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van der Waals Interactions in Density-Functional Theory
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We present a framework for long-range density-functional theory which is valid for interactions
between isolated fragments of matter at large separation. The van der Waals coefficients for interactions
between a large number of pairs of atoms are calculated and compared to available first-principles
calculations. The success in this test case shows a way of extending density-functional theory
calculations with local or semilocal approximations to include van der Waals forces.

PACS numbers: 71.15.Mb, 31.15.Ew, 34.20.-b, 71.45.Gm

The spectacular success of the local-density approximdhe article)
tion (LDA) [1,2] to density-functional theory (DFT) [3] is 3e4 1
well known. It fails, however, to describe interactions at Pra(ry,r) — (2
long range, such as van der Waals interactions (vdW) [4].

The right asymptotic dependences of interaction potentialghere they define the plasma frequency in terms of the ef-
on separation are neither obtained within the LDA, nor infective density,w, = [47reZnege /m. This contribution
semilocal approximations, such as gradient corrected agomes from the lowest-order perturbation-theoretic fluc-
proximations [5—8], lately in wide use. tuation term, representing plasmons being scattered off
To restore the vdW interactions in DFT methods,the potential caused by a density gradient, exchanging be-
we have used an approach which ties together severgleen pointar; andr, in the effective medium.
previous ideas where local or semilocal approximations |f one wishes to create a density-functional theory
are applied in various ways [9-12]. This approximationthat is valid in both the uniform gas and separate atom
has proved to be successful in the simple case of twamits one must have a form that is viable and physically
interacting atoms and seems to be a good starting poimhotivated in both limits. We show here that such a
for the theory of atomic and surface physics potentialssjtuation exists if we choose a different effective density

The possibility to obtain van der Waals constants forio be used inky. in Eq. (1) and hence by implication in
interaction between two atoms and between an atom or ge expression fow, in Eq. (2). Our choice of effective

molecule and a metal surface in a general and simple wayensity is "

will be very useful, e.g., for obtaining accurate interaction

potentials to use in simulations. Teff = [\/n(n)n(rz) <\/”(r1) * \/”(rZ)ﬂ )
van der Waals interactions result from density fluctua

tions in regions separated in space. These are not propew

accounted for in the LDA or in semilocal approximations.

It has been shown [10,13] that for the interaction betwee

two small but distant charge perturbations in a uniform

electron gas they are described through the limiting befb(l‘l,l‘z) o 3e

C4m? 3 (ry, )l — e

e also use the total fragment density insteadmofn the
olated fragment limit, following other works in the field
6,7,10]. We then get the effective long-range electron
interaction

4

havior [14] of the linear response kernkl. expressing 2m?
the exchange-correlation energy of a slightly nonuniform 1
system [1],

oy ()@ () [0y () + @p()]ie — 1l
Ex = f & [ P raKre(rr,1)8n(0)8n(e), (1) (4)

where 6n is the deviation in charge density from a Wherew,(r) = y4me2n(r;)/m is the local plasma fre-
uniform system. As one often wants to go beyondduency at the position of electran It is suggestive that

linear response by extrapolation of this expression, ith the identificationw, = w,(r1), vz = w,(rs), the

key issue in density-functional theory has always beef$XPression above is |d_ent|cal in form to the London ex-
how to approximate the “uniform” density.; of the Pression for the vdW interaction between two atoms

medium in whichK,. is defined, in terms ofi(r;) and a}ndB at separatior®, for the case Whgre only one excita-
n(ry). Rapcewicz and Ashcroft (RA) [10] have suggestedt'on frequencyw,,p needs to be considered for each atom
that one takencs = +/n(r;)n(r,) and obtained in the [15,16],

asymptotic limit of large separation the effective long- E _ 3e* ZsZp 1 (5)
range electron interactiomi(= 1 here and elsewhere in vdw 2m? wiwp(ws + wp) RO
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Even more important is the observation that when Eq. (4) So far we have essentially a zero wave vector theory,
is integrated ovem; and r, to obtain the correlation which needs a cutoff. In the limit of two small distant dis-
energy between two widely separated pieces of mattelurbances in an electron gas, this cutoff occurs physically
with volumesV; and V,, one finds that one can express because the long-range interaction is propagated by plas-

the long-range interaction as mons, which become highly damped for~ w, /vy =
., 3 [ (i) 2 (i) krr/ /3, where they meet the electron-hole continuum.
E = _;fo du fv d’ry fv d’ry ﬁ In a full finite ¢ theory such as done in this limit by Lan-

greth and Vosko [9], this cutoff occurs smoothly and natu-
(6) rally, with their functionZ. falling off rapidly when g
where the coordinate; is restricted to the volumé;.  becomes of this order. RA implemented the cutoff in a
Here y(w) is the electric susceptibility or polarization real space form, using the Langreth-Mehl (LM) [6] ex-
responseP of a uniform electron gas at densitfr) to  pressiory = |Vn|/6n as a measure of the local wave vec-

a spatially constant applied electric field, tor, and cutting off the integrals when this became equal
| | 1 w2 to w,/vp, Wherevy = kp/m = (372n)'3 /m is the lo-
x(w) = —[1 - } = ———="— (7) cal Fermivelocity. In the limit of widely separated atoms
da €(w) AT —w” + o), a cutoff to our zergy theory is also necessary. Physically

wheree(w) is the electron gas dielectric function at zero this can be seen by considering our expression (9) for the
wave vectore(w) = 1 — wg/wz_ For two atoms widely ~atomic polarlzabllltles. In the spirit of local approxima-
separated by a distand®, Eq. (6) givesE = —Cs/R®, tions, itis re_asonable to suppose as we have done that the
where interior portions of the atom polarize in roughly the same
" way as a uniform electron gas at the same local density.
Ce = _i[ du oy (iv)as (in) (8) However, this is not true in the outer tails of the wave
T Jo function, where the length scalg for density change is
and much shorter than the electron gas screening lehgthn
this case it should be a much better approximation to sup-
ai(w) = f dr xi(w). 9) pose that these parts of the atom do not respond at all to an
applied field. The crossover should come when the length
Equation (8) is the standard expression [16] &g in [, measuring the fractional rate of change (with respect to
terms of the atomic polarizabilitiea;. The essence of distance) of the local Fermi wave vector is of the order
the approximation is that the atomic polarizabilities areof the electron gas screening length. We use= 1/¢g
calculated in a local approximation, where the responswith ¢ determined by the LM formula above, and the lo-
function y, giving the polarization per unit volume of a cal value ofvy/w, for ;. In this manner we obtain a
uniform electron gas, is integrated over the atom. cutoff criterion that is exactly the same as that introduced
A number of types of local approximations have beenby RA. Thus, although the mechanisms are different, the
suggested [11,12] for different response functions in ordecutoff is the same for the limit both of separated atoms
to obtain the van der Waals interaction. Here we intro-and of distant disturbances in an electron gas.
duce one [Eg. (9)] which is also not only highly physi- We have calculated the frequency-dependent polariza-
cally motivated, but which we show to give reasonablebility for a number of atoms using Eq. (9) and found good
results for wide classes of atomic systems. The fact thaigreement with available first-principles calculations (see
we have found a theory that not only does this, but alsdables | and II).
gives the correct kernel for small deviations from the uni- When integration over the complex frequency in
form electron gas limit, holds promise that in the futureEq. (6) is carried out, and thg, are expressed using
a density-functional theory at intermediate ranges can bthe atomic charge densities, the long-range interaction
developed. between the two separated fragments of matter becomes

TABLE I. Atomic polarizabilitiesa (iu) (in atomic units). Results from Eq. (9) in left columns and first-principles results from
Ref. [17] in right columns. « in Ry units.)

u Ne Na*™ Ar K+ Kr

0 2.83 2.97 1.15 1.08 14.17 12.15 6.55 5.60 22.27 17.55
1 2.09 2.29 1.01 0.94 5.80 7.22 3.91 4.45 7.56 9.78
2 1.42 1.55 0.81 0.81 3.10 3.64 2.36 2.77 3.71 4.59
4 0.67 0.74 0.47 0.54 1.35 1.28 1.08 1.15 1.69 1.48
6 0.40 0.47 0.34 0.34 0.81 0.61 0.61 0.54 0.94 0.61
8 0.27 0.27 0.27 0.27 0.47 0.27 0.40 0.34 0.67 0.27
10 0.20 0.20 0.20 0.20 0.34 0.13 0.27 0.20 0.47 0.13
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TABLE Il. Atomic polarizabilities «(iu) (in atomic units).
Results from Eq. (9) in left columns and first-principles results He| Ne| Ar| Kr| Xe H,
from Ref. [18] in right columns. « in Ry units.) Hel 4 7 1 221314410
u H He 3|6 |22 |ECD]| @
12 137 | 50| 71 17
0.01 4.84 4.50 2.07 1.38 Ne 12) | @D | 57| 76) | (16)
0.53 2.79 3.20 1.65 1.28 Ar 126 | 175 | 253 60
70 o7z o om o7 T
: : : : : 245 | 356 | 84
2.21 0.52 0.63 0.57 0.63 Kr (266)| (368)| (76)
3.19 0.29 0.34 0.37 0.42 520 1 123
4.32 0.17 0.19 0.24 0.27 Xe (522)|114)
6.30 0.08 0.10 0.14 0.15

8.56 0.05 0.05 0.08 0.09 H| &1 dol el eyl as
10.21 0.03 0.04 0.06 0.07 ) (17)
Li 46 | 67 | 292 | 434 | 669 | 154
(82) | (88) |(350)|(518)[(808)] (159

Na 51| 74 | 325 486 750

(48) | (95) | (378)| (562)/(876)

Er 6e e K | 92 | 136 | 580 | 862 1327

7 4@4m)2mi2 )y, " (76) | (150)| (584)(866)(1338

FIG. 2. Values of C¢ coefficients plotted in Fig. 1. In
Vni(r)na(ra) 1 :
% f d3ry INT1/72072 ., (10) parentheses the corresponding values from Refs. [22] and [25]
Vs Jni(r) + /na(ry) Irp — 128 (H,) are given (in Ry atomic units).

wheren(r;) is the charge density of fragment The vdW

constantsCy for the interaction between a large number . . .
of different atoms and also for hydrogen molecules, calih€0ry provides a physically correct form for the density-

culated using this expression, are displayed in Fig. 1. Nufunctional in the separated fragment limit. We believe it

merical values of the coefficients are also presented iH‘”” provide .the f_r amework in V\.’h'Ch future finite wave
Figs. 2 and 3 and in Table Ill. The cutoff discussed above/ector theories will have to be discussed.

has been applied to the integrals in Eq. (10), and in deter-

mining the cutoff we have accounted for spin polarization

when present. The atomic charge densities have been ex-
tracted from available Roothaan-Hartree-Fock wave func- H I Lii{Na| K
tions with Slater basis sets [19-21].

Our theory is crude in the sense that the results in H 12 97 | 108 | 189
some cases are sensitivg to the cutoff. Nevertheless, our (13) | (133) [(142) | (218)
results are good over wide classes of atoms. Our work
also explains why RA's results for several rare gas atoms Li 1335 | 1543 | 2719
are as good as they are. Unlike the previous work our (2780)|(2900)|(4640)

Na 1849 |3159
oo X rare gas«r;\re gas ' ' +® (3020) (4800)
QOHe-alkali earth &
Dalkali earth-alkali earth o 5640
R | o (alkalij+(alkalip+ o & | K
: 1000 st kg'; | Diry (7800)
B Caabakaieat | %% B 74 | 852 | 973 {1705
~ 2-alkal ] e
O‘D i ?c::r;n%%\-lclarbon kgggﬁ - (69) (934) (1010) (1510)
g e Mg 114 |1404 | 1612 | 2842
é o ) & ] (116) |(1708)[(1840)|(2779)
© ’ Ca | 185 |240 2818 | 5002
' 10 100 1000 10000 (186) [(3229) (3445)((5326)

C, from other calculations (Ry bohr®)
FIG. 3. Values of C¢ coefficients plotted in Fig. 1. In
FIG. 1. van der Waals coefficientSs (in Ry atomic units) parentheses the corresponding values from Refs. [22] (alkali—
calculated from Eq. (9), plotted against corresponding valueslkali) and [24] (alkali—alkali earth) are given (in Ry atomic
from first-principles calculations. units).

104



VOLUME 76, NUMBER 1

PHYSICAL REVIEW LETTERS

1 ANUARY 1996

TABLElll. Values of C4 coefficients plotted in Fig. 1 (in Ry
atomic units).

Eqg. (10) Other calculations
Na"-Na* 3 32
K*-K* 44 17
Cc-C 77 57
He-Be 38 26
He-Mg 57 4£
He-Ca 92 64
H.-He 10 7.8
H.-Ne 17 16
H,-Ar 60 541
H»-Kr 84 76°
H,-Xe 123 114
H>-H 18 17
Ho-Li 154 159
H,-Be 119 85
H 2'H 2 29 27e

®Reference [17].
bReference [23].
‘Reference [24].
YReference [25].
*Reference [26].
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