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We study lattice QCD in the limit that the quark mass and chemical potential are simultaneously
large, resulting in a controllable density of quarks which do not move. This is similar in spirit to
quenched approximation for zero density QCD. In this approximation we find that the deconfine
transition seen at zero density becomes a smooth crossover at very small density (possibly
nonzero density), and that at low enough temperature chiral symmetry remains broken at all den
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Lattice QCD with a nonzero density of quarks is a d
ficult problem due to the fact that the fermion determ
nant is not a positive real number, and thus cannot
used as a weight for generating configurations by Mo
Carlo methods [1]. A further technical difficulty is tha
with Kogut-Susskind quarks the fermion matrix is bad
ill conditioned at nonzero chemical potential [2], makin
simulations even more difficult. At present, only crud
results on very small lattices are available [3–5]. Fac
with these difficulties, we may consider approximatio
which hopefully capture some of the essential features
the physics. Here we present a study of QCD at arbitr
quark density in an approximation where the dynam
of the quarks has been removed. This is analogous
the quenched approximation at zero density, an appr
mation which has provided considerable insight into t
nature of QCD.

Our idea is to take simultaneously the limits of infini
quark mass and infinite chemical potential while t
density of quarks remains fixed. This leaves us w
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quarks that can be present or absent at each lattice
but which do not move in the spatial directions owing
their infinite mass. The result is a much simpler fermi
determinant such that gauge variables can be update
equilibrium in the background of a prescribed dens
of quarks, with little more difficulty than updating in
the quenched approximation. (The simultaneous limit
m ! ` and m ! ` has also been suggested for QE
with Wilson quarks in Ref. [6].)

The general idea of studying the problem in simp
approximations is not new. DeGrand and DeTar ha
studied an extension of the three-dimensional Potts mo
with an imaginary magnetic field, which has simila
symmetry breaking as in QCD, and might be expec
to lie in the same universality class [7]. Satz has us
a lowest order hopping parameter expansion on83 3 3
lattices [8], which is also an approach based on very he
quarks.

With a chemical potential included, the lattice Dira
operator using Kogut-Susskind quarks is
Msx, yd ­ 2amqdx,y 1
X

n­1,2,3

fUnsxdhnsxddx1n̂,y 2 Uy
n s ydhns yddx2n̂,yg

1 femaUtsxdhtsxddx1t̂,y 2 e2maUy
t s ydhts yddx2t̂,yg . (1)
ng

e-
lent
2)
ch
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h

Taking limits m ! ` and m ! ` simultaneously
leaves2ma along the diagonal and the forward hoppin
terms emaUt . Each spatial point is decoupled from a
others, and the fermion determinant is just a product
easily computed determinants on each static would lin

detsMd ­
Y

$x

emancnt detsP$x 1 C1d . (2)

Here P$x is the Polyakov loop at spatial site$x, nc is the
number of colors, andnt is the number of time slices. Th
coefficient of the unit matrixC is s2mayemadnt , and is
the fundamental parameter in our approximation, throu
which we fix the density. [In SU(3),C23 is the ratio of
the probability that there are three quarks on a site to
probability that the site is empty.]
f

h

e

The determinant is easily evaluated by diagonalizi
P$x. In SU(2),

detsP$x 1 Cd ­ C2 1 CTrP$x 1 1 , (3)

while in SU(3)

detsP$x 1 Cd ­ C3 1 C2TrP$x 1 CTrPp
$x 1 1 .

(4)

In SU(2) this determinant is real and positive, which r
flects the fact that quarks and antiquarks are in equiva
representations of SU(2). Unfortunately, studying SU(
at large baryon density is of limited interest since su
baryons would be bosons. In the realistic case of SU(
we are still left with a complex determinant, albeit a muc
simpler one, allowing us to generate high statistics.
© 1996 The American Physical Society 1019
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In generating gauge configurations, we can update
spatial links with any of the standard algorithms fo
quenched QCD: Metropolis, heat bath, and/or overrela
ation The temporal links are updated with the Metropol
algorithm, using the magnitude of the determinant plu
gauge action as the weight. Thus the parts of the act
involved in updating a temporal linkUt are

Spart ­ s2yg2dReTrUtS̃ 1 lnfj detsUtP̃ $x 1 Cdjg ,

(5)

whereS̃ is the sum of the “staples” and̃P$x is the product
of all the time direction links at site$x except for the
link being updated. As in conventional quenched QCD
successive Metropolis hits are easy; mot of the work go
into evaluating the staples and̃P$x, which can be used
unchanged in successive hits.

Because of the phase in the determinant, for SU(3)
must estimate expectation values by taking the ratio

kO l ­
kO eiulk

keiulk

, (6)

whereu is the phase of the determinant summed over
spatial points andklk indicates an expectation value in th
ensemble of configurations weighted by the magnitude
the determinant. This method can be applied to the f
theory; however, the expectation value of the phase c
(and typically does) become very small, so that enormo
statistics are required to get meaningful measuremen
In our case the phase does become small, however,
prohibitively so on the lattices we study (our smalle
value was keiulk ­ 0.02). Furthermore, as described
above, we can produce statistics generously.

The physical quark density is obtained fromknl ­
sbV d21≠ lnsZdy≠m, where V is the spatial volume and
b ­ ant is the temporal extent of the lattice. Using
Eq. (4) this becomes

knl ­
1
V

*X
$x

C2T$x 1 2CTp
$x 1 3

C3 1 C2T$x 1 CTp
$x 1 1

+
(7)

in SU(3), whereT$x ­ TrsP$xd. At C ­ ` the density is
0; at C ­ 0 the system is saturated with densitync per
site; C ­ 1 represents “half filling” and the density is
ncy2.

Note from Eqs. (3) and (4) that detsPi 1 Cd is un-
changed by the replacementC ! 1yC, where in SU(3)
we simultaneously replaceU ! Up. Thus there is a du-
ality relation: The ensemble of configurations generat
with couplingC is the same as that generated at couplin
1yC, and the density obeysrs1yCd ­ nc 2 rsCd. Phys-
ically this duality reflects the fact thatnc 2 1 quarks on a
single site behave like an antiquark on that site, so tha
small density of holes behaving as antiquarks in a nea
saturated system (at smallC) behaves like a system with
a small density of quarks (at largeC).

We can also find the probability that a site contain
zero, one, two, or three quarks. These are just t
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expectation values of the various powers ofC in the
determinant, Eqs. (3) and (4). Similarly we may calcula
correlation functionskpns $xdpms $ydl, the probability forn
quarks at site$x andm quarks at site$y. These correlations
may be used to study the clustering properties of baryo
in the model as temperature and density are varied.

Since in our approximation the only remaining com
bination of chemical potential and quark mass isC, the
heavy quark condensatekC̄Cl ­ sbV d21≠ lnsZdy≠m is
trivially related toknl. However, we usekc̄cl evaluated
for light quarks on the generated lattices as an indica
of chiral symmetry breaking. This is just a probe of th
nature of the gauge configurations, rather than a cond
sate of the actual quarks in the model. It represents
chiral properties of light valence quarks in the presence
a finite density of massive quarks. We also calculate t
average Polyakov loop. Not surprisingly, since the hea
quarks are coupled directly to the Polyakov loop, it gets
nonzero expectation value at anyC other than zero or in-
finity. This does not necessarily represent deconfineme
since we have put in a density of quarks which can no
shield the test quark represented by the Polyakov loop.

We have run SU(3) simulations on63 3 2, 83 3 2,
103 3 2, and 63 3 4 lattices. Typical runs include 500
equilibration sweeps of the lattice and 4000 measuri
sweeps, where in each sweep we make two overrelaxa
updates of the spatial links and ten Metropolis upda
of both spatial and temporal links. The average pha
on thent ­ 2 lattices ranges from one, at1yC ­ 0.0, to
as small as 0.04 (the103 3 2 lattice at6yg2 ­ 4.8 and
1yC ­ 0.08). Since all physical observables are obtaine
from a ratio of expectation values [Eq. (6)] where th
numerator and denominator are strongly correlated,
used a jackknife procedure with ten blocks to estima
the errors.

In Fig. 1 we summarize the behavior of the Polyako
loop magnitudesjPjd in the T -m plane, onNt ­ 2 lat-
tices. This figure showskjPjl as a function of6yg2 (tem-
perature) and1yC (effectively m). At 1yC ­ 0, or zero
density, we see the strong first order temperature indu
transition at6yg2 ø 5.1. As the density increases, thi
transition smooths out. We plot the magnitude of th
Polyakov loop rather than its real part because at z
density our simulations average over the Z(3) symme
of the pure gauge action, which multiplies the Polyako
loop by factors ofe2piy3.

Figures 2 and 3 show the density andjPj along lines
of constant1yC on 63 3 2, 83 3 2, and103 3 2 lattices.
From these plots, and from similar behavior in the lig
quark kc̄cl, it appears that the first order transition a
1yC ­ 0 becomes a smooth crossover for any nonze
value of the density. This is surprising, since convention
wisdom says that a nonzero discontinuity at the edge
a phase diagram decreases continuously to zero at s
point in the interior of the phase diagram. Howeve
we note that simple functions such as tanhfst 2 tcdyhxg
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FIG. 1. The magnitude of the Polyakov loop in SU(3) as
function of 6yg2 and 1yC. This plot includes results from
63 3 2, 83 3 2, and103 3 2 lattices. In the smoother region
of the plot some points were interpolated to produce a reg
mesh. The contour line is wherejPj ­ 0.5.

have a discontinuity ath ­ 0 but a crossover at an
nonzeroh. Since we see no systematic dependence
the crossover on the spatial size, except for the expe
decrease of the Polyakov loop magnitude on cold lattic
we conclude that this rounding is not a finite size effe
(For a first order transition, we expect the rounding
the jump in observables due to the finite lattice size
diminish quickly with the spatial size, while for1yC ­ 0
we seem to be approaching a smooth curve as the sp
lattice size is increased.) Of course, these Monte C
results do not rule out a first order transition line endi
at some1yC less than 0.02. Since at 0.02 the density
the dimensionless units of quarks per lattice site is aro
0.01 at the crossover (see Fig. 2), and we know of
natural explanation for a change in behavior at a sma
parameter, we think that the simplest explanation for

FIG. 2. The density as a function of6yg2 on nt ­ 2 lattices.
The curves are, from left to right,1yC ­ 0.08, 0.04, and0.02.
The 1yC ­ 0.0 curve is absent because the density is alw
zero there. The octagons are63 3 2 lattices, the squares
83 3 2, and the diamonds103 3 2. The lines just connect the
points for each lattice size.
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FIG. 3. The magnitude of the Polyakov loop averaged o
the lattice as a function of6yg2 on nt ­ 2 lattices. The curves
are, from left to right,1yC ­ 0.08, 0.04, 0.02, and 0.0. The
meaning of the symbols is the same as in Fig. 2.

results is that the transition disappears for any nonz
density.

We have also made a series of runs on63 3 4 lattices.
We began with a series of runs at6yg2 ­ 5.0. Since
the high temperature transition at1yC ­ 0 occurs at
6yg2 ­ 5.1 for Nt ­ 2, this is a fairly cold lattice, with
a temperature less than half that for deconfinemen
zero density. Figure 4 shows the behavior of the ph
keiulk, which in this case gets as small as 0.02. W
find that the light quarkkc̄cl remains large for any
density at this (cold) value of6yg2, as shown in Fig. 4.
At 1yC ­ 1.0, the density reaches 1.5 quarks per si
where the quarks have the largest effect on the ga
configurations. At this density we find a crossover
restored chiral symmetry at6yg2 ø 5.3, a significantly
lower temperature than the zero density transition, wh
occurs at6yg2 ø 5.7. We have also run simulations i
SU(2), with similar results.

Clearly there is much more work to be done in th
direction of finite density simulations. In this mode
we have not yet addressed the question of whether th
results scale in the continuum limit nor tried to extra

FIG. 4. The light quarkkc̄cl (octagons) andkeiulk (crosses)
as 1yC varies. This is computed at a light quark mass
amq ­ 0.01. The lattice size is63 3 4 and the gauge coupling
is 6yg2 ­ 5.0.
1021
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physical numbers for various quantities. Perhaps the b
hope for progress lies in the use of improved actio
with which it may be possible to approach the continuu
limit using lattices that are small enough so that the ph
problem is no longer hopeless.

For pure SU(3) (or quenched QCD), the high tempe
ture transition is first order [9], and we expected this b
havior to extend into the interior of theT -m phase dia-
gram. Surprisingly, we find this is apparently not the ca
The first order transition appears to become a crossove
nonzero density, becoming quite smooth at relatively l
densities.

The mean field analysis of the Potts model in Ref.
showed a disappearance of the phase transition at l
density. In the3d Potts model the first order phase tra
sition persists to some nonzero density (i.e., imagin
magnetic field), with a continuously decreasing disco
tinuity in the order parameter. The hopping parame
expansion in Ref. [8] showed rather smooth behavior
the Polyakov loop andkc̄cl on the chemical potential.

Does the static approximation have anything to do w
real QCD? Certainly the nature of the high temperatu
transition at zero density depends strongly on the prese
of dynamical quarks as is becoming clear from lar
scale simulations of full QCD [10]. However, it is
not a priori clear to us that a deconfinement transitio
or chiral symmetry restoration driven by high densi
should depend on the quarks moving, or whether
mere presence of the quarks would be enough.
particular, we had not expected to see the zero den
first order transition disappear for very small qua
densities, or for the signal of chiral symmetry restorati
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to vanish. This suggests that we might want to reexam
the conventional wisdom that a high density of quar
causes a phase transition similar to that caused by h
temperature.
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