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Arbitrary Control of a Quantum Electromagnetic Field
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We present a cavity QED interaction which forces the ground state of a cavity field mode to evolve
into anarbitrary quantum state at a prechosen tinie This method does not involve either atom-field
state entanglement or the projections characteristic of quantum measurement.

PACS numbers: 42.50.Dv, 03.65.Bz, 42.50.Lc

Controlling the time evolution of quantum systems isatom-field interaction process, i.e., inside the cavity.
an interesting subject that can lead to many useful appliTherefore we can creatal target states from the same
cations. Generally, we may vary certain time-dependeninitial state. The highest Fock state is not limited by
parameters of a system in order to maximize the overlathe number of atomic levels, but is limited by values of
between a final state and a desirable quantum state (targatupling strengths. Furthermore, we know in advance the
state). A fundamental restriction comes from the fact thaspecific timer* at which the target state is created. Like
final states to which an initial state can have access ahe method developed by Parkies$ al. [3], our model
limited by the Hamiltonian of the system. Therefore andoes not involve projections characteristic of quantum
important question is whether we can design a realistic inmeasurement, and a single atom is sufficient to serve for
teraction Hamiltonian in order to attain an arbitrary targetour purpose. The atom in our approach consists of two
state at a specific (target) timé effective levels as in the scheme of Vogel, Akulin, and

The question of creating arbitrary quantum states oBSchleich [1], but we find a significant advantage in a two-
a cavity field has been discussed in the literature [1—3]channel approach.

There are two types of difficulties. First, the quantum We consider a system which consists of a quantized
states of the sources of radiation (i.e., atomic states) hawmavity field interacting with a driven quantum system,

to be manipulated in an arbitrarily controllable manner.which we will refer to as an atom, but could also be

Second, we have to design a mechanism so that the trapped ion, for example. We shall show how atom-
source can “teach” the field to evolve toward a desirabldield interactions can force the vacuum state of the field
quantum state. These difficulties have been approachdd evolve into any prespecified superposition of Fock
from different points of view. The methods proposed bystates of finite photon numbers. In other words, general
Vogel, Akulin, and Schleich [1] and Garraway al.[2]  quantum states of the field can be created,

adopt a micromaser-type system in which a two-level M
atomic beam is used as a radiation source. They assign [arget) = Z culn). Q)
each atom in the atomic beam a specific state before n=0

entering the cavity. After interacting with the field, the Here thec, are arbitrary complex amplitudes an is a

guantum states of the atoms are measured. The quantlﬁfﬁchosen integer which determines the highest Fock state

projection associated with this measurement ensures thit (1).

the purity of the field state can be maintained. Recently, The Hamiltonian of our model is given by

a scheme has been suggested b_y Eard!irai. [3] which H(t) = weata + %wogz + [r()e " + g(t)a]os

can avoid the uncontrollable (statistical) outcomes of per- i ot it

forming these successive quantum measurements. In their + [0’ + g7 (n)at]o—, ()

method, coherence of Zeeman levels can be mapped onithereat anda are creation and annihilation operators of

a cavity field directly via an adiabatic passage mechanisma cavity field of frequencyn.. The o’s describe a two-

A basic requirement is that the Zeeman levels have to bkevel atom in the usual Pauli matrix notation. As indicated

initially prepared in prescribed superposition statesin Fig. 1, the atom can make transitions between the two

Therefore, different target field states need differentevels through two channels. One channel corresponds

superpositions of Zeeman levels, and the number ofo the interaction between the atom and an external

Zeeman levels that is available limits the photon numbedriving field of frequencyw; and adjustable amplitude.

achievable in the target state. The coupling strength of this channel is characterized
In this paper, we present a new approach to controby a complex function-(¢). The second channel is the

quantum states of a cavity field. The major differenceinteraction between the atom and the quantized cavity

between our approach and previous work is that quanturfield, and the corresponding coupling is determined by

states of the atom (source) are manipulatiedling the  a complex functiong(z). Unlike previous studies of the
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7y le> classical field channel. Bot@; andC; can be expressed
Z\ analytically in the form of & X 2 matrix with respect to
the atomic basis,
0 coslg;lVaat 7 —iaei‘z’f%
r(t) gt i sinle,
—iaTe”‘m% cos|g;|Vatar
9
lg> C. — < cos|r;|7 —iel? sin|rj|7> (10)
/ —ie~ % sin|r;|7 cos|r;|r '

FIG. 1. Schematic drawing of a two-level atom interacting
with a cavity mode and a classical driving field. Here we have let; = |r;le'?, andg; = |g;le'®i.

The final step is to determine the values{of} and
driven Jaynes-Cummings model [4], we assume that botfg;}. This can be done by solving the equation of inverse
r(r) andg(z) are prescribed functions of time. A possible evolution,
realization of such a model will be discussed later in this 10, )
paper. ’

Under the resonance conditiod, = w; = wg, the
Hamiltonian can be written (in the interaction picture) as

Hi(t) = [r(t) + g(t)alo+ + [r*(t) + g*(D)atlo—.

U(—1") 1P ("))
= clofclol...chollwey. @y

For an arbitrary| ¥ (¢+*)) given in the form of Eq. (5), we
can always find a solution fofr;} and{g;}. This can

(3) be done because the sequence of operators in the right
We choose the simplest state side of Eqg. (11) can remove photons successively from
1W(0)) = lO’ 2) @) the statd¥(¢*)) until all the photons are exhausted. More

o ) 3 o specifically, the values fdi-;} and{g;} can be determined
as our initial state, i.e., the cavity field is in the vacuumby solving the following eq'uations'

state and the atom is in the ground state. Our goal is to

force the system to evolve into a final state of the form ajcoslgljr + iBje isinlgiliT =0, (12)
M ; .
(W) =3 culn,g), (5) pjcoslrjlr + ivje!” sinlrlr = 0. (13)
n=0 . .
after a target timer*. Note that the state of the field Tit\/incgefﬂc:lents%-, Bj» mjr andv; (1= j = M) are
is the same as the target std#.....) given in Eq. (1). 9 y
Since Eqg. (5) indicates thaihe atom and the field do not aj ={(j,glFj+), (14)
entangle,the state of the field remains pure. (We shall oy A
ignore relaxation effects coming from spontaneous atomic Bi=G—1 elF’Jr“>’ (15)
decafy andI car\]/ity dahmping. hThils can be justif;ed*iﬁs wi=(j— LelQjlFj), (16)
significantly shorter than both relaxation times. o e
Now we describe the strategy of our model. We first vi={J = 1.8lQj1Fj+n), (17)
divide the time interval0, *] into 2M subintervals. For with
simplicity, we let all subintervals have equal lengths, i.e., IFj) = C.,J-r Q}C}HQ}H o CLQLN’(Z*» (18)

0<7<2r---<jr<(j+Dr---<@2M - 1)1 <
t* where 7 = 1*/2M is defined. Next we assign the

and |Fy+1) = |P(¢*)). Equations (12) and (13) ensure

following rules such that only one channel is effective atthat whenC; Q; acts on|F;,), all populations in| j, g)

atime: For(j — Dr <t < (2j — D,

r(t) = r;, g(t)=0. (6)
For(2j — )7 <t <2jr,
r(t) =0,  g@t) =g, (7)

wherer; andg; (1 = j = M) are complex constants to
be determined.

and|j — 1,e) are transferred tbj — 1, g). Therefore by
repeating the procesgl(¢*)) can be brought intf0, g) as
required in Eq. (11).

Since a solution for (12) and (13) always exists (in
fact more than one), we have established the fact that
arbitrary target states can be obtained at the tifnelt
should be noted that the prechosen valueVbffor the

The time evolution operator of the system can be exnighest Fock state number can be arbitrarily large, but is

pressed as a product of a sequence of evolution operatisyricted in practice becausér) and g(z) are finite in
associated with the time intervals, i.e., real physical systems. However, if we do not restrict the
U(t") = OuCuQu-1Cu-1---02C01C1. (8)  2M time intervals to have equal lengths, we may treat the
Here Q; describes the evolution due to the quantizeddurations of the time intervals as adjustable parameters.
field channel and”; describes the evolution due to the In doing so, the model becomes more flexible and it is
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possible to optimize the numbbt for a given target time  w,, and the quantized cavity field of frequeney. The
t*. Suppose that the largest possible coupling strengthslectric field operator of the cavity mode can be expressed
are given bygmax and rma It can be shown that the ask, = «(a + at)e,, wheree, is the polarization vec-

condition tor and k is determined by the quantization volume. As
M | in the first channel, we assume the Raman resonance con-
> + —- (19)  dition w, — w. = wy to be satisfied. Notice thak, (¢
27 max 28max j=1 \/7 @s @e @0 éfp( )

E,(t), andZE,(r) are envelopes of driving fields which can
be varied externally. If the detunings, andA, are suf-
ficiently large, the upper level can be adiabatically elimi-
nated [6]. It can be shown that the effective Hamiltonian
has the same form as Eq. (3), in which we can identify the
two levels|1), |3) as|g), |e) and the couplings

|arger) = %{lm +15) + [10)}. (20) [y - E,(0][dan - E(0)]

r(r) = ,
This state is a superposition of three distinct Fock states, . . Aq .
and although Eg. (20) looks so simple, the corresponding [da1 - Eq(1)](d32 - ke€))
phase-space distributiad(e) = [{a|aree)|? (Where|a) () = - A, . (22)
are coherent states) is rather remarkable. As we can see - o )
from the contour plot ofQ(«) in Fig. 2, the interference Here (ildlk) (i,k = 1,2,3) are atomic dipole matrix
between the three Fock states yields flowerlike contourslements. Therefore by switching on and off the classical
We may perhaps call this state a “flower” state. It is worthfields with correct amplitudes and phases, the required
noting that the creation dffi....) is Not sensitive to small time dependence of(z) and g(z) can be obtained. We
errors in{r;} and{g;}. We have tested the stability using remark that there should be terms describing small ac

determines the bigged$#l that our model can reach [5].
For example, we can hav® = 10 for a moderately
strong couplinggmaxt™ = 25 andrmax = gmax-

As an illustration, we show in Table | the values{of}
and{g;} in order to create the state,

(21)

only two significant figures in eacky andg; in Table |, Stark shifts in the effective Hamiltonian, which we ig-
and found that the final state still has 96% overlap withhore here. _
the target state. To conclude, we have presented a cavity QED model

Finally we discuss a possible realization of our modeMhich allows the vacuum state to evolve toambitrarily
in a cavity QED configuration. The driven Jaynes_p_rescrlbed superpositionf Fock states. Qur model pa-
Cummings model cannot be applied here because th%cally transforms the problem of controlh_ng a quantized
coupling strengthg(r) must be variable in an arbitrarily field into the problem of controlling the time sequences
prescribed way. However, this problem can be overcom&f amplitudes and phases ofr) and g(r). This also in-
just by using a two-channel Raman interaction [6,7], a<ludes a precise knowledge of the starting time 0, so
shown in Fig. 3. In this case, a three-level atom can pdhat the system can be initiated correctly. These technical
excited via two Raman channels. One channel containgifficulties are perhaps the only price for arbitrary control
two classical external field€, () and E,(s), and they of a quantum field. From a theoretical point of view, the
have frequencies, and w,, respectively. We assume
that the frequencies satisfy the usual Raman resonance
condition w, — w; = wy, Where w, is the energy dif- 4 '
ference between levels) and|1). The second channel
contains a classical external fielf,(r) with a frequency @

TABLE I. Numerical solutions of{r;} and{g;} for creating

the target state in Fig. 2. Im (o) o @)

j 8T rT

1 1.5560 1.2874 o

2 0.7283 —1.1748

3 —0.8322 —1.3744 y J

4 0.7594 1.4900 -4 0 4

5 0.6553 1.2629 Re (00)

6 —-0.6211 —1.2475

7 —0.5879 —1.2549 FIG. 2. Contour plot of theQ function for the target state:
8 0.5554 —1.1702  |¢agery = 37/3{|0) + |5) + [10)}. Contour lines are taken
9 0.5236 1.5708 at Q(a) = 0.027n, wheren = 1,2,...,15. The highest con-
10 0.4967 1.5708 tour corresponds to the small circle around the origin. The

outermost contour has the lowest height.
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FIG. 3. A two-channel Raman transition diagram. The en-

velopes of driving fields are labeled tf/,,(t), f;(t), and fg(t).

In order to make the two channels distinct from each other, the
energy differencew, has to be significantly larger than the

(2]
(3]

(4]

5]

bandwidths of the fields, as well as the Rabi frequencies asso-

ciated with each channel.

[6]

fact that our model can access all possible quantum states

is interesting and may suggest useful applications. We
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hope to address questions about the influence of noise if7] Two-channel Raman processes are also found useful in

r(r) andg(z), as well as the turn-on effects of the fields in

the future.

This research was partially supported by NSF Grants

No. PHY 94-08733 and No. PHY94-15583.

[1] K. Vogel, V.M. Akulin, and W.P. Schleich, Phys. Rev.

Lett. 71, 1816 (1993).

1058

preparing nonclassical states of motion of a trapped ion;
see J.I. Cirac, A. S. Parkins, R. Blatt, and P. Zoller, Phys.
Rev. Lett. 70, 556 (1993); C. Monroe, D. M. Meekhof,
B.E. King, S.R. Jefferts, W.M. Itano, D.J. Wineland,
and P. Gould, Phys. Rev. Letf5 4011 (1995); D.M.
Meekhofet al. (private communication).



