Society 1055
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FIG. 1. Schematic drawing of a two-level atom interactin
with a cavity mode and a classical driving field.

driven Jaynes-Cummings model [4], we assume that b
rstd andgstd are prescribed functions of time. A possib
realization of such a model will be discussed later in th
paper.

Under the resonance conditionvc ­ vL ­ v0, the
Hamiltonian can be written (in the interaction picture) a

HI std ­ frstd 1 gstdags1 1 frpstd 1 gpstdaygs2 .

(3)
We choose the simplest state,

jCs0dl ­ j0, gl , (4)
as our initial state, i.e., the cavity field is in the vacuu
state and the atom is in the ground state. Our goal is
force the system to evolve into a final state of the form

jCstpdl ­
MX

n­0

cnjn, gl , (5)

after a target timetp. Note that the state of the field
is the same as the target statejctargetl given in Eq. (1).
Since Eq. (5) indicates thatthe atom and the field do no
entangle,the state of the field remains pure. (We sh
ignore relaxation effects coming from spontaneous atom
decay and cavity damping. This can be justified iftp is
significantly shorter than both relaxation times.)

Now we describe the strategy of our model. We fi
divide the time intervalf0, tpg into 2M subintervals. For
simplicity, we let all subintervals have equal lengths, i.
0 , t , 2t · · · , jt , s j 1 1dt · · · , s2M 2 1dt ,

tp where t ­ tpy2M is defined. Next we assign th
following rules such that only one channel is effective
a time: For2sj 2 1dt , t , s2j 2 1dt,

rstd ­ rj , gstd ­ 0 . (6)
For s2j 2 1dt , t , 2jt,

rstd ­ 0, gstd ­ gj , (7)
whererj and gj s1 # j # Md are complex constants to
be determined.

The time evolution operator of the system can be e
pressed as a product of a sequence of evolution opera
associated with the time intervals, i.e.,

Ustpd ­ QMCMQM21CM21 · · · Q2C2Q1C1 . (8)
Here Qj describes the evolution due to the quantiz
field channel andCj describes the evolution due to th
1056
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classical field channel. BothQj andCj can be expressed
analytically in the form of a2 3 2 matrix with respect to
the atomic basis,

Qj ­

0B@ cosjgjj
p

aay t 2iaeifj
sinjgj j

p
aya t

p
aya

2iaye2ifj
sinjgj j

p
aay t

p
aay

cosjgjj
p

aya t

1CA ,

(9)

Cj ­

µ
cosjrjjt 2ieiuj sinjrj jt

2ie2iuj sinjrjjt cosjrj jt

∂
. (10)

Here we have letrj ­ jrj jeiuj , andgj ­ jgjjeifj .
The final step is to determine the values ofhrjj and

hgjj. This can be done by solving the equation of inver
evolution,

j0, gl ­ Us2tpd jCstpdl

­ C
y
1 Q

y
1 C

y
2 Q

y
2 · · · C

y
MQ

y
M jCstpdl . (11)

For an arbitraryjCstpdl given in the form of Eq. (5), we
can always find a solution forhrjj and hgjj. This can
be done because the sequence of operators in the
side of Eq. (11) can remove photons successively fr
the statejCstpdl until all the photons are exhausted. Mor
specifically, the values forhrjj andhgjj can be determined
by solving the following equations,

aj cosjgjj
p

j t 1 ibje2ifj sinjgjj
p

j t ­ 0 , (12)

mj cosjrj jt 1 injeiuj sinjrj jt ­ 0 . (13)

The coefficientsaj, bj , mj, and nj s1 # j # Md are
given by

aj ­ k j, gjFj11l , (14)

bj ­ k j 2 1, ejFj11l , (15)

mj ­ k j 2 1, ejQ
y
j jFj11l , (16)

nj ­ k j 2 1, gjQ
y
j jFj11l , (17)

with

jFjl ; C
y
j Q

y
j C

y
j11Q

y
j11 · · · C

y
MQ

y
M jCstpdl (18)

and jFM11l ; jCstpdl. Equations (12) and (13) ensur
that whenC

y
j Q

y
j acts onjFj11l, all populations inj j, gl

andj j 2 1, el are transferred toj j 2 1, gl. Therefore by
repeating the process,jCstpdl can be brought intoj0, gl as
required in Eq. (11).

Since a solution for (12) and (13) always exists (
fact more than one), we have established the fact t
arbitrary target states can be obtained at the timetp. It
should be noted that the prechosen value ofM for the
highest Fock state number can be arbitrarily large, bu
restricted in practice becauserstd and gstd are finite in
real physical systems. However, if we do not restrict t
2M time intervals to have equal lengths, we may treat t
durations of the time intervals as adjustable paramet
In doing so, the model becomes more flexible and it
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possible to optimize the numberM for a given target time
tp. Suppose that the largest possible coupling streng
are given bygmax and rmax. It can be shown that the
condition

tp .
Mp

2rmax
1

p

2gmax

MX
j­1

1
p

j
(19)

determines the biggestM that our model can reach [5].
For example, we can haveM # 10 for a moderately
strong couplinggmaxtp ­ 25 andrmax ­ gmax.

As an illustration, we show in Table I the values ofhrjj
andhgjj in order to create the state,

jctargetl ­
1

p
3

hj0l 1 j5l 1 j10lj . (20)

This state is a superposition of three distinct Fock stat
and although Eq. (20) looks so simple, the correspondi
phase-space distributionQsad ­ jkajctargetlj2 (wherejal
are coherent states) is rather remarkable. As we can
from the contour plot ofQsad in Fig. 2, the interference
between the three Fock states yields flowerlike contou
We may perhaps call this state a “flower” state. It is wor
noting that the creation ofjctargetl is not sensitive to small
errors inhrjj andhgjj. We have tested the stability using
only two significant figures in eachrj and gj in Table I,
and found that the final state still has 96% overlap wi
the target state.

Finally we discuss a possible realization of our mod
in a cavity QED configuration. The driven Jaynes
Cummings model cannot be applied here because
coupling strengthgstd must be variable in an arbitrarily
prescribed way. However, this problem can be overcom
just by using a two-channel Raman interaction [6,7],
shown in Fig. 3. In this case, a three-level atom can
excited via two Raman channels. One channel conta
two classical external fields$Epstd and $Esstd, and they
have frequenciesvp and vs, respectively. We assume
that the frequencies satisfy the usual Raman resona
condition vp 2 vs ­ v0, where v0 is the energy dif-
ference between levelsj3l and j1l. The second channel
contains a classical external field$Egstd with a frequency

TABLE I. Numerical solutions ofhrjj and hgjj for creating
the target state in Fig. 2.

j gjt rjt

1 1.5560 1.2874
2 0.7283 21.1748
3 20.8322 21.3744
4 0.7594 1.4900
5 0.6553 1.2629
6 20.6211 21.2475
7 20.5879 21.2549
8 0.5554 21.1702
9 0.5236 1.5708
10 0.4967 1.5708
s
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vg, and the quantized cavity field of frequencyvc. The
electric field operator of the cavity mode can be express
as $Ec ­ ksa 1 ayd$el, where $el is the polarization vec-
tor andk is determined by the quantization volume. A
in the first channel, we assume the Raman resonance c
dition vg 2 vc ­ v0 to be satisfied. Notice that$Epstd,
$Esstd, and $Egstd are envelopes of driving fields which ca

be varied externally. If the detuningsDa andDb are suf-
ficiently large, the upper level can be adiabatically elim
nated [6]. It can be shown that the effective Hamiltonia
has the same form as Eq. (3), in which we can identify t
two levelsj1l, j3l asjgl, jel and the couplings

rstd ­ 2
f $d21 ? $Epstdg f $d32 ? $E p

s stdg
Da

, (21)

gstd ­ 2
f $d21 ? $Egstdg s $d32 ? k $eld

Db
. (22)

Here kij $djkl si, k ­ 1, 2, 3d are atomic dipole matrix
elements. Therefore by switching on and off the classic
fields with correct amplitudes and phases, the requir
time dependence ofrstd and gstd can be obtained. We
remark that there should be terms describing small
Stark shifts in the effective Hamiltonian, which we ig
nore here.

To conclude, we have presented a cavity QED mod
which allows the vacuum state to evolve to anarbitrarily
prescribed superpositionof Fock states. Our model ba
sically transforms the problem of controlling a quantize
field into the problem of controlling the time sequence
of amplitudes and phases ofrstd andgstd. This also in-
cludes a precise knowledge of the starting timet ­ 0, so
that the system can be initiated correctly. These techni
difficulties are perhaps the only price for arbitrary contr
of a quantum field. From a theoretical point of view, th

FIG. 2. Contour plot of theQ function for the target state:
jctargetl ­ 321y2hj0l 1 j5l 1 j10lj. Contour lines are taken
at Qsad ­ 0.027n, wheren ­ 1, 2, . . . , 15. The highest con-
tour corresponds to the small circle around the origin. T
outermost contour has the lowest height.
1057
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FIG. 3. A two-channel Raman transition diagram. The e
velopes of driving fields are labeled by$Epstd, $Esstd, and $Egstd.
In order to make the two channels distinct from each other,
energy differencev0 has to be significantly larger than th
bandwidths of the fields, as well as the Rabi frequencies a
ciated with each channel.

fact that our model can access all possible quantum st
is interesting and may suggest useful applications.
hope to address questions about the influence of nois
rstd andgstd, as well as the turn-on effects of the fields
the future.
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