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Almost-Goldstone Bosons from Extra-Dimensional Gauge Theories
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A mechanism is presented through which very light scalar degrees of freedom obeying the nonlinear
sigma model equation can emerge in spontaneously broken gauge theories. The mechanism operates
in extra-dimensional theories in which (a) there are massless gauge fields present in the theory prior to
compactification, and (b) the extra dimensions are inhomogeneous in such a way that symmetry breaking
Higgs fields acquire vacuum expectation values only at very localized points on the manifold. These
conditions are naturally fulfilled in orbifold compactifications of string theory. Possible applications
include cosmic texture, axions, and family symmetry.
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Can the spontaneous breakdown of a gauge symmetig larger unified schemes. And, finally, it has been argued
produce Goldstone bosons? In normal circumstanceshat quantum gravitational effects could “spoil” global
the Higgs mechanism operates and the Goldstone bososgmmetries by introducing terms involving the Planck
are “eaten” by the longitudinal gauge bosons. In thismassmp; into the low energy effective theory which
Letter, however, | shall show that in modern approachesiolate global symmetries in an arbitrary manner [5,6].
to theories with compact extra dimensions the answer cahhese last arguments have to some extent been countered
be quite different. Under certain plausible conditions veryin [7].
light modes remain, which to all intents and purposes are Without getting into such arguments, it is still interest-
the Goldstone bosons associated with the global part ahg to ask the following. If wedo accept the proposi-
the gauge symmetry. | call these modes almost-Goldston#n that at a fundamental level all internal symmetries are
bosons (AGB'’s), because their mass is only exponentiallgauged, does it follow that Goldstone bosons of the kind
small and not precisely zero. that are interesting for cosmology are disallowed? | shall

Goldstone bosons and approximate Goldstone bosorshow that the answer is negative. In particular, if we start
are of considerable interest in cosmology, where thewith an extra-dimensional gauge theory with spontaneous
provide an attractive mechanism for structure formation irsymmetry breaking, under certain conditions AGB’s with
the Universe. A broken U(1) global symmetry producesexponentially small masses are produced. In a compacti-
cosmic strings [1]; a broken non-Abelian global symmetryfied field theory, one findsisgg = ¢ M~, with M a mass
produces cosmic texture [2]. In order for these structurescale associated with the symmetry breaking Higgs field
formation mechanisms to work, it is essential for theandL the size of the extra dimensions. And in compact-
Goldstone bosons to be extremely light, with masses ndications of string theory, the suppression can be even
greater than~10"%mp. Otherwise, the fields settle to stronger—potentially, one hagags = ¢ 7X* whereT is
their minimum and the field ordering process comes tdhe string tension.
an end, at a time of order their inverse mass. Similarly, | shall assume that there exist gauge bosbefore
the axion arises as an approximate Goldstone boson—ife theory is compactified, and that the extra dimensions
order for this mechanism to solve the stra@g problem, do not possess any special continuous symmetry. Both
it is essential that any explicit mass term be very smallassumptions are those usually made in modern approaches
less than~10"38mp,. The reason for giving the number to the Kaluza-Klein theory and string theory.
in Planck units will be made clear below. Finally, global As an illustration of the idea, consider compactification
continuous symmetries are of interest in the context obn a circle of length.. As mentioned above, | am really
family symmetry ([3], and references therein). interested in the case where the extra dimensamsot

Historically, the idea that there could be fundamentalpossess any special symmetries. Therefore | shall ignore
global symmetries has been unpopular in particle theoryany effects due to the translational symmetry of the circle.
The gauge principle is believed to be a “deeper” ideaConsider the Abelian Higgs model in five dimensions, and
Dynamical theories of the origin of internal symmetries,assume that the Higgs field gets a vacuum expectation
such as string theory, naturally produce symmetries whiclralue (VEV) in the ground state which ishomogeneous
are gauged [4]. Those global internal symmetries whicton the circle (Fig. 1). Let me emphasize that | am
are present in the standard model (related to baryon arjdst putting this VEV in by hand in this example. The
lepton number conservation) may be explained as beingost natural origin for this inhomogeneity would be the
simply “accidents” of the gauge symmetry and particleinhomogeneity of the compactified dimensions, which
content, which could not in general be expected to surviveequires more than one dimension, and is therefore harder
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J, must be single valued, and therefore so magt
Matching the slope discontinuity across each wire, using

(1) we find2foa, (x*) = gV*[9,00 — 1gLfea,], and

X similarly with # replaced by—6?. These equations
require thaw , 0V = —9,6?. Thus we find
19,00 (x®)
o D0 o 5
gA, 1+ D gA, (2)
wherel = gg2LV?, and the current flowing on the two
wires is
gV26 oW
J(l) - S M7 _](2). 3
2 a+1 z 3)

. o The solution to these equations involves one massless
FIG. 1. An example of symmetry breaking which is inhomo- gcglar degree of freedond(x%), obeying the equation

geneous in the extra dimensions, parametrized-by The di- : _ . )
rection along the tube is an uncompactified dimension. Th(IOr current conservatiorilé = 0. It describes the prop

Higgs VEV is large on the two shaded strips. A TEM mode can@gation of a transverse electromagnetic field (TEM) mode

propagate along the tube, with a positive charge wave packélown the transmission line provided by the extra dimen-

traveling along one strip, a negative charge wave packet alongions. Just as in a transmission line, we need at least two

the other. E denotes the electric field. wires to carry the light mode. It is straightforward to find
all the propagating modes, and to show that they have
masses~ L2, the usual Kaluza-Klein tower of massive

to picture. For example, in orbifold compactifications states.

the curvature has delta function singularities at the fixed Ope simple way of understanding the mechanism is to

points of the orbifold. If¢ couples to the curvature realize that before the symmetry is gauged the phases

in such a way that its effective mass squared is largef the Higgs field on the two wire9) and 6@, are

and negative at these points, but positive elsewhergjecoupledin the limit that v(x®) vanishes in between

it will acquire an inhomogeneous VEV over the extrathe wires. Thus there are actuathyo four-dimensional

dimensions, with exponentially small values where itsGoldstone modes. When the gauge field is introduced, it

mass Squ_ﬂed IS positive. _ can only “eat” one of these (the linear combinat@h +

The existence of a very light mode follows from () |eaving the other massless. The extra dimensions

the fact that the two strips of nonzero Higgs VEV arecan produce more than one, and in principle an infinity of

superconducting wires, and the configuration shown igour-dimensional Goldstone modes, and thereby “evade”

a transmission line. In Lorentz gauge, the equation ofhe Higgs mechanism.

motion for the gauge field is This discussion generalizes to the non-Abelian case
92Aﬂ =(d - ag)Aﬂ = _gUZ(XS)(aﬂg + gAp) quite straightforwardly. The key point is that the only

_ large [8] components of the electromagnetic field tensor
= Ju(x), (1) are Fso and Fs5;. SinceAs is zero, neither of these in-

where 92 is the full Laplacian,J that for the uncom- volves any commutator terms, and with the neglect of
pactified dimensions, ands = 9/9x>. Hatted indices F,, the equations of motion are the same as in the
run over all dimensions, unhatted indices over 0—3. Theé\belian case, (1), with an extra Lie algebra-valued in-
phased is the phase of the Higgs field, agdthe gauge dex on the gauge fields and scalar field currdpt
coupling constant. The Higgs VEW(x’) is treated as Apart from adding the extra indices, the only change
fixed: we ignore the zero modes corresponding to translan the formulas (2) and (3) is thai,# is replaced by
tion of the wires around the extra dimensions, a result of-i Im(i¢TT”8M¢)/v2, where T are the generators of
the translational symmetry of the circle. the gauge group. In the approximation that all massive
In the approximation that the wires are infinitely thin, modes are set zero, conservation of this current is equiva-
v2(x°) = V2. 8(x° — x;), and we can safely take the lent to the nonlinear sigma model (NLSM) equation.
current/s flowing around the circle to be zero. We define This is an important point. In the Abelian case, the
the Higgs field phase on each wire to B8, i = 1,2,  compactified theoralreadyhas a massless scalaefore
and seek a solution in whicts is zero, butA, =  symmetry breaking, namels(x*). So it might appear
f(x%)a,(x*). The form of f(x°) is simple: between the that all we have done is relabel this mode in a way
wires it is linear inx’, with slope=f,. Note thatf(x’) that makes it look like a Goldstone boson. The non-
must be periodic in>. This follows because we assume Abelian case demonstrates that this is not so—the field
that the Higgs field has no winding number around theequation describing the low energy excitations really is
extra dimensions, s@ is single valued. But the currents the NLSM equation, whereas for a dimensionally reduced
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non-Abelian gauge theonts(x?®) is instead a massless We would now like to determine the mass of the light-
scalar field in the adjoint representation of the gaugesst mode in this more realistic setting. The calculation is
group. most easily done in unitary gauge, which is adequate for

We now have all the ingredients needed for the coseonsidering small fluctuations about the ground state. In
mological structure formation mechanism. We assume afact, it is interesting to see exactly how the light mode
usual that the Higgs VEVM¢) is zero at high tempera- emerges here, because in this gauge thermadegrees
tures, and a symmetry breaking occurs as the Universef freedom associated with the phases of the Higgs field.
cools. The Higgs field acquires an orientation in internalinstead we just have a single massive vector boson. Its
space which is uncorrelated on large (three-dimensionaBquation of motion is

spatial scales. Then ordering of the fields proceeds, just as 9, R = — M2(x5)A? 5)

in the usual scenario [1,2]. Fluctuations of the observed # ’

amplitude are produced fof ~ 10 3mp,. where M? = g?v?. This equation implies that
We now turn to a more realistic computation, where weaﬂ[Mz(x5)Aﬂ] = 0, and solving fora,lAf‘ one finds

include the dynamics producing the inhomogeneous Higgs 9sM>

VEV. In this case, we shall find that the mode described —0A; = [—a3 + M*(x)]JA, — 9,2( 2 As)- (6)

above gets an exponentially small mass. To be specific,
consider the case where a charged scalar fieldas a  For i =5, this only involvesds. The right-hand side is
coupling to the Ricci curvatur®, of the forméRe T, @ linear operatoil) acting onAs: the eigenvalues 00
with the sign such as to give a large negative mass are the squared masskg of the four-dimensional fields
squared at special locations on the extra dimensions. Le&orresponding tals.

us make the approximation that the scalar curvaiires The operatorO can be replaced by a Hermitian op-
delta function singularities in the extra dimensions. Theerator H if we remove the first order derivative by re-
simplest example would be two extra dimensions takinglefiningAs = a(x>)/M(x>). One findsf = H, + M?,

the form of a narrow tube with rounded ends, with strongwhere #; = —a3 + Ma5(M~'). Now a minor miracle
curvature at either end and none in between. Note thatappensH; has an eigenvalue whichéxactly zero, with
whatever the sign of, there is alwaysomeform for the  eigenfunctionau(x’) = M ~!(x°), localized in between the
extra dimensions which will produce the negative massvires. We obtain a useful upper bound on the mass
squared; for example, by adding a small handle to eachquared of the lightest four-dimensional mode by simply
end of the rounded tube just mentioned, one can make thésing this zero mode a; as a trial function:

Euler pumber negative so t.hat the mean curvature at each , _ [dx5(afa) L
end will be large and negative [9]. Mi < [dva:  [doM 2 (7)
The equation we need to solve for the value of the
symmetry breaking field in the ground statef¢ =  But this means thal; is very small, because the integral
v2(x°), is in the denominator has an exponentially large contribution
in between the wires, where the gauge boson mass
_agv — —® = miu + 525(x5 — ). (@) M (x>) becomes small. The mass of the lightest mode is
]

suppressed as L/, as claimed above.

The mechanism discussed above seems to work even
The symmetry breaking field is assumed to have a positivenore efficiently in string theory. The natural analogs of
mass squared term and a quartic term in its potentiathe curvature-coupled Higgs field are the so-called twisted
The solution to (4) describes a particle rolling up onemodes on orbifolds [10], which play a central role in
side of the “upside down” potential, approaching thestring phenomenology. Viewed as modes of the string,
“summit” slowly before turning around and descendingthese excitations have a center of mass which cannot
again. The delta function terms reverse the “velocity”’propagate on the orbifold; they are literally stuck on
dsv, sendingv rolling back up the hill. If we assume the orbifold fixed points. There is nothing preventing
that the sizel. of the circle is large, thew (x’) becomes the scalar fields corresponding to these twisted modes
nearly zero in between the delta functions. Then theacquiring a grand unified theory (GUT) scale VEV,
value of v at the delta functions is determined by and the interactions between the modes associated with
energy conservations(9sv)2., ~ xAvt + im202 . different fixed points are all exponentially suppressed.

2 max 4 max 2 max

and the matching conditioPdsvmax = EvVmax- Thus we Some couplings are suppressed by a Gaussian rather
find v2,, = (% — 4m?)/2X. A nonzero solution exists than an exponential in the distance between the fixed
if &> 2m, which is just the condition for instability points. This can be heuristically understood as follows.
of the configurationv(x®) = 0. In between the delta In order for twisted string modes at two different fixed
functions, v gets exponentially smallymi, ~ e 2"/*.  points to interact, they must undergo a large quantum
So the symmetry breaking is exponentially small, butfluctuation, in which their size changes by a scale of
nonzero, in between the wires. order the distancd. between the fixed points. Such
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fluctuations are suppressed by the large Euclidean actigoreliminary, and one should aim at a general statement
involved, the area of the string worldsheet times the strin@bout the precise form of the suppression in an arbitrary
tension. Since the string dynamics is independent oferm in the full effective potential. However, | hope
the tensionT, dimensional analysis indicates the actionl have succeeded in emphasizing that a detailed study
must be proportional td.>2. The suppression factor is would be worthwhile.
therefore~ ¢~ 7%*. The exponent has been calculated in The above considerations may be summarized by
some explicit examples by Hamidi and Vafa [11], and bysaying that compactified extra dimensions can provide
Dixon, Friedan, Martinec, and Shenker [12]. Sd.ifs of a physical reason for the existence of several global
order ten or twenty string units, the coupling is completelycopies of the original gauge group in the effective four-
negligible. dimensional theory. Applications of this idea to realistic
The field theory form of the exponential suppressionorbifold models of cosmic texture, axions, and family
may also occur here [13]. For example, o aorbifold, symmetry are interesting directions for future work. It
N identical twisted strings may combine at a fixed pointmay also be possible to construct models in which the
into an untwisted state, carrying gauge group indices foelectroweak Higgs field is an AGB: The exponential
the symmetric product representation, which can themxpression might then provide a natural solution to the
propagate across to a neighboring fixed point. In thishierarchy problem.
case it is natural to conjecture the suppression would | thank M. Bucher, A. Farraggi, A. Goldhaber,
instead be~ ¢ M~ with M the mass of the intermediate D. Gross, H. Verlinde, F. Wilczek, E. Witten, and espe-
untwisted charged state, afidthe distance between fixed cially L. Dixon for very helpful discussions. This work
points. Again, in string theory the prospect of obtainingwas partially supported by NSF Contract PHY90-21984,
a large exponent is better than in field theory becausand the David and Lucile Packard Foundation.
the intermediate state could be forced to be a high
level number massive string mode. As a quasirealistic
example, theZ; orbifold [10] has massless gauge fields
corresponding to the gauge group E SU(3), and there
are no less than 8 's (three at each fixed point). . .
There is certainly &1(;3;ho§tage of candidate figlds )for United Kingdom. , ,
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