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High Density QCD with Static Quarks

T. Blum,* J. E. Hetrick, and D. Toussaint

Department of Physics, University of Arizona, Tucson, Arizona 85721
(Received 5 September 1995

We study lattice QCD in the limit that the quark mass and chemical potential are simultaneously made
large, resulting in a controllable density of quarks which do not move. This is similar in spirit to the
guenched approximation for zero density QCD. In this approximation we find that the deconfinement
transition seen at zero density becomes a smooth crossover at very small density (possibly for any
nonzero density), and that at low enough temperature chiral symmetry remains broken at all densities.

PACS numbers: 12.38.Gc, 12.38.Mh

Lattice QCD with a nonzero density of quarks is a dif- quarks that can be present or absent at each lattice site,
ficult problem due to the fact that the fermion determi-but which do not move in the spatial directions owing to
nant is not a positive real number, and thus cannot béheir infinite mass. The result is a much simpler fermion
used as a weight for generating configurations by Monteleterminant such that gauge variables can be updated to
Carlo methods [1]. A further technical difficulty is that equilibrium in the background of a prescribed density
with Kogut-Susskind quarks the fermion matrix is badly of quarks, with little more difficulty than updating in
ill conditioned at nonzero chemical potential [2], makingthe quenched approximation. (The simultaneous limit of
simulations even more difficult. At present, only crude u — «© and m — o has also been suggested for QED
results on very small lattices are available [3—5]. Facedvith Wilson quarks in Ref. [6].)
with these difficulties, we may consider approximations The general idea of studying the problem in simple
which hopefully capture some of the essential features aipproximations is not new. DeGrand and DeTar have
the physics. Here we present a study of QCD at arbitrargtudied an extension of the three-dimensional Potts model
quark density in an approximation where the dynamicavith an imaginary magnetic field, which has similar
of the quarks has been removed. This is analogous tsymmetry breaking as in QCD, and might be expected
the quenched approximation at zero density, an approxio lie in the same universality class [7]. Satz has used
mation which has provided considerable insight into thea lowest order hopping parameter expansion8én< 3
nature of QCD. lattices [8], which is also an approach based on very heavy

Our idea is to take simultaneously the limits of infinite quarks.
quark mass and infinite chemical potential while the With a chemical potential included, the lattice Dirac
density of quarks remains fixed. This leaves us W]thoperator using Kogut-Susskind quarks is

M(x,y) = zamqax,y + Z [Uv(x)nv(x)6x+f/,y - UZ(y)nv(y)ax—f},y]
v=123

+ [e'“aUt(x)n,(x)éer;’y - eiﬂaU;r(y)”’h(y)ax—f,y]- 1)

Taking limits m — o« and u — © simultaneously| The determinant is easily evaluated by diagonalizing
leaves2ma along the diagonal and the forward hopping P;. In SU(2),
terms e#“U,. Each spatial point is decoupled from all A 0 A
others, and the fermion determinant is just a product of detP; + C) = €7 + CTrp; + 1, (3)
easily computed determinants on each static would line: while in SU(3)

de{(P; + C) = C° + C*TrP; + CTrP; + 1.
de(M) = [ [ e#m™ detP; + C1). @)
% (4)
Here P; is the Polyakov loop at spatial sife n. is the In SU(2) this determinant is real and positive, which re-

number of colors, and, is the number of time slices. The flects the fact that quarks and antiquarks are in equivalent
coefficient of the unit matrixC is (2ma/e*“)™, and is representations of SU(2). Unfortunately, studying SU(2)
the fundamental parameter in our approximation, througlat large baryon density is of limited interest since such
which we fix the density. [In SU(3)C 3 is the ratio of  baryons would be bosons. In the realistic case of SU(3),
the probability that there are three quarks on a site to theve are still left with a complex determinant, albeit a much
probability that the site is empty.] simpler one, allowing us to generate high statistics.
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In generating gauge configurations, we can update thexpectation values of the various powers ©fin the
spatial links with any of the standard algorithms for determinant, Egs. (3) and (4). Similarly we may calculate
guenched QCD: Metropolis, heat bath, and/or overrelaxeorrelation functiong p,(x)p..(y)), the probability forn
ation The temporal links are updated with the Metropolisquarks at site&¢ andm quarks at site. These correlations
algorithm, using the magnitude of the determinant plusnay be used to study the clustering properties of baryons
gauge action as the weight. Thus the parts of the actiom the model as temperature and density are varied.
involved in updating a temporal link/, are Since in our approximation the only remaining com-

Spar = (2/g2)ReTW,3 + In[|de(U,P; + O)I], bination of chemical potential and qu?rk masCisthe

heavy quark condensatd V) = (BV) 'aIn(Z)/om is

(5) trivially related to(n). However, we uséy ) evaluated
whereS3 is the sum of the “staples” anBk is the product for light quarks on the generated lattices as an indicator

of all the time direction links at sité except for the Of chiral symmetry breaking. This is just a probe of the

link being updated. As in conventional quenched QCDnature of the gauge configurations, rather than a conden-
successive Metropolis hits are easy; mot of the work goe§ate of the actual quarks in the model. It represents the
into evaluating the staples angk, which can be used Cchiral properties of light valence quarks in the presence of
unchanged in successive hits. a finite density of massive quarks. We also calculate the

Because of the phase in the determinant, for SU(3) wéverage Polyakov loop. Not surprisingly, since the heavy

must estimate expectation values by taking the ratio ~ quarks are coupled directly to the Polyakov loop, it gets a
(e, nonzero expectation value at a@yother than zero or in-

: , (6) finity. This does not necessarily represent deconfinement,
e’ since we have put in a density of quarks which can now
whered is the phase of the determinant summed over alkhjeld the test quark represented by the Polyakov loop.
spatial points ang) indicates an expectation value in the \we have run SU(3) simulations off X 2, 8 X 2,
ensemble of Configurations WelghtEd by the magnitude Oi()3 X 2, and 63 X 4 |attices. Typ|ca| runs include 500
the determinant. This method can be applied to the fulkquilibration sweeps of the lattice and 4000 measuring
theory; however, the expectation value of the phase cagweeps, where in each sweep we make two overrelaxation
(and typically does) become very small, so that enormougpdates of the spatial links and ten Metropolis updates
statistics are required to get meaningful measurementgf poth spatial and temporal links. The average phase
In our case the phase does become small, however, ngh then, = 2 lattices ranges from one, &fC = 0.0, to
prohibitively so on the lattices we study (our smallestas small as 0.04 (th€0® X 2 lattice at6/g> = 4.8 and
value was(e'’) = 0.02). Furthermore, as described |/c = 0.08). Since all physical observables are obtained
above, we can produce statistics generously. from a ratio of expectation values [Eq. (6)] where the
The physical quark density is obtained from) =  numerator and denominator are strongly correlated, we
(BV)~'aIn(Z)/ap, whereV is the spatial volume and ysed a jackknife procedure with ten blocks to estimate
B = an, is the temporal extent of the lattice. Using the errors.
Eq. (4) this becomes In Fig. 1 we summarize the behavior of the Polyakov

| C2T- + 2CT* + 3 loop magnitude(|P|) in the T-u plane, onN, = 2 lat-
(ny = — <Z ; : > (7)

0) =

3 > - tices. This figure show§P|) as a function ob/g> (tem-

VAT O+ T + CT; + 11 perature) and /C (effectively u). At 1/C = 0, or zero
in SU(3), whereT; = Tr(P;). At C = « the density is density, we see the strong first order temperature induced
0; at C = 0 the system is saturated with density per  transition at6/g> =~ 5.1. As the density increases, this
site; C = 1 represents “half filling” and the density is transition smooths out. We plot the magnitude of the
ne/2. Polyakov loop rather than its real part because at zero

Note from Egs. (3) and (4) that d& + C) is un- density our simulations average over the Z(3) symmetry
changed by the replacemeét— 1/C, where in SU(3) of the pure gauge action, which multiplies the Polyakov
we simultaneously replade — U*. Thus there is a du- loop by factors ofe27i/3,
ality relation: The ensemble of configurations generated Figures 2 and 3 show the density ajfel along lines
with couplingC is the same as that generated at couplingf constantl /C on6® X 2, 8% X 2, and10® X 2 lattices.
1/C, and the density obeys(1/C) = n. — p(C). Phys- From these plots, and from similar behavior in the light
ically this duality reflects the fact that. — 1 quarks ona quark (i), it appears that the first order transition at
single site behave like an antiquark on that site, so that &/C = 0 becomes a smooth crossover for any nonzero
small density of holes behaving as antiquarks in a nearlyalue of the density. This is surprising, since conventional
saturated system (at sm&) behaves like a system with wisdom says that a nonzero discontinuity at the edge of
a small density of quarks (at largs. a phase diagram decreases continuously to zero at some

We can also find the probability that a site containspoint in the interior of the phase diagram. However,
zero, one, two, or three quarks. These are just theve note that simple functions such as fdnh- 7.)/h*]

1020



VOLUME 76, NUMBER 7 PHYSICAL REVIEW LETTERS 12 EBRUARY 1996

LS
[ 1/C=0.08, 0.04, 0.02, 0.00

COO0O 4=
OBV D
T T

IP|

48 49 50 51 52
6/¢°

FIG. 1. The magnitude of the Polyakov loop in SU(3) as aFIG. 3. The magnitude of 2the Polyakov loop averaged over
function of 6/¢> and 1/C. This plot includes results from the lattice as a function of/g” onn;, = 2 lattices. The curves
6’ X 2,8 x 2, and10® X 2 lattices. In the smoother regions are: from left to r|ght,1/c_‘ = 0.08, 0.04, 0.02, and0.0. The

of the plot some points were interpolated to produce a regulaf’@ning of the symbols is the same as in Fig. 2.

mesh. The contour line is whetg| = 0.5.

results is that the transition disappears for any nonzero
density.

have a discontinuity ak = 0 but a crossover at any We have also made a series of runs6dnx 4 lattices.

nonzeroh. Since we see no systematic dependence qf . . A )
o e began with a series of runs afg= = 5.0. Since
the crossover on the spatial size, except for the expecte[

decrease of the Polyakov loop magnitude on cold lattices e high temperature transition ayC = 0 occurs at

) _ . . ; .
we conclude that this rounding is not a finite size effect.ﬁ/g 5.1 for N, =2, this is a fairly cold lattice, with

(For a first order transition, we expect the rounding of2 temperature less than half that for deconfinement at

the jump in observables due to the finite lattice size tor oo density. Figure 4 shows the behavior of the phase

i ioh i i
diminish quickly with the spatial size, while fdr/C = 0 te'), which in this case gets as small as 0.02. We

. find that the light quark(y¢s) remains large for any
we seem to be approaching a smooth curve as the spati <|ansity at this (cold) value of/g2, as shown in Fig. 4.

lattice size is increased.) Of course, these Monte Carl t 1/C = 1.0, the density reaches 1.5 quarks per site
results do not rule out a first order transition line endin - y > P '
at somel/C less than 0.02. Since at 0.02 the density in hefe the_ quarks haye the _Iargest _effect on the gauge
the dimensionless units of quarks per lattice site is arounaonflguratlons. At this density we find a crossover to

0.01 at the crossover (see Fig. 2), and we know of n estored chiral symmetry /s> ~ 5.3, a significantly

natural explanation for a change in behavior at a smalle(?rower temperzature than the zero density transition, Wh'Ch
ccurs at6/g* = 5.7. We have also run simulations in

parameter, we think that the simplest explanation for ou U(2), with similar results.

Clearly there is much more work to be done in the

B S e direction of finite density simulations. In this model,
1/€=0.08, 0.04, 0.02 we have not yet addressed the question of whether these
0.10 - - results scale in the continuum limit nor tried to extract
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FIG. 2. The density as a function 6f g on n, = 2 lattices. 1/c

The curves are, from left to right,/C = 0.08, 0.04, and0.02. ~ _

The 1/C = 0.0 curve is absent because the density is alwaysIG. 4. The light quark ) (octagons) ande'?), (crosses)
zero there. The octagons afe X 2 lattices, the squares as 1/C varies. This is computed at a light quark mass of
8% X 2, and the diamond$0® X 2. The lines just connect the am, = 0.01. The lattice size i$* X 4 and the gauge coupling
points for each lattice size. is6/g> =5.0.
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physical numbers for various quantities. Perhaps the be#b vanish. This suggests that we might want to reexamine
hope for progress lies in the use of improved actionsthe conventional wisdom that a high density of quarks
with which it may be possible to approach the continuumcauses a phase transition similar to that caused by high
limit using lattices that are small enough so that the phastemperature.
problem is no longer hopeless. This work was supported by DOE Grant No. DE-FGO03-
For pure SU(3) (or quenched QCD), the high tempera95ER-40906.
ture transition is first order [9], and we expected this be-
havior to extend into the interior of thE-u phase dia-
gram. Surprisingly, we find this is apparently not the case.
The first order transition appears to become a crossover at
nonzero density, becoming quite smooth at relatively low  *Present address: Brookhaven National Lab, Upton, NY
densities. 11973.
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