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Polarized Compton Scattering from the Proton
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New precision measurements of cross sections and polarization asymmetrieg iy the) reaction
at 90 c.m. are presented for incident energies between 213 and 333 MeV. A long-standing problem
with earlier experiments that appeared to violate unitarity at the peak ofAtle resolved. Data
are compared to theories based on baryon resonance structure and to dispersion relations. Recent
calculations using the proton polarizabilities are closest to the data, although inconsistencies are
observed near thA resonance.

PACS numbers: 13.60.Fz, 13.88.+e, 14.20.Gk, 25.20.Dc

Elastic (Compton) scattering of intermediate energycontributions from multiple meson exchange in tloban-
photons from the proton is a potentially rich sourcenel that are quite poorly determined. In principle, the
of structure information. It is sensitive to the proton’s beam-polarization asymmetry constrains this other ampli-
electric @) and magnetic §) polarizabilities [1], to the tude [4]. But prior to our new measurements, only a single
deformation of the nucleon through the electygvA  datum with large errors had been published for this observ-
coupling [2], and even to the sign of the® decay able[18]. Alternatively, sum rules can be used to write the
constantF, [3,4]. There are many published calculations subtraction function for this spin-flip amplitude in terms of
for Compton scattering. These can be grouped into twehe difference of the proton polarizabilities, — 8, which
general categories, those based on the baryon resonartan then be fixed by fitting a perturbative expansion of
spectrum or its underlying quark structure [5-7], andthe cross section to data below thethreshold [3,4]. Al-
those relying upon unitarity and dispersion relations tathough this provides a good description of scattering below
phenomenologically describe elastic scattering in termshe A [1,19], the peak cross sections appear to be overes-
of photopion production [3,4,8—10]. These calculationstimated [3,4].
give significantly different predictions, particularly in the A lower unitarity bound on the Compton cross sections,
region of theA resonance. which avoids the uncertainties of the dispersion calcula-

A number of measurements of proton Compton scattertions, can be constructed by usimgproduction to evalu-
ing have been reported [1,11-16], and several authors @fte the imaginary parts of the amplitudes while setting
dispersion calculations have pointed out a significant intheir real parts to zero [3,8,10]. Beyond this, minimal real
consistency between many of these experiments and parts can be formed from the and u-channel Born and
photoproduction data near the peak of the[3,8—10]. ¢-channelz®-pole graphs [9]. These exercises lead to a
Compton scattering can be described by six independerbmmon conclusion. Previously published data near the
amplitudes. Their imaginary parts can be calculated fronpeak of theA resonance, and particularly at*9€enter of
(v, ) multipoles usings- andu-channel unitarity, and dis- mass (c.m.), appear to completely exhaust these bounds,
persion integrals can be written for their real parts. Fouif not violate them, and leave no room for thehannel
of these integrals converge rapidly with energy. How-dispersive contributions.
ever, the remaining two, those involving a photon helicity We report here new measurements of thg, yp) re-
flip, do not converge rapidly, making subtractions essenaction using the Laser Electron Gamma Source (LEGS)
tial. One of these is dominated bghannelz? exchange, facility located at the National Synchrotron Light Source
the Low amplitude [17], and can be readily evaluated inof Brookhaven National Laboratory. Linearly polar-
terms of thex* lifetime. However, the other contains ized y rays between 213 and 333 MeV were produced
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by backscattering polarized ultraviolet laser light fromin the scintillator bars. The requirements ofyaray
2.58 GeV electrons. The-ray energies were determined with energy greater than 100 MeV in the Nal, no signal
to ~5 MeV by detecting the scattered electrons in a tag-above 4 MeV in its veto plastic, a straight wire chamber
ging spectrometer [20]. During the measurements, the pdrack reconstructed from the target and pointing to the
larization was flipped between directions para(lel and  scintillator bar array, and a proton with the correct TOF
perpendiculal_L) to the scattering plane at random inter- and energy in the bars, removed all background processes.
vals between 150 and 450 s. The netay polarization Empty target data were collected, but the number of
was greater than 80% at all tagged energies. Both thevents that survived these analysis requirements was
polarization and the/-ray flux normalization were moni- completely negligible.
tored frequently and are known with accuracies-df%. Compton scattering andr’ production were distin-

The chief experimental background to Compton scatguished by comparing their-ray and proton-recoil ener-
tering comes from theyp — #°p channel, where one gies. The Compton ang’ separation is shown in Fig. 2
high energy photon fromr® decay is detected. The cross where they-ray energy measured in the large Nal is plot-
section for this process is200 times that expected from ted against the proton energy, the latter determined from
Compton scattering. In this measurement, photons wera combination of TOF and energy in the plastic bars. For
detected in a larget8 cm diam X 48 cm long) high reso- both axes, the energies expected for Compton scattering,
lution (AE, /E, < 2%) Nal(Tl) spectrometer, positioned as calculated from the tagged beam energy and the proton
0.3 m from a6 cm diam X 13 cm long target of liquid recoil angles measured by the wire chambers, have been
H, (LH,). The trajectories of recoil protons were trackedsubtracted. Compton scattering is clearly resolved.
through wire chambers and their energies were measured, Both the p(y, yp) and the p(y, #°p) reactions are
both by energy deposition and by time of flight (TOF), completely specified by two kinematic observables. In
in an array of plastic scintillator bars 4 m from the tar-this experiment, six quantities were measured, the beam
get. This arrangement is shown schematically in Fig. 1energy, the scattereg-ray energy, the polar and azi-
A 2.5 cm thick plastic scintillator in front of the large muthal angles of the recoil proton, and the proton’s TOF
Nal rejected charged particlesand in front of this a and energy. This large degree of kinematic overdetermi-
5 cm thick lead collimator with a conical aperture (not nation has two important consequences. First, it guaran-
shown in the figure) restricted the-ray acceptance to tees an accurate separation of the two competing channels,
the full diameter of the Nal at its back face. High res-even at high beam energies. Secondly, it enables all de-
olution drift chambersvere used to reconstruct the pro- tector efficiencies to be evaluated directly from the data
ton recoil angle to~0.4°, limited by multiple scattering itself, without resorting to simulations and thus avoiding
in the target. A thin-walled helium bag after the wire their associated uncertainties. The geometric solid angle
chambers minimizeéurther multiple scattering. The pro- was modeled by Monte Carlo simulations, and different
tons stopped in an array of 16 plastic scintillators, eactangular acceptances, determined by the wire chambers,
10 cm X 10 cm X 160 cm. The relative timing of light produced consistent results.
signals from opposite ends of these bars provided a hori- In this Letter we focus on Compton scattering for
zontal position (to~7 cm) while the segmentation of the 90° c.m., this being the angle that has led to the most
array determined the vertical position.

Recoil protons were uniquely separated in a two-
dimensional plot of their TOF vs their energy deposition
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coincidences, with photons measured in a Nal(Tl) crystal andcattering, as calculated from the beam energy and the recail
protons in an array of scintillator bars. angles measured by the wire chambers, have been subtracted.
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challenging unitarity problems and the largest number ofero. Although slightly lower bounds have been obtained
calculations. Preliminary asymmetry values have beemith other pion multipoles [10], all are significantly higher
reported in Ref. [2]. near theA peak than the four points from Cornell 61,

The spin-averaged Compton cross sections from th&okyo 64, lllinois 67, and Bonn 76. Although these four
present work (LEGS Expt. L8), corrected for finite detec-measurements appear to be in quite good agreement, we
tor acceptances, are plotted as the solid circles in Fig. 8ssert that they are, nonetheless, quite wrong.
together with previous results. There have been two The beam-polarization asymmetry data from the present
other recent measurements of the Compton cross sectiorexperiment are shown in the lower panel of Fig. 4 (solid
At the Saskatchewan Accelerator Laboratory (SAL) [1],circles), together with the only published datum (cross-
simulations were used to extract thdy, v) component hatched square [18]). There are many published calcu-
from scattered bremsstrahlung (open circles), while inlations for Compton scattering, and a selection illustrating
measurements with tagged photons at Mainz [21] (crosglifferent approaches is shown in Fig. 4. Several predict
in Fig. 3), highly collimated detectors were used to iso-cross sections that lie relatively close to the data but the
late p(y, vp) coincidences. Both are consistent with our asymmetry provides a discriminating test where differ-
results. Data from the earlier Cornell 61 [12], Tokyo 64 ences are often magnifiedlsobar models assume the
[13], lllinois 67 [15], and Bonn 76 [16] experiments at en- baryon resonance spectrum dominates scattering in or-
ergies higher or lower than th peak are either consis- der to extract the associated photon couplingse early
tent or slightly lower than the new group of measurementsvork of Berkelman [5] and the later calculation by Ishii
from LEGS, Mainz, and SAL. Why these earlier results
are so dramatically lower near the resonance energy is
not known.

The solid curve in Fig. 3 is a prediction using the model 200
of L'vov [4], in which recent(y, v) multipoles have been ’g
used to calculate the imaginary parts of the scattering &
amplitudes [22] while low energy measurements of the &
proton polarizabilities have been used to fix the dispersion
integrals [19]. This gives a reasonable description of ﬁ

the new data, except for an overprediction near the -‘-'E
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FIG. 3. Cross sections for proton and Compton scattering afFIG. 4 (color). Polarization asymmetrie€S ={o| — o}/

90° c.m. from the present experiment (solid circles) comparedo) + o}, bottom panel and cross sections (top panel) for
with results from other laboratoriefl,11—-16,21]—see legend. p(y,yp) at 9C¢ c.m. from the present work (solid circles),
The calculations were carried out using the model of Ref. [4]Jtogether with the only published asymmetry datum [18].
with different assumptions for the real parts of the scatteringThese are compared to predictions of isobar models [5—7] and
amplitude. dispersion theory calculations [4]—see legend.
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