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Almost-Goldstone Bosons from Extra-Dimensional Gauge Theories
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A mechanism is presented through which very light scalar degrees of freedom obeying the non
sigma model equation can emerge in spontaneously broken gauge theories. The mechanism o
in extra-dimensional theories in which (a) there are massless gauge fields present in the theory p
compactification, and (b) the extra dimensions are inhomogeneous in such a way that symmetry br
Higgs fields acquire vacuum expectation values only at very localized points on the manifold. T
conditions are naturally fulfilled in orbifold compactifications of string theory. Possible applicati
include cosmic texture, axions, and family symmetry.

PACS numbers: 14.80.Mz, 11.25.Mj, 11.30.Qc, 98.80.Cq
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Can the spontaneous breakdown of a gauge symm
produce Goldstone bosons? In normal circumstanc
the Higgs mechanism operates and the Goldstone bo
are “eaten” by the longitudinal gauge bosons. In th
Letter, however, I shall show that in modern approach
to theories with compact extra dimensions the answer
be quite different. Under certain plausible conditions ve
light modes remain, which to all intents and purposes
the Goldstone bosons associated with the global par
the gauge symmetry. I call these modes almost-Goldst
bosons (AGB’s), because their mass is only exponenti
small and not precisely zero.

Goldstone bosons and approximate Goldstone bos
are of considerable interest in cosmology, where th
provide an attractive mechanism for structure formation
the Universe. A broken U(1) global symmetry produc
cosmic strings [1]; a broken non-Abelian global symme
produces cosmic texture [2]. In order for these struct
formation mechanisms to work, it is essential for t
Goldstone bosons to be extremely light, with masses
greater than,10260mPl. Otherwise, the fields settle to
their minimum and the field ordering process comes
an end, at a time of order their inverse mass. Simila
the axion arises as an approximate Goldstone boson—
order for this mechanism to solve the strongCP problem,
it is essential that any explicit mass term be very sm
less than,10238mPl. The reason for giving the numbe
in Planck units will be made clear below. Finally, glob
continuous symmetries are of interest in the context
family symmetry ([3], and references therein).

Historically, the idea that there could be fundamen
global symmetries has been unpopular in particle theo
The gauge principle is believed to be a “deeper” ide
Dynamical theories of the origin of internal symmetrie
such as string theory, naturally produce symmetries wh
are gauged [4]. Those global internal symmetries wh
are present in the standard model (related to baryon
lepton number conservation) may be explained as be
simply “accidents” of the gauge symmetry and partic
content, which could not in general be expected to surv
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in larger unified schemes. And, finally, it has been argu
that quantum gravitational effects could “spoil” globa
symmetries by introducing terms involving the Planc
mass mPl into the low energy effective theory which
violate global symmetries in an arbitrary manner [5,6
These last arguments have to some extent been count
in [7].

Without getting into such arguments, it is still interes
ing to ask the following. If wedo accept the proposi-
tion that at a fundamental level all internal symmetries a
gauged, does it follow that Goldstone bosons of the ki
that are interesting for cosmology are disallowed? I sh
show that the answer is negative. In particular, if we st
with an extra-dimensional gauge theory with spontaneo
symmetry breaking, under certain conditions AGB’s wi
exponentially small masses are produced. In a compa
fied field theory, one findsmAGB ~ e2ML, with M a mass
scale associated with the symmetry breaking Higgs fi
andL the size of the extra dimensions. And in compac
ifications of string theory, the suppression can be ev
stronger—potentially, one hasmAGB ~ e2TL2

whereT is
the string tension.

I shall assume that there exist gauge bosonsbefore
the theory is compactified, and that the extra dimensio
do not possess any special continuous symmetry. B
assumptions are those usually made in modern approa
to the Kaluza-Klein theory and string theory.

As an illustration of the idea, consider compactificatio
on a circle of lengthL. As mentioned above, I am really
interested in the case where the extra dimensionsdo not
possess any special symmetries. Therefore I shall ign
any effects due to the translational symmetry of the circ
Consider the Abelian Higgs model in five dimensions, a
assume that the Higgs fieldw gets a vacuum expectatio
value (VEV) in the ground state which isinhomogeneous
on the circle (Fig. 1). Let me emphasize that I a
just putting this VEV in by hand in this example. Th
most natural origin for this inhomogeneity would be th
inhomogeneity of the compactified dimensions, whi
requires more than one dimension, and is therefore ha
© 1996 The American Physical Society 1015
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FIG. 1. An example of symmetry breaking which is inhomo
geneous in the extra dimensions, parametrized byx5. The di-
rection along the tube is an uncompactified dimension. T
Higgs VEV is large on the two shaded strips. A TEM mode ca
propagate along the tube, with a positive charge wave pac
traveling along one strip, a negative charge wave packet alo
the other. E denotes the electric field.

to picture. For example, in orbifold compactification
the curvature has delta function singularities at the fixe
points of the orbifold. If w couples to the curvature
in such a way that its effective mass squared is lar
and negative at these points, but positive elsewhe
it will acquire an inhomogeneous VEV over the extr
dimensions, with exponentially small values where i
mass squared is positive.

The existence of a very light mode follows from
the fact that the two strips of nonzero Higgs VEV ar
superconducting wires, and the configuration shown
a transmission line. In Lorentz gauge, the equation
motion for the gauge field is

≠2Am̂ ­ sh 2 ≠2
5dAm̂ ­ 2gy2sx5ds≠m̂u 1 gAm̂d

; Jm̂sxd , (1)

where ≠2 is the full Laplacian,h that for the uncom-
pactified dimensions, and≠5 ­ ≠y≠x5. Hatted indices
run over all dimensions, unhatted indices over 0–3. Th
phaseu is the phase of the Higgs field, andg the gauge
coupling constant. The Higgs VEVysx5d is treated as
fixed: we ignore the zero modes corresponding to trans
tion of the wires around the extra dimensions, a result
the translational symmetry of the circle.

In the approximation that the wires are infinitely thin
y2sx5d ­ V 2

P
i dsx5 2 xid, and we can safely take the

currentJ5 flowing around the circle to be zero. We defin
the Higgs field phase on each wire to beusid, i ­ 1, 2,
and seek a solution in whichA5 is zero, but Am ­
fsx5damsxad. The form offsx5d is simple: between the
wires it is linear inx5, with slope6f0. Note thatfsx5d
must be periodic inx5. This follows because we assume
that the Higgs field has no winding number around th
extra dimensions, sou is single valued. But the currents
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Jm must be single valued, and therefore so mustAm.
Matching the slope discontinuity across each wire, usi
(1) we find 2f0amsxad ­ gV 2f≠mus1d 2

1
4 gLf0amg, and

similarly with us1d replaced by2us2d. These equations
require that≠mus1d ­ 2≠mus2d. Thus we find

gAs1d
m ­ 2

I≠mus1dsxad
s1 1 Id

­ 2gAs2d
m , (2)

whereI ­
1
8 g2LV2, and the current flowing on the two

wires is

Js1d
m ­

gV 2≠mus1d

s1 1 Id
­ 2Js2d

m . (3)

The solution to these equations involves one massl
scalar degree of freedom,usxad, obeying the equation
for current conservation,hu ­ 0. It describes the prop-
agation of a transverse electromagnetic field (TEM) mo
down the transmission line provided by the extra dime
sions. Just as in a transmission line, we need at least
wires to carry the light mode. It is straightforward to fin
all the propagating modes, and to show that they ha
masses, L22, the usual Kaluza-Klein tower of massive
states.

One simple way of understanding the mechanism is
realize that before the symmetry is gauged the pha
of the Higgs field on the two wires,us1d and us2d, are
decoupledin the limit that ysx5d vanishes in between
the wires. Thus there are actuallytwo four-dimensional
Goldstone modes. When the gauge field is introduced
can only “eat” one of these (the linear combinationus1d 1

us2d), leaving the other massless. The extra dimensio
can produce more than one, and in principle an infinity
four-dimensional Goldstone modes, and thereby “evad
the Higgs mechanism.

This discussion generalizes to the non-Abelian ca
quite straightforwardly. The key point is that the onl
large [8] components of the electromagnetic field tens
are F50 and F5i . SinceA5 is zero, neither of these in-
volves any commutator terms, and with the neglect
Fmn the equations of motion are the same as in t
Abelian case, (1), with an extra Lie algebra-valued i
dex on the gauge fields and scalar field currentJm.
Apart from adding the extra indices, the only chang
in the formulas (2) and (3) is that≠mu is replaced by
2i ImsiwyT a≠mwdyy2, where Ta are the generators of
the gauge group. In the approximation that all massi
modes are set zero, conservation of this current is equi
lent to the nonlinear sigma model (NLSM) equation.

This is an important point. In the Abelian case, th
compactified theoryalreadyhas a massless scalar,before
symmetry breaking, namelyA5sxad. So it might appear
that all we have done is relabel this mode in a wa
that makes it look like a Goldstone boson. The no
Abelian case demonstrates that this is not so—the fi
equation describing the low energy excitations really
the NLSM equation, whereas for a dimensionally reduc
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non-Abelian gauge theoryAa
5 sxad is instead a massles

scalar field in the adjoint representation of the gau
group.

We now have all the ingredients needed for the c
mological structure formation mechanism. We assume
usual that the Higgs VEVkwl is zero at high tempera
tures, and a symmetry breaking occurs as the Unive
cools. The Higgs field acquires an orientation in intern
space which is uncorrelated on large (three-dimension
spatial scales. Then ordering of the fields proceeds, jus
in the usual scenario [1,2]. Fluctuations of the observ
amplitude are produced forV , 1023mPl.

We now turn to a more realistic computation, where w
include the dynamics producing the inhomogeneous Hi
VEV. In this case, we shall find that the mode describ
above gets an exponentially small mass. To be spec
consider the case where a charged scalar fieldw has a
coupling to the Ricci curvatureR, of the form jRwyw,
with the sign such as to givew a large negative mas
squared at special locations on the extra dimensions.
us make the approximation that the scalar curvatureR has
delta function singularities in the extra dimensions. T
simplest example would be two extra dimensions tak
the form of a narrow tube with rounded ends, with stro
curvature at either end and none in between. Note
whatever the sign ofj, there is alwayssomeform for the
extra dimensions which will produce the negative ma
squared; for example, by adding a small handle to e
end of the rounded tube just mentioned, one can make
Euler number negative so that the mean curvature at e
end will be large and negative [9].

The equation we need to solve for the value of t
symmetry breaking field in the ground state,wyw ­
y2sx5d, is

2≠2
5y ­ 2ly3 2 m2y 1 j

X
i

dsx5 2 xidysxid . (4)

The symmetry breaking field is assumed to have a posi
mass squared term and a quartic term in its poten
The solution to (4) describes a particle rolling up o
side of the “upside down” potential, approaching t
“summit” slowly before turning around and descendin
again. The delta function terms reverse the “velocit
≠5y, sendingy rolling back up the hill. If we assume
that the sizeL of the circle is large, thenysx5d becomes
nearly zero in between the delta functions. Then
value of y at the delta functions is determined b
energy conservation,12 s≠5yd2

max ø 1
4 ly4

max 1
1
2 m2y2

max,
and the matching condition2≠5ymax ­ jymax. Thus we
find y2

max ­ sj2 2 4m2dy2l. A nonzero solution exists
if j . 2m, which is just the condition for instability
of the configurationysx5d ­ 0. In between the delta
functions, y gets exponentially small,ymin , e2Lmy4.
So the symmetry breaking is exponentially small, b
nonzero, in between the wires.
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We would now like to determine the mass of the light
est mode in this more realistic setting. The calculation
most easily done in unitary gauge, which is adequate f
considering small fluctuations about the ground state.
fact, it is interesting to see exactly how the light mod
emerges here, because in this gauge there areno degrees
of freedom associated with the phases of the Higgs fie
Instead we just have a single massive vector boson.
equation of motion is

≠m̂Fm̂n̂ ­ 2M2sx5dAn̂ , (5)

where M2 ­ g2y2. This equation implies that
≠m̂fM2sx5dAm̂g ­ 0, and solving for≠m̂Am̂ one finds

2hAm̂ ­ f2≠2
5 1 M2sx5dgAm̂ 2 ≠m̂

√
≠5M2

M2 A5

!
. (6)

For m̂ ­ 5, this only involvesA5. The right-hand side is
a linear operatorÔ acting onA5: the eigenvalues of̂O
are the squared massesM2

4 of the four-dimensional fields
corresponding toA5.

The operatorÔ can be replaced by a Hermitian op-
erator Ĥ if we remove the first order derivative by re-
defining A5 ­ asx5dyMsx5d. One findsĤ ­ Ĥ1 1 M2,
where Ĥ1 ­ 2≠

2
5 1 M≠

2
5sM21d. Now a minor miracle

happens:̂H1 has an eigenvalue which isexactly zero, with
eigenfunctionasx5d ­ M21sx5d, localized in between the
wires. We obtain a useful upper bound on the ma
squared of the lightest four-dimensional mode by simp
using this zero mode of̂H1 as a trial function:

M2
4 ,

R
dx5saĤadR

dx5a2
­

LR
dx5M22sx5d

. (7)

But this means thatM2
4 is very small, because the integra

in the denominator has an exponentially large contributio
in between the wires, where the gauge boson ma
Msx5d becomes small. The mass of the lightest mode
suppressed ase2Lmy4, as claimed above.

The mechanism discussed above seems to work ev
more efficiently in string theory. The natural analogs o
the curvature-coupled Higgs field are the so-called twiste
modes on orbifolds [10], which play a central role in
string phenomenology. Viewed as modes of the strin
these excitations have a center of mass which cann
propagate on the orbifold; they are literally stuck o
the orbifold fixed points. There is nothing preventing
the scalar fields corresponding to these twisted mod
acquiring a grand unified theory (GUT) scale VEV
and the interactions between the modes associated w
different fixed points are all exponentially suppressed.

Some couplings are suppressed by a Gaussian rat
than an exponential in the distance between the fix
points. This can be heuristically understood as follow
In order for twisted string modes at two different fixed
points to interact, they must undergo a large quantu
fluctuation, in which their size changes by a scale o
order the distanceL between the fixed points. Such
1017
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fluctuations are suppressed by the large Euclidean ac
involved, the area of the string worldsheet times the stri
tension. Since the string dynamics is independent
the tensionT , dimensional analysis indicates the actio
must be proportional toL2. The suppression factor is
therefore, e2TL2

. The exponent has been calculated
some explicit examples by Hamidi and Vafa [11], and b
Dixon, Friedan, Martinec, and Shenker [12]. So ifL is of
order ten or twenty string units, the coupling is complete
negligible.

The field theory form of the exponential suppressio
may also occur here [13]. For example, on aZN orbifold,
N identical twisted strings may combine at a fixed poi
into an untwisted state, carrying gauge group indices
the symmetric product representation, which can th
propagate across to a neighboring fixed point. In th
case it is natural to conjecture the suppression wo
instead be, e2ML, with M the mass of the intermediate
untwisted charged state, andL the distance between fixed
points. Again, in string theory the prospect of obtainin
a large exponent is better than in field theory becau
the intermediate state could be forced to be a hi
level number massive string mode. As a quasirealis
example, theZ3 orbifold [10] has massless gauge field
corresponding to the gauge group E6 3 SUs3d, and there
are no less than 81s1, 3d’s (three at each fixed point).
There is certainly no shortage of candidate fields f
forming SUs3d global texture in this model. Indeed
one might instead worry that too many light AGB’
might be produced, thus causing conflict with primordi
nucleosynthesis.

What are the limits to the exponential suppressio
There is a well-known problem associated with makin
the extra dimensions very large, namely, that in dime
sional reduction the higher-dimensional gauge coupli
gets large,a ­ a4V , where V is the volume of the
compactified space, anda, as usual, isg2y4p. If V in-
creases too far, then for fixed four-dimensional couplin
the higher-dimensional theory is in the strong couplin
limit, and calculations are impossible. As a simple exam
ple, consider an orbifold, with all dimensions small exce
one. The five-dimensional coupling would then be pote
tially problematic. Let us estimate the largest suppress
factore2ML, following the discussion of the previous para
graph. HereL ­ a5ya4, and we could consider taking the
dimensionless loop expansion parameterspT d1y2a5y2p to
be of order unity. We usea4 ­ 1y27, the GUT coupling,
and forM take the mass of a massive string intermedia
state,M ­

p
8pTn with n the level number (for closed

strings). The suppression factor is then, e2480
p

n!
One should also note that there are other stro

constraints on twisted mode couplings and in gene
higher powers of the exponential suppression factors c
be involved. This discussion I have presented is of cou
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preliminary, and one should aim at a general statem
about the precise form of the suppression in an arbitr
term in the full effective potential. However, I hop
I have succeeded in emphasizing that a detailed st
would be worthwhile.

The above considerations may be summarized
saying that compactified extra dimensions can prov
a physical reason for the existence of several glo
copies of the original gauge group in the effective fou
dimensional theory. Applications of this idea to realist
orbifold models of cosmic texture, axions, and fami
symmetry are interesting directions for future work.
may also be possible to construct models in which t
electroweak Higgs field is an AGB: The exponenti
expression might then provide a natural solution to t
hierarchy problem.
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